

Optimizing Data Center TCO: An In-depth Analysis and Sensitivity Study

Manzur Rahman Product Marketing Engineering Manager Solidigm

Cost system in TCO model

	Direct Cost			Indirect Cost							
	Direct material (DM)		Direct Labor (DL)	Direct Energy (DE)	DM OH	DE OH		DLOH		General OH	
Cost Drivers	Storage	Non- storage	Maintenance	Energy	AFR	GHG	Cooling	Disposal	Set up	Land & Building	Shipping
Cost System	ABC	ABC	ABC	TDABC	ABC	TDABC	TDBC	ABC	ABC	ABC	ABC
Cost Unit	ASP (\$/GB)	ASP (\$/Unit)	(\$/Rack)	(\$/KWHr)	(\$/Drive)	(\$/TBe/month)	(\$/KWHr)	(\$/Drive)	(\$/Drive)	(\$/TBe/month)	(\$/Drive)
	Cost Object: Data Center Storage TCO (\$/Tbe/Month/Rack)										

СарЕх
ОрЕх
ABC (Activity based cost)
TDABC (Time Driven ABC)

Ω Σ

 \square

Changes in TCO model

Cost Pools	Change summary	SNIA Model	This Model	Notes
	HW configuration	Static	Dynamic	More reliable model
	Shipping Cost		✓	Favors High density and
CAPEX	Land & Building Cost		✓	lower weight SSDs
	Drive's Replacement cycle		\checkmark	3/5/7 yr. Drive replacement
	Others	✓	✓	ASP, Drive Density
OPEX	\$/KWh Idle Power Active Power Activity Factors	✓	✓	
	Workload Mix		~	Higher Perf Tepid favors QLC
	AFR	Static	Dynamic	1.3% per 1% AFR
	TVM (Time Value of money)		✓	12% compounded monthly
	Maintenance cost		✓	
	Disposal Cost		\checkmark	
	GHG TAX		✓	Average ~50\$/lb
Chairs of Architacture	In Line Data Reduction	✓	✓	
Choice of Architecture	Redundancy (RAID)	✓	✓	

6

TCO sensitivity Analysis

Key Takeaway:

With 1x-5x DRR, TCO improves from 25-84% With 30-70% HDD utilization, TCO improvement from 25-67% With 5-7 yr SSD replacement cycle, TCO improves from 25-47%

Sensitivity analysis was done keeping HDD and SSD at low case and Sweeping one variable at a time. SSD ASP @4X and Density @5X compared to HDD.

TCO sensitivity Analysis

TCO sensitivity w.r.t idle power

Key Takeaway: No significant TCO improvement found w.r.t Idle and active power consumption.

Sensitivity analysis was done keeping HDD and SSD at low case and Sweeping one variable at a time. SSD ASP @4X and Density @5X compared to HDD.

TCO sensitivity Summary

Sensitivity analysis was done keeping HDD and SSD at low case and Sweeping one variable at a time. SSD ASP @4X and Density @5X compared to HDD.

TCO Scenarios

/)
 _

Optimization Factors	Low (Worst TCO for SSD)	Base	High (Best TCO for SSD)	CSP Use Case
	HDD: 5	HDD: 5	HDD: 4	HDD: 4.5
Refresh cycle (yrs.)	SSD: 5	SSD: 6	SSD: 7	SSD: 6
Inlino Data Compression	HDD: 1X	HDD: 1X	HDD: 1X	HDD: 1X
infine Data Compression	SSD: 1X	SSD: 1X	SSD: 3X	SSD: 1X
Conscitu I Itilization	HDD: 80%	HDD: 80%	HDD: 80%	HDD: 80%
	SSD: 80%	SSD: 80%	SSD: 95%	SSD: 80%
LIM Dedundeney	HDD: 3	HDD: 3	HDD: 3	HDD: 1.8
	SSD: 3	SSD: 2	SSD: 1.14	SSD: 1.28
	HDD :1	HDD :1	HDD :1	HDD :1
Pert./IB	SSD :4	SSD :2	SSD :1	SSD :4
CapEx factors	\checkmark	\checkmark	\checkmark	✓
OpEx factors	\checkmark	\checkmark	\checkmark	\checkmark
maintenance		\checkmark	\checkmark	✓
CO2 Tax			✓	
Land/building			✓	
Disposal			✓	
shipping			✓	

HD QLC TCO Results

From this TCO Model analysis, we believe upcoming high-density QLC can deliver "Standard Storage SSD" value

SSD ASP @4X compared to HDD.

HD QLC TCO trends

SSD TCO/HDD TCO (5X density)* 2025 70% 86% 32% 129% 2026 31% **68%** 83% 126% 2027 30% 67% 80% 119% CSP use High Base Low case

***TCO** Ratio Lower is better

Key Take away:

- Base Case shows ~30% TCO improvement @ 4X ASP with @2X perf.
- Base case can achieve same TCO as HDD with 7X ASP with @2X Perf.
- CSP use case shows ~14% TCO improvement @4X ASP with @4X perf.
- CSP use case can achieve same TCO as HDD @5X ASP with @4X perf.
- 8X density shows the similar trend.

Takeaways

Key Factors Impacting TCO:

- Average Selling Price (ASP)
- Replacement Cycle
- Redundancy
- Capacity Utilization

TCO Cross-Over Trend:

- Consistent improvement starting from 2025
- Significant TCO improvement with high-density QLC

Next-Gen QLC SSDs Market Outlook:

Promising market adoption due to:

- Enhanced performance
- Longer replacement cycles
- Lower TCO

Thank you.

SOLIDIGIA.

