Case study of Optimized CXL platforms for

Presenter:

Sathish Kumar M

Associate Technical Director

Samsung Semiconductor Inc

Al/ML Check Points

Ratish Gopinath

g}s'

Associate Staff Engineer

Samsung Semiconductor Inc

©2024 Conference Concepts, Inc.
All Rights Reserved

]

Arun V Pillai
Senior Staff Engineer

Samsung Semiconductor Inc

Agenda

* Background

* CXL and use cases

e CXL Ecosystem in Al/ML Infra
* CXL Direct access

* CNN Ecosystem Comparison
e (Case study Results

* Summary

©2024 Conference Concepts, Inc.
All Rights Reserved

Data Growth vs Processor Scaling

CPU Performance Growth is slowing Volume of Data exponentially Data Gravity
down increases
Moving data closer to compute

Frequency (MHz)

Number of Logical Cores

1970 1980 1990 2000 2010 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025

Yedr

©2024 Conference Concepts, Inc.
All Rights Reserved

CXL Industry Trends

e CPU to reach data much faster and closer

e 500x faster
 Many Industry usecases

/ \ 10 ns
CPU Cache
Main Memory / 100 ns
Persistent Memory
Ef =
CXL™-Attached Memory / 200 ns ™)
Persistent Memory
/ \ 100,000 ns .
SSD Storage
100,000,000 ns !’
v HDD Storage

Direct or Parallel Attached

Serial Attached

\ / ©2024 Conference Concepts, Inc.

All Rights Reserved

Edge Computing

Database & in Memory compute

Cloud Computing Al/ML Applications

CXL Use cases

CXL Ecosystem in Al/ML Infrastructure

* Conventional infrastructure:
* CPU+ GPU + Memory + SSD
* Memory is limited
* Long CPU waiting for read/write

Conventional Architecture

SSD

SSD Controller

NAND Flash

Performance

Performance ceiling

#SSDs / Server

e CXLinfrastructure:

* CPU + GPU + Memory + CXL memory devices + SSD

* CXL brings
* More memory
* Dynamic expansion

CXL Architecture

DRAM

GPU

FIexBusé

CXL
device

SSD

SSD Controller

NAND Flash

Performance scales

©2024 Conference Concepts, Inc.
All Rights Reserved

e

CXL W/o Server

CXL - DAX access

Application

-

~

DAX File System

DAX Dzvice

/

Byte Level Access

\ 4

CXL Type 3 Memory device

DAX(Direct Access) File System:
- Memory is byte oriented
- Byte level access
- CXL memory/Persistent memory
- Dual benefit
- CXL + DAX
CXL Memory provisioning:
1. Create namespace using ‘ndctl’ on the CXL memory
2. Create xfs filesystem
3. Mount with ‘-o dax’ option

Applications can use mounted DAX file system directly

©2024 Conference Concepts,

Inc. All Rights Reserved

CNN Ecosystem Comparison

U-Net: Convolutional Neural Networks for Biomedical Image Segmentation

Brain tumor image segmentation for the MRI 3D-scan images
High In-Memory computing and large checkpoints
Focus on checkpoints on the low latency device

Main Memory

Application

Data Flow Application CXL Memory

Data Fl
ata hiow DAX FS

e 5o RN

NVMe SSD

CXL Infrastructure

input
image w|w
tile

| output
| segmentation
| map

'
R — i

[T S m—

= conv 3x3, ReLU
copy and crop
§ max pool 2x2
4 up-conv 2x2
= conv 1x1

Source : https://Imb.informatik.uni-freiburg.de/people/ronneber/u-net/

Check Points(CP)

* Safeguards intermediate models
* CPsize increases with complexity

©2024 Conference Concepts, Inc.
All Rights Reserved

https://lmb.informatik.uni-freiburg.de/people/ronneber/u-net/

Study Results

180
160
140
120
100
80
60
40
20

Checkpoint Timing(secs)

163
&x
55
95G

B NVMe SSD m DAX CXL

Sample data Set details

Image Size 32x32
Volume slices taken from each image 3 [63-66]

Scale factor 32

Dataset size 13GB

Training Time Efficiency : NVMe SSD vs DAX CXL

1250

Time Taken in sec

|=MS
—

1200
1150
1100
1050
1000

950

Epoch

B NVMe SSD m DAX CXL

©2024 Conference Concepts, Inc.

