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AI/ML pipeline and Storage Use cases
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Outline
• Motivation 
− Why do we need (NVMe) Flash Storage to play a larger role in Training and Inference?

• Opportunities
− Where can Flash storage contribute?

• Illustrated Example
− What did we learn about flash storage in AI Training/Inference from our testing?
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Cost, Power and Time impacts of Training [0]

Foundational Model Training will be accessible to only a very few

• Each training run of GPT-3 cost 5M$[1]
• Cost of foundational model training is over 100M$[1]
• Largest models can cost >1B$ to train by 2027[2]Cost

• Meta’s Llama2 70B model took 1.7Mhrs[3]
• Palm-540B model took 8.8Mhrs[3]
• Training GPT-3 - 36yrs with 8V100 GPUs/ or 7months with 512 GPUs[4]
• GPUs utilization is best-case 50% usually much lower [0]

Time

• GPT-2 model training consumed 28MWhrs[5]
• GPT-3 consumed 10X more 284MWhrs. [> 500 refrigerators running annually!!]
• Google just reported a 48% greenhouse gas increase due to AI in datacenters[6]Power

https://shchegrikovich.substack.com/p/the-genai-world-can-be-tricky-to
https://www.forbes.com/sites/craigsmith/2023/09/08/what-large-models-cost-you--there-is-no-free-ai-lunch/
https://www.forbes.com/sites/craigsmith/2023/09/08/what-large-models-cost-you--there-is-no-free-ai-lunch/
https://epochai.org/blog/how-much-does-it-cost-to-train-frontier-ai-models
https://medium.com/codenlp/the-training-time-of-the-foundation-models-from-scratch-59bbce90cc87
https://medium.com/codenlp/the-training-time-of-the-foundation-models-from-scratch-59bbce90cc87
https://analyticsindiamag.com/ai-mysteries/how-to-take-advantage-gpus-large-language-models-gpt-3/
https://shchegrikovich.substack.com/p/the-genai-world-can-be-tricky-to
https://medium.com/@sebastiaan.bollaart/the-environmental-cost-of-llms-a-call-for-efficiency-206cbf352c79
https://www.gstatic.com/gumdrop/sustainability/google-2024-environmental-report.pdf


The Need to Democratize Training

• 0.5 order of magnitude cost increase (100.5) 
every year ~ 3X

• Cost = Hardware Cost + Energy Cost
– Upfront HW Cost and %age time spent on training?
– Energy Cost = Power x training time x Energy Rate

• 124 ML systems (not just LLMs)
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Training Cost (EpochAI.org)

Making SLM Training accessible to more data scientists is a growing challenge

https://epochai.org/blog/trends-in-the-dollar-training-cost-of-machine-learning-systems#method


NVMe Storage Offload in AI Training
• AI Training relies on keeping all training related data close to the GPU

• Type of Data 
• Model Parameters (Weights and Biases)
• Optimizer States (between training batches) and Gradients (parameter adjustments)
• Checkpointing data (intermediate states)
• Working Memory (during forward/backward passes)

• For a 1T model, GPU requires ~30TB of operational training data – “Memory Wall”
• Grows with model size and context size

• Today
• Model scaling relies on aggregating GPU Memory (across several 100 GPUs)
• 3D Parallelism – Data, Tensor or Pipeline parallelism 

• Offload
• Leverage heterogeneity in AI Servers – distribute training data in CPU/CXL/NVMe Flash

Effective Offload can provide a significant cost and power benefit



Opportunities for Offload to NVMe Storage
1. Foundational Model Training, Democratizing Training of SLMs* 

2. Inference on the Cloud 

3. Enabling Inference on PCs, Mobile Devices and the Edge 

*SLM=Small Language Models

Microsoft Deep Speed- important contributor to enabling Offload during Training and Inference



Deep Speed – Microsoft  “AI at-Scale Initiative”
• Open-source optimization library for Distributed Training and Inference
• ZeRO optimization technique (ZeRO-1, ZeRO-2, ZeRO-3)

• Eliminates memory redundancies during training optimizations 
• Partitions model states (parameters, optimizer states, gradients) across multiple devices 

ZeRO Benefits: Scale model size, No model code refactoring needed



ZeRO-Offload- Democratizes model training
• Extend ZeRO to offload model states from GPU memory to CPU/NVMe
• Key Optimizations

