MLPerf Storage - Enabling easy Storage for AI benchmarking

Wes Vaske

Senior Member of Technical Staff, Systems Performance Engineer Micron Technology, Inc.

https://www.linkedin.com/in/wes-vaske-b550988/

Agenda

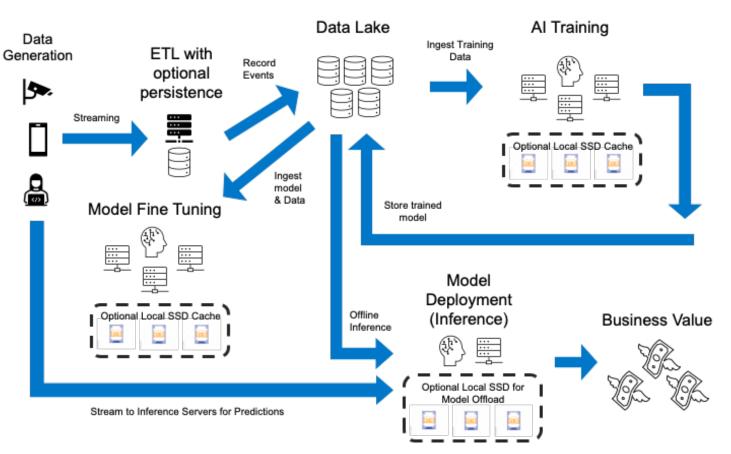
- MLPerf Storage Overview
- Analysis of MLPerf Storage Workloads

1

MLPerf Overview

Storage for AI Overview

- Storage for AI is broad and complex
- Benchmarking AI systems requires costly accelerators
- Available datasets are small compared to datasets used by industry
 - Example: Recommendation Systems
 - Criteo dataset used for AI Training benchmarks is 1TB pre-processed and 300GB post-processing
 - Meta states that a recommendation training job reads 10PB to 100PB of semiprocessed data



MLCommons and MLPerf Storage

• MLCommons has benchmarks for many parts of the AI pipeline

Training

Inference

Tiny

Mobile

Algorithms

Datasets

Storage

- MLPerf Storage currently focuses on AI Training
 - In the future will add benchmarks for data ingest, preprocessing, and inference
- Version 0.5 supported:
 - BERT (NLP)
 - Unet3D (medical imaging / computer vision)
- Upcoming version 1.0 will support:
 - Unet3D
 - Resnet50 (computer vision)
 - CosmoFlow (HPC)

MLPerf Storage Benchmark

- Emulated Accelerators are defined by:
 - Batch Size
 - Optimal number of samples for training to target accuracy with the real dataset and model
 - Computation Time
 - Found experimentally by running with the real accelerators
 - The time for a forward and backward pass
 - Emulated with a sleep() command

- Defines benchmarks as a set of:
 - Data Format
 - Serialized Numpy, tfrecord, png, etc
 - Data Loader
 - Numpy, DALI, TensorFlow, PyTorch Native
 - Emulated Accelerator Model

Workloads Analysis

The Basics (Gen5 NVMe)

Model	Dataset Size (GB)	Dataset Size (Samples)	MLPerf Storage Config	Data Format & Reader	Mean Throughput (MB /s)
Unet3D	1,300 GB	9,375	Accelerator: H100 Accel QTY: 3 Read Threads: 16	1 sample per file Numpy .npz Pytorch Reader	5,800 MB/s
Resnet50	1,300 GB	95,810,000	Accelerator: H100 Accel QTY: 53 Read Threads: 8	10,000 samples per file TFRecord Tensorflow	4,450 MB/s
CosmoFlow	1,300 GB	485,000	Accelerator: H100 Accel QTY: 13 Read Threads: 8	1 sample per file TFRecord Tensorflow	5,650 MB/s

