

CXL Computational Memory for the Future of Al Data Centers

JIN KIM / CEO, MetisX Co., Ltd.

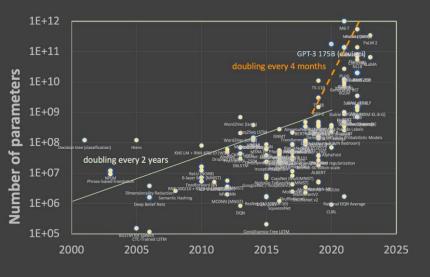
BACKGROUND

THE ERA OF AL

THE CORE IDEAS BEHIND
MODERN NEURAL NETWORKS
HAVE NOT CHANGED
SUBSTANTIALLY SINCE THE 1980s.

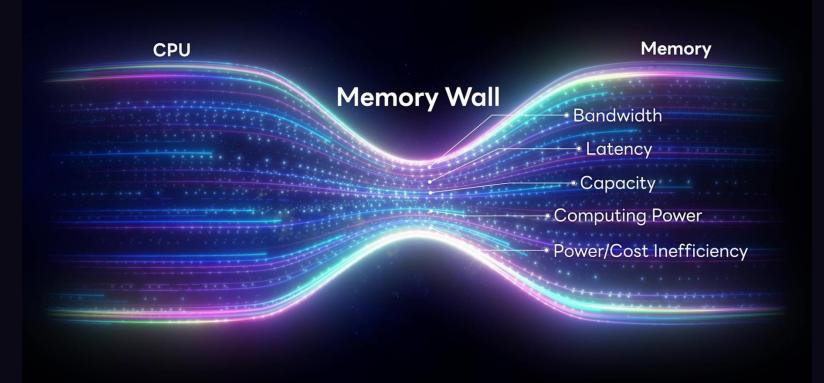
MOST OF THE IMPROVEMENT IN NEURAL NETWORK PERFORMANCE CAN BE ATTRIBUTED TO 2 FACTORS,

- LARGER DATASETS
 POWERFUL COMPUTER
- YOSHUA BENGIO


IT IS ALL ABOUT DATA AND DATA RESIDES IN MEMORY

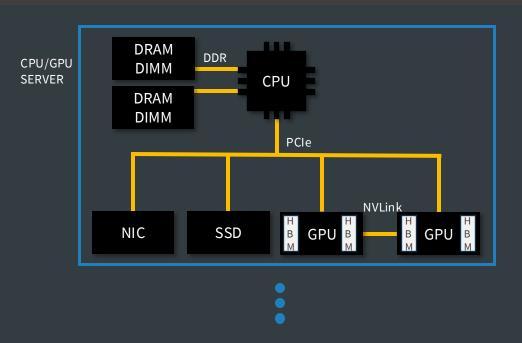
10 YEARS OF GARTNER TOP 10 STRATEGIC TECH TRENDS

′15	'16	'17	′18	'19	′20	′21	'22	′23	′24
Computing Everywhere	Device Mesh	Al	Al Foundation	Hyper- automation	Autonomous Things	Internet of Behaviors	Generative Al	Digital Immune System	Al Trust
loT	Ambient User Experience	Intelligent Apps	Intelligent Analytics	Multi- experience	Augmented Analytics	Total Experience	Data Fabric	Applied Observability	СТЕМ
3D Printing	3D Printing	Intelligent Things	Intelligent Things	Democracy, 2020 style	Al-driven Development	PEC	Distributed Enterprise	Al Trust	Sustainable Technology
Advanced Analytics	Information of Everything	VR/AR	Digital Twins	Augmentation	Digital Twins	Distributed Cloud	Cloud-Native Platform	Industry Cloud Platform	Platform Engineering
Context-rich System	AI	Digital Twins	Cloud to the Edge	Transparency& Privacy	Empowered Edge	Anywhere Operations	Autonomic System	Platform Engineering	AI-Augmented Development
Smart Machines	Autonomous Agents	Blockchain	Conversational Platform	Empowered Edge	Immersive Technologies	Cybersecurity Mesh	Decision Intelligence	Wireless-Value Realization	Industry Cloud Platform
Cloud/Client Computing	Adaptive Security	Conversational System	Immersive Experience	Distributed Cloud	Blockchain	Composable Business	Composable Applications	Super apps	Intelligent Applications
SW-Defined Infra	Advanced System Archi.	Mesh App	Block Chain	Autonomous Things	Smart Spaces	Al Engineering	Hyper- automation	Adaptive Al	Democratized Generative Al
Web-scale IT	Mesh App.	Digital Tech. Platform	Event-driven	Block Chain	Digital Ethics	Hyper- automation	PEC	Metaverse	Augmented Connected WF
Risk-based Security	loT	Adaptive Security	Adaptive Risk and Trust	Al Security	Quantum Computing	-	Al Engineering	Sustainable Technology	Machine Customers

