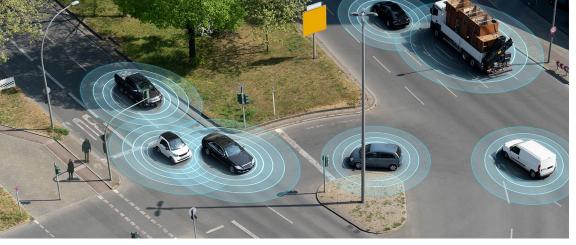


Automotive V2X Storage Implementation

Presenter: Chris Lien

Director, NAND Solutions Group

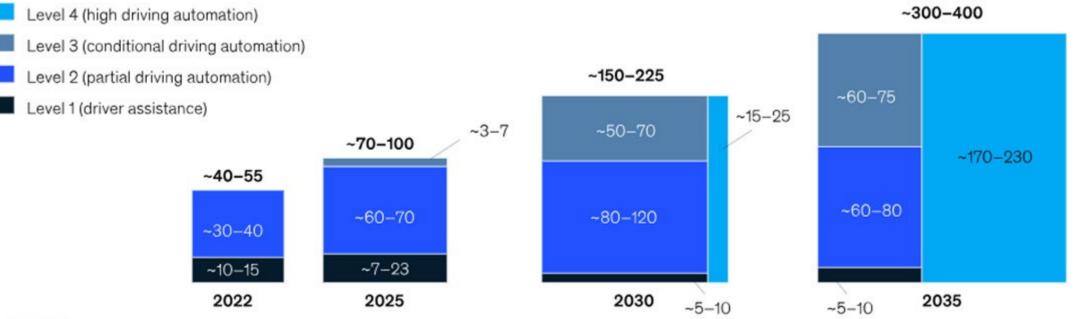
ATP Electronics Inc.



Agenda

- Market Situation Statistics
- Vehicle-to-Everything (C-V2X, DSRC*) Trends (Today→Tomorrow→Future)
 - Enhanced agility
 - Elimination of human factors on autonomy to improve safety and avoid accidents
- Performance Requirements of Different V2X Use Cases
- Key Observations on V2X from Storage Point of View
- Storage Solutions Summary
- Key Takeaways

*Dedicated Short Range Communications

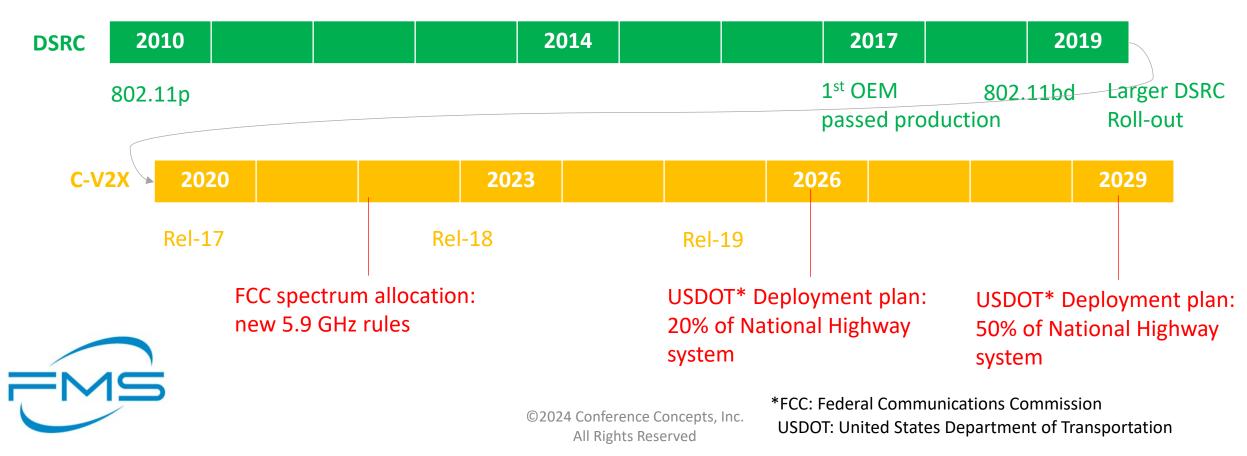


Market Situation Statistics

Advanced driver-assistance systems (ADAS) and autonomous-driving systems (ADS) for passenger cars could create \$300 to \$400 billion in revenues by 2035.

ADAS and ADS revenues (\$ billion)

Source: McKinsey Center for Future Mobility



©2024 Conference Concepts, Inc. All Rights Reserved

Vehicle-to-Everything Trends Milestones and Plans of Two V2X Standards

- DSRC: The first V2X technology available, deployed 9+ years ahead of C-V2X.
- C-2VX: FCC* spectrum allocation: new 5.9 GHz rules after 2021

Summary: DSRC vs. C-V2X Technical Properties

- V2X Direct / Network Communication
- DSRC and C-V2X are rooted from different technologies

Торіс	DSRC+	C-V2X Rel-16/17/18	
Technology	IEEE802.11bd NGV (Next Gen. V2X)	5G NR (New Radio)	
Compatibility	Full backward compatible. Deployed	Incompatible from Rel 14 to 15/16	
Modulation	OFDM	OFDM, SC-FDMA	
Communication Range	≤ 2 km	> 2 Km	
Mobility	Up to 500 km/h	Upto 500 Km/h	
Latency	0.5-10 ms (300m range) 10-100 ms (300m-2 km range)	0.5-10 ms (300m range) 10-100 ms (300m-2 km range)	

5G NR-V2X PC5

PC5 interface is also called Sidelink in 3GPP

Source: Evaluation of Radio Access Protocols for V2X in 6G Scenario-Based Models

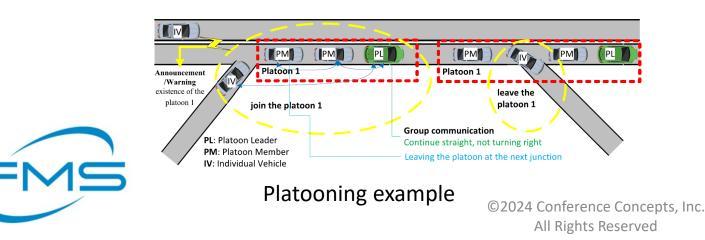
©2024 Conference Concepts, Inc. All Rights Reserved

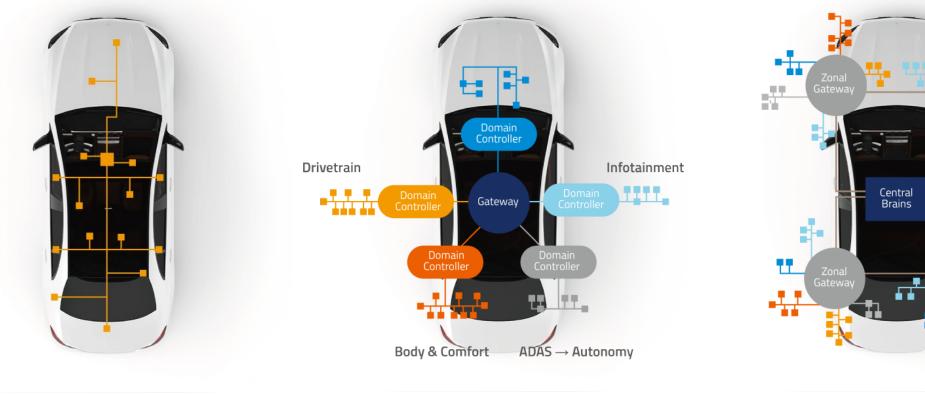
Performance Requirements of Different V2X Use Cases

Use Case Type	V2X Mode*	End-to-End Latency	Reliability (%)	Data Rate (Mbps)	Min. Range (meters)
Vehicle Platooning	V2X/V2I	10 ms -500 ms	90-99.99	50-65	80-350
Remote Driving Teleoperated Support (TeSo)	V2N/V2X	5 ms	99.999	UL: 25, DL: 1	-
Extended Sensors (Vulnerable Road User, etc.)	V2P	3ms – 100 ms	90-99.999	10-1000	50-1000
Advanced Driving	V2V/V2P/V2I	3ms – 100 ms	90-99.999	10-53	360-700

Sources:

On 5G-V2X Use Cases and Enabling Technologies: A Comprehensive Survey Use Cases, Requirements, and Design Considerations for 5G V2X




FIGURE 8. Concept of intersection safety information system [26].

Extended Sensors

6

System Architecture

Today

Tomorrow

Future

©2024 Conference Concepts, Inc. All Rights Reserved 11,

Key Observations on V2X from Storage Point of View

 If every data is uploaded to the Cloud Server, the 5G cost burden will be too high.

Estimated basic 25 Gb/hour data generated. Edge Computing is necessary.

• The following varieties of storage on automotive systems/infrastructure will still be available before 2030:

e.MMC

UFS

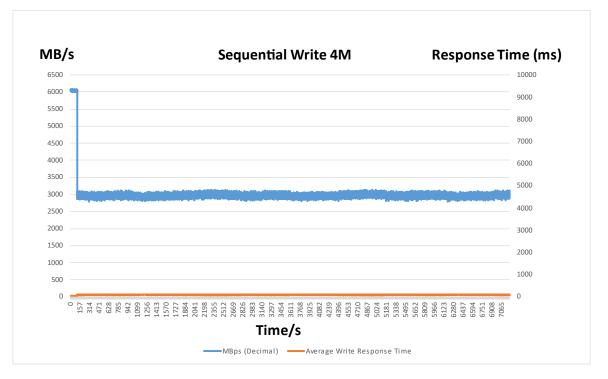
Edge Computing Storage, such as E1.S, BGA SSD

Edge Computing on vehicles is necessary to upgrade drive performance and reliability.

- Performance (including Thermal Plan cover SSD) Low Latency (QoS)
- Bigger Capacity on Domain/Centralize Storage Drive Writes per Day (DWPD)
- Thermal Dissipation and Simulation Capability with System
- Removeable preferred (for data reading after collision)
- Centralization Optional (Multi-port, Name Spaces, SRIOV)

Storage Security

TCG Opal 2.0+ FW Signature


The Best Practice of E1.S Storage

Latency/QoS of SSD

Specification		7680GB	Unit	
		QD=1		
QoS (99%)	Read	0.0832		
	Write	0.0152		
QoS (99.9%)	Read	0.0835	ms	
	Write	0.0156		
QoS (99.99%)	Read	0.0837		
	Write	0.0159		
QoS (99.9999%)	Read	0.0840		
	Write	0.0160		

Quality of service (QoS) parameter is the requirement that a given application complete all requested processes under steady and consistent performance within a specified time limit. Measurements are performed at Queue Depth=1 (Read/Write: numjobs x jodepth =1 x 1), Random 4KB transfer size, using FIO, sector size as 512 bytes.

• Data Rate (Sustained Performance)

Storage Solutions Summary

- e.MMC/UFS
 - Simple OS
 - Legacy Performance is moderately
 - Capacity from 8GB-512GB
 - Cost Effective for Suitable applications, such as Telematics...etc

• SSD (BGA SSD/E1.S/CFexpress)

- Performance (including Thermal Plan cover SSD)
- Low Latency (QoS)
- Bigger Capacity from 2TB-8TB on Domain/Centralize Storage
- High DWPD
- Removeable at E1.S/CFexpress

Key Takeaways

- The global market size of ADAS/V2X is growing significantly, driven by the demand for enhanced vehicle agility, stringent safety regulations/standards, and advanced safety features that reduce/eliminate human factors on autonomy.
- DSRC and C-V2X are two different technologies/standards being adopted for V2X Work together for Cloud, Latency, and Safety Critical Applications can speed up deployment.
- As V2X becomes more pervasive, different use cases also require different storage solutions, with Edge/Emerging Computing as a necessity due to the cost burden or efficiency of the Cloud.

Thanks for Listening