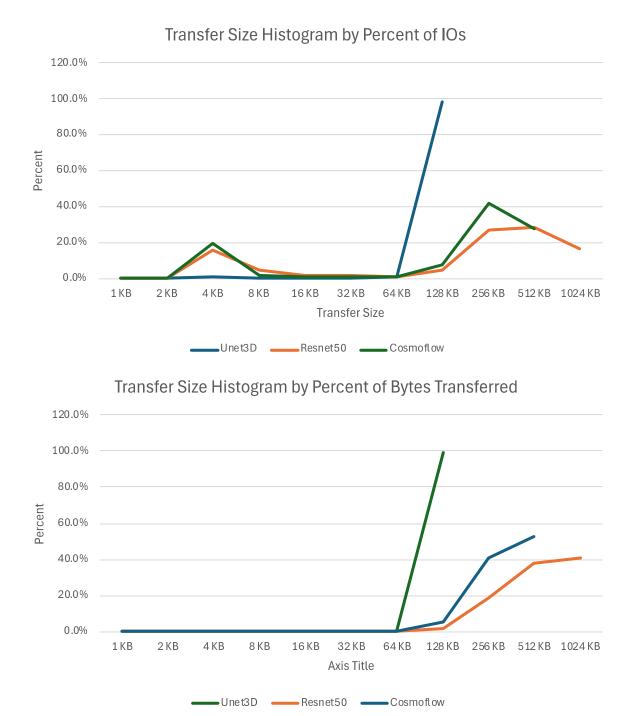
- Performance tuned to be "near" max performance for each benchmark.
- 4x orders of magnitude from fewest samples to most samples
- Throughput requirements per accelerator differ by model

Micron Confidential

Transfer Size

Histogram

- Unet3D uses pytorch and shows larger percent of 128KB transfers with none larger
- Resnet50 and CosmoFlow use Tensorflow TFRecords and result in larger IOs
- TFRecord also generates 4KB IOs that make up ~20% of transfers



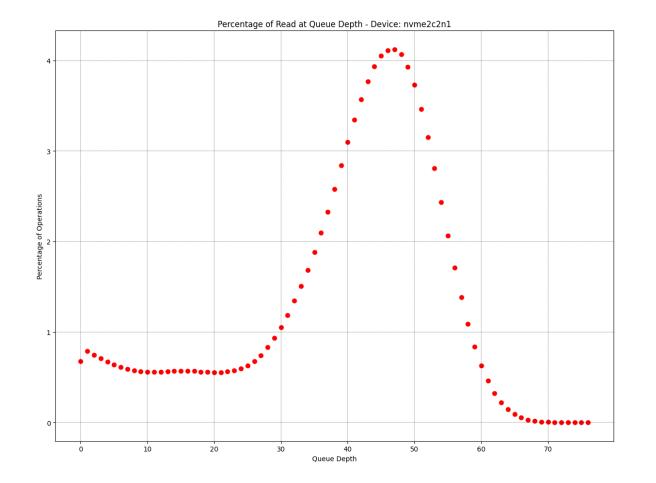
Queue Depth

- Queue Depth is a result of parallelism in the application or storage layer (like file system)
- Each workload generates similar throughput (4.5 5.5 GB/s)
- Each workload does large IOs (128k or larger for majority)

- Next slides discuss histograms of Queue Depth
- Each IO is traced with submission and completion times
- Post processing calculates position in queue where each IO was placed
- Histograms will show percent of IOs inserted at a specific Queue Depth

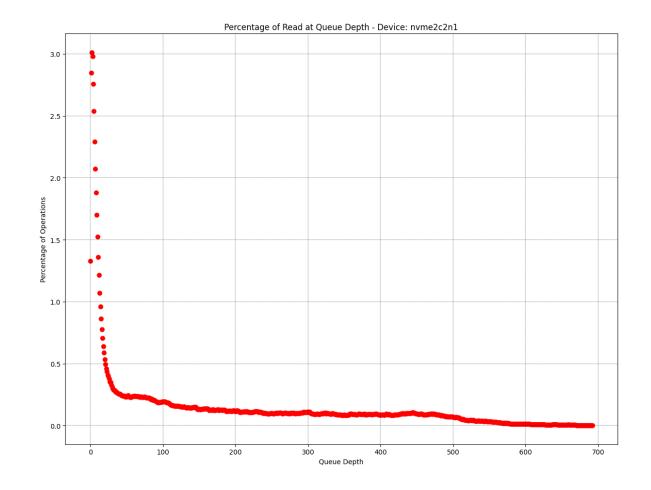
Queue Depth – Unet3D

- Large Peak from 40 to 52 QD
- Moderate number of Low QD IOs (0 to 10 QD is >5% of total IOs)
- Low QD IOs result in latency sensitivity instead of bandwidth sensitivity