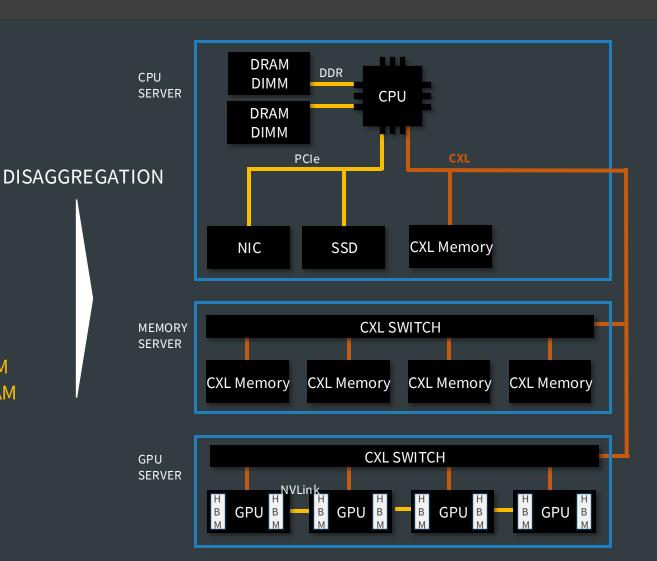

PROBLEM

DATA IS RAPIDLY
INCREASING,
THE INCREASE IN
AI MODEL SIZES
IS MUCH MORE RAPID

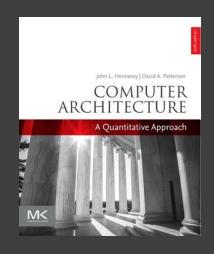
WE NEED TO BREAK THE MEMORY WALL PROBLEM


MEMORY WALL: ONE OF THE BIGGEST HEADACHES OF DATA CENTERS

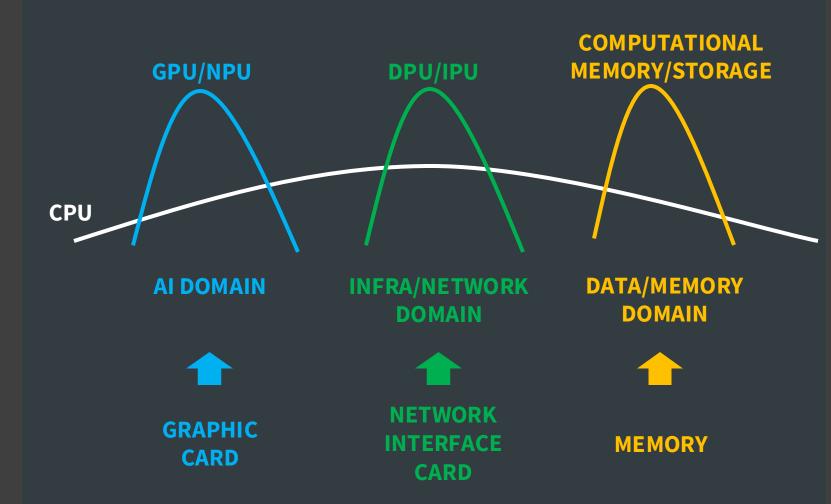
- SIZE: CHALLENGING TO KEEP UP WITH THE RAPID DATA INCREASE
- PERFORMANCE: DATA MOVEMENT IS THE BIGGEST BOTTLENECK
- COST: MEMORY IS REALLY EXPENSIVE (HALF OF THE SERVER COSTS)
- UTILIZATION: MEMORY UTILIZATION IS VERY LOW