All Rights Reserved

~20% latency reduction on

training time

Summary

e Saving Checkpoint in CXL memory reduces the training time

* Disaggregated CXL infra helps to reduce the TCO
- Memory will be pooled across Al/ML infrastructure
- CXL memory can be reused across systems and applications
- Memory infra can be scaled in terms of capacity and bandwidth

Future work:

* Experiment the checkpoint latency with LLM applications

\ / ©2024 Conference Concepts, Inc.

All Rights Reserved

Enhancement of Functional code Coverage in UVM-based

verification environment using LLM-based model

Sairam Jujjarapu

@ RamyaBT Harshit Sharma

ey’ Senior Staff Engineer Student Trainee Associate Staff Engineer
&Vf & . ."i &
u Samsung Semiconductor Inc ke Samsung Semiconductor Inc ‘ Samsung Semiconductor Inc

Kyungmin Kim Sathish Kumar M

Sachin Suresh Upadhya ; o
[= & Keerthi Kiran J
Senior Staff Engineer R o= T)
M Director

Samsung Semiconductor Inc L 4 ; .
%\\& : Samsung Semiconductor Inc

Principal Engineer Associate Technical Director

. Samsung Semiconductor Inc

o

N
—MS
S

Samsung Electronics

©2024 Conference Concepts, Inc. 10
All Rights Reserved

Agenda

* Background and Purpose
* Proposed Solution

e Architecture

* Experimental setup

* Execution and Results

e Conclusion

©2024 Conference Concepts, Inc.
All Rights Reserved

11

Background and Purpose

UVM (Universal Verification Methodology)

» Standardized methodology for verifying digital designs
* Provides a mechanism for building functional test benches for achieving 100% functionality coverage

Types of testing
* Random testing
* Directed testing
* Coverage-driven testing

Drawbacks: Though randomization is supported in UVM,
* It takes time to achieve a 100% coverage

* Manual effort is needed to identify coverage holes and write directed tests to cover them

ML-based tools can be good for this purpose to reduce manual effort and achieve high coverage

©2024 Conference Concepts, Inc.
All Rights Reserved

test

env

scoreboard

agent

Seq

uence
sequencer

monitor driver

A

interface

DUT

Fig : UVM architecture

12

Proposed Solution

Python-based script shall generate the prompt for the model
* Prompt shall be specific and exhaustive enough to enable the model to generate the tests

Pre-trained LLM model
* Model used shall be pre-trained with system verilog syntaxes and UVM rules/keywords and UVM TB
building
* Automates the process of test generation in UVM environment
e Target to achieve higher code coverage by generating sequences
* Deepseek LLM is chosen for this solution. Model is pre-trained to learn the UVM sequences and

testcase generation mechanism

The generated test shall be run on DUT (Device Under Test) with UVM for coverage

The coverage holes after UVM randomization can be aimed to be covered with the proposed model

\ = ©2024 Conference Concepts, Inc. 13
All Rights Reserved

Architecture of proposed solution

~“verilog
class LV¥_read test extends UV test base class;

“uvm_compenent_utils(UVM_read_test)
function nes(string name = "UVM read test”, uvn_component parent = null);

super..new(nane, parent);
endfunction

function void build phase(uvm_phase phase);
super.build_phase(phase);
// build your comporents hzre
endfunction

function void connect_phase(uvm phase phase);
super. comnect_phase(pase);
/! connect your components here
endfunction

task run_phase(uun_phasa phase);
UVM_read_seq seq;
super.run_phase(phase);
seq = UVM_read_seq: itype_id::create("seq"};
phase. reise_objection(this);
seq.start(null);
phese.drop_objection{