• Partition model parameters, optimizer states and gradients across different memory tiers
• Overlap slower tier (memory/storage) access with computation 

• ZeRO-Infinity – ZeRO Offload to scale model training
• ZeRO-Inference – Adapts ZeRO-Infinity for inference (offload: model parameters, KV Cache)

• Inference Requirements
• Latency – How quickly can a model process an input prompt and produce outputs?
• Throughput – How many inferences can the model handle per unit time? “batch size”

• Inference Types 
• Online Inference – latency is important, e.g. Chatbot
• Offline/Batch Inference-Thruput is important along with HW utilization, e.g. User Recommendations, Caption 

generation, Batched article summaries

NVMe Offload is a good candidate for Offline Inference



Other opportunities for Offload to NVMe Storage
1. Training Large Foundational Models, Democratizing Training of SLMs* 

• Zero, Zero-Infinity (MSFT Deep Speed)
• Benefits- Scale model size, No model code refactoring needed, improved GPU utilization  
• Requires- SW optimizations – partition parameters, overlap compute with storage access

2. Inference on the Cloud 
• DLRM Inference (Meta)
• Benefits -Large batch sizes, ML Ops (multiple models), power and cost benefits (less GPU memory)
• Requires-Choosing what to offload (capacity-bound vs compute/BW intensive),

3. Enabling Inference on the Edge 
• LLM inference on resource-constrained devices (Apple)
• Benefits –Cost, power savings, Latency to first token
• Requires-Flash aware optimizations (32K or larger – “read and discard” over “reading small”) 

*SLM=Small Language Models



NVMe Offload with ZeRO Inference
• System:  (representative resource constrained system)

• Dell PowerEdge XE8545(Gen4, Gen3)  SuperMicro SYS-512GE-TNRT (Gen5)
• CPU:  AMD EPYC 7413 24-Core Processor
• Memory: constrained to 256 GiB
• GPUs: A100-40GB (single GPU), L40S (single GPU)
• Micron NVMe: 4TB SSD

• Deep Speed ZeRO-Inference Configuration
• 4b Weight quantization, KV Cache Offload, 512B  Prompt Length 
• NVMe Block Size: 2MB, Thread Count 16 (Not the library default)

• Options explored
• Models: Hugging Face OPT models (13b, 30b, 66b)
• Batch sizes: 80, 128,140,
• Offload to CPU  vs Offload to NVMe SSD 
• PCIe Generations: Gen3, Gen4, Gen5

• Metrics
• Prefill  Latency (Input token processing - Compute bound can be parallelized)
• Decoder Latency (Output token generation-not easily parallelizable)
• Run-time (Total Latency)
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Model Size and Batch Scaling Results

• Offload to CPU memory
• Unable to support models > 30b (Out of Memory)
• Does better for smaller models

12

O
O

M
*

*OOM: Out of Memory

• Model Scaling
• As batch sizes increase NVMe offload run-

times are better than CPU offload

Cost and Capacity of NVMe Storage enables model and batch scaling providing better perf/$

Data averaged across 5 inference runs



SSD PCIe Gen choice for NVMe Offload

• Larger models run an average of 40% faster with PCIe generation improvement 
• Gen4- Gen5 improvements not as significant as Gen3-Gen4 –  possible compute bottleneck that faster storage access cannot alleviate?
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Higher is better



Observations
• NVMe Offload helps run larger models –better quality responses
• NVMe Offload can service larger batch sizes – more inference requests per 

unit time
• Offload libraries like ZeRO Inference should be leveraged 

• Will democratize training and inference and enable wider at-scale deployment of AI 
models

• Libraries can be further optimized
• Larger Block Sizes 
• Greater Thread counts

• Faster NVMe SSDs will help further improve speed of inference
• Average of 40% improvement in performance (PCIe Gen3 to Gen4)
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Conclusions
• Power and Cost considerations for AI-at Scale deployment are real
• NVMe offload can be a cost and power efficient alternative to democratize 

training and cloud inference
• Benefits of high-quality responses from larger models can be leveraged by 

resource constrained mobile, client and edge devices 
• Enabling NVMe Offload requires

• Careful model optimizations to hide storage latency behind  compute
• Large blocks sizes and use of multiple threads further accelerate SSD performance

• Storage for AI – Call to Action
• Move to faster PCIe interfaces on SSDs 
• Focus on Read performance, optimize bandwidth over latency(needs to be hidden)
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Thank You!
• Questions?
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