THE FUTURE OF DATA CENTERS

DATA CENTER INFRA WILL BE SIGNIFICANTLY ENHANCED WITH CXL, BUT THE BIGGEST BOTTLENECK WOULD BE DATA MOVEMENT


- 1. LIMITATION ON EXPANSION FOR DIMM-BASED DRAM
- INEFFICIENCY OF INVESTMENT IN DIMM-BASED DRAM
- 3. SIZE CONSTRAINTS OF HBM MEMORY

DATA DOMAIN-SPECIFIC


DOMAIN-SPECIFIC ARCHITECTURE

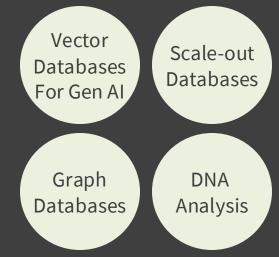
MOORE'S LAW IS DEAD
WE NEED A DRASTIC CHANGE
IN COMPUTER ARCHITECTURE
FROM GENERAL PURPOSE
TO DOMAIN-SPECIFIC

- HENNESSY & PATTERSON

CXL COMPUTATIONAL MEORY IS FOCUSING ON DATA DOMAIN-SPECIFIC ARCHITECTURE

DATA DOMAIN-SPECIFIC

DATA DOMAIN PROBLEMS

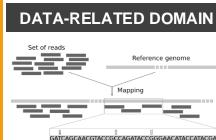

WORKLOAD CHARACTERISTICS

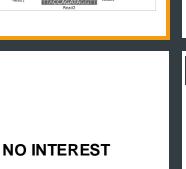
Large-scale Data Sets

Memory Latency/Bandwidth Bounded

Highly Parallelizable

Relatively Low Arithmetic
with Several Conditional Branch Operations

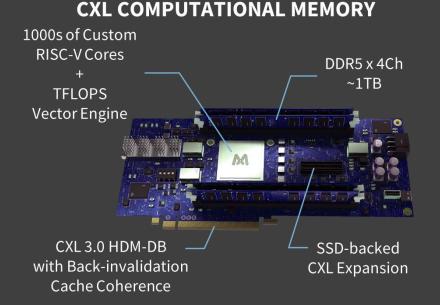

COMPUTING/MEMORY SWEET SPOTS

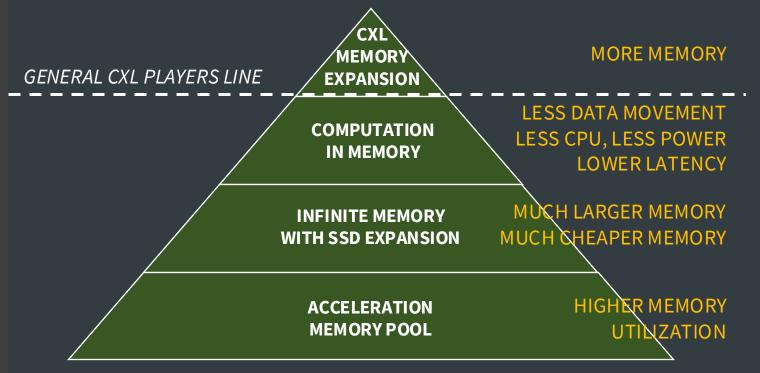

PROBLEM DOMAIN CLASSIFICATION

Operational Intensity Per Memory Access

Low

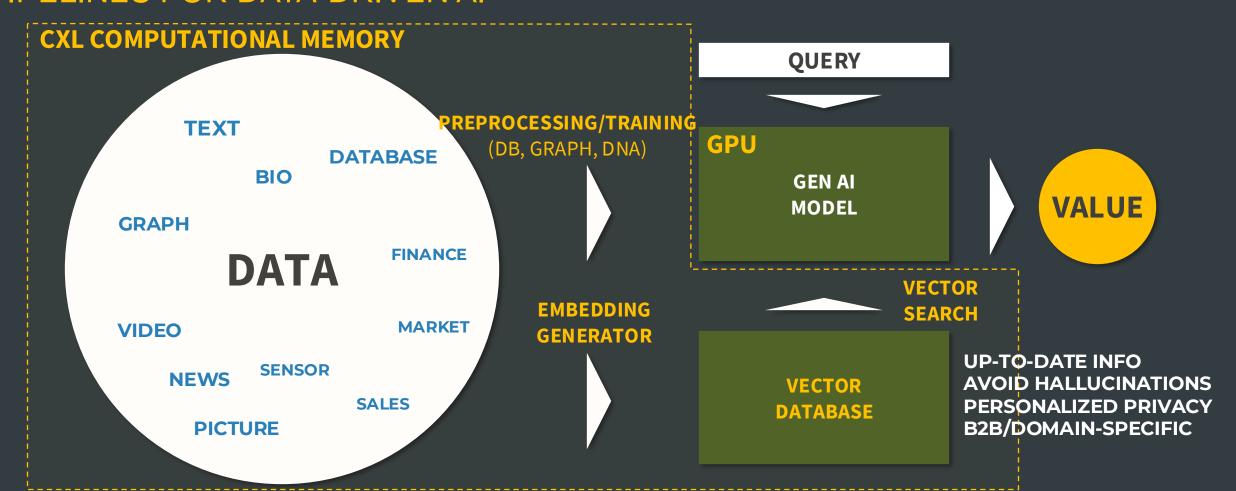
AI-RELATED DOMAIN


Operational Diversity Per Memory Access



CXL COMPUTATIONAL MEMORY

BEYOND JUST ANOTHER CXL MEMORY EXPANDER



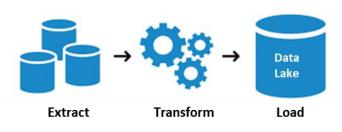
MUCH LARGER, CHEAPER, AND INTELLIGENT MEMORY SOLUTIONS FOR DRAMATICALLY REDUCING TCO IN DATA CENTERS

AI DATA PIPELINE

AI IS THE PROCESS OF FINDING VALUE IN DATA CXL COMPUTATIONAL MEMORY CAN ACCELERATE MOST AI DATA PIPELINES FOR DATA-DRIVEN AI

COMPUTATIONAL MEMORY APPLICATIONS

LLM VECTOR DATABASES

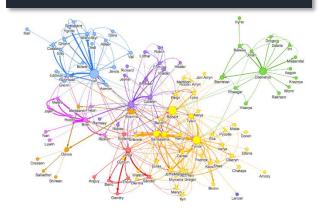


Recent LLMs utilize <u>vector databases</u> to retrieve updated information after training.

To curb the rapid increase in model size, vector databases are expected to be utilized more intensively.

The acceleration of vector databases in memory can play a crucial role in the advancement of LLMs.

SCALE-OUT DATABASES



A large volume of data needs to be **processed to create value** from it even before AI training/interference.

<u>Scale-out database clusters like Spark,</u>
<u>Databricks, Snowflake</u> are extensively used in ETL. These clusters typically consist of numerous servers.

By offloading the analytics query engine to computational memory, we could significantly reduce the cluster size.

GRAPH DATABASES

Graph databases are extensively used in social networks handling-enormous amounts of data based on nodes and relationships.

Graph algorithms mostly involve traversing the relationships between nodes. The key is **to traverse pointers in parallel**.

Many small cores with memoryoptimized architecture are much more suitable for handling pointer traversing than CPUs.

THANK YOU

jin.kim@metisx.com

http://metisx.com

https://www.linkedin.com/company/metisx/

Visit MetisX Booth # 734