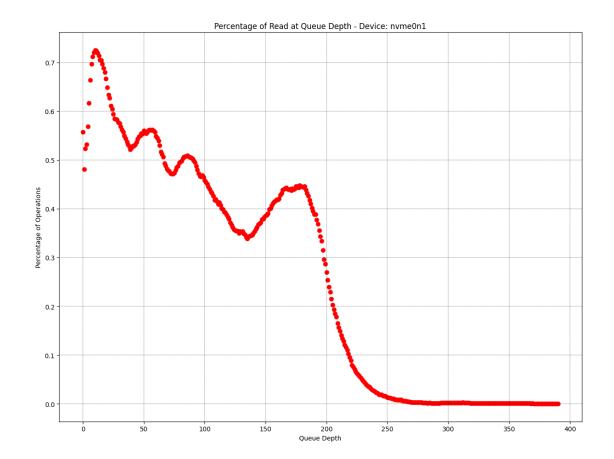
Queue Depth – Resnet50

- Large Peak from 0 to 20 QD
- Loooong tail to QD 700



Queue Depth – CosmoFlow

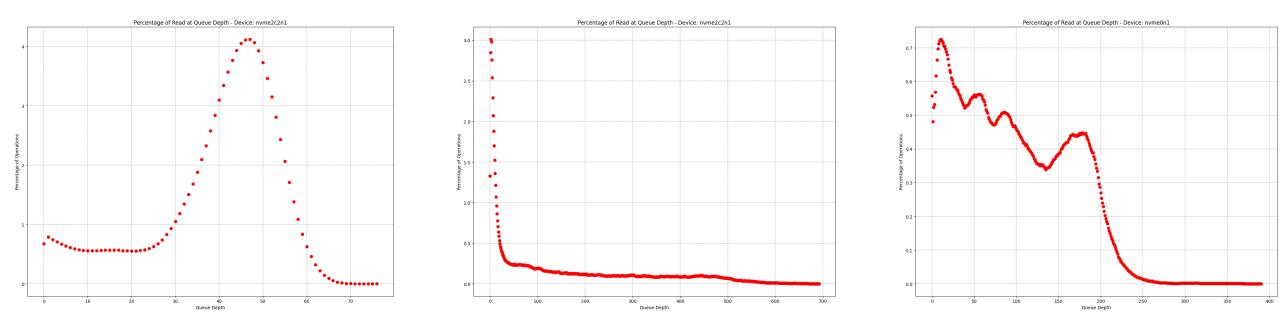
- Multi-modal histogram suggests complex behavior within the application.
- Concentration at low QD show this is highly latency sensitive



Micron Confidential

Unet3D

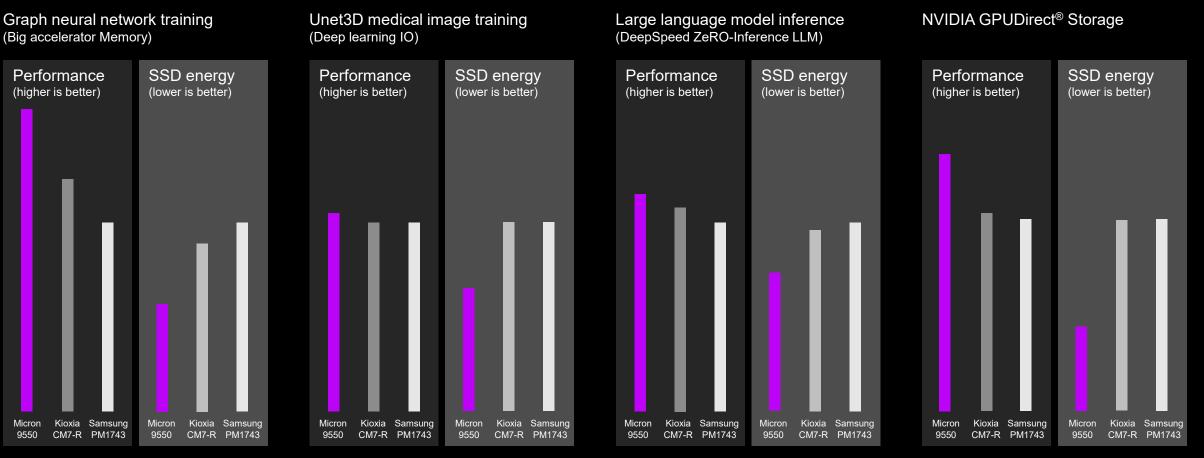
CosmoFlow



Take Aways:

- Benchmarking storage for AI is expensive and finding datasets is difficult
- MLPerf Storage enables easy(er) testing of AI applications for storage
- Three training workloads each generate significantly different loads to storage
- Highly recommend engaging with MLPerf Storage and using the benchmark in your own environments

Micron 9550 – built for Al



Up to **60%** higher performance **43%** less energy

Up to **5%** higher performance **35%** less energy

Up to **15%** higher performance **27%** less energy Up to **34%** higher performance **56%** less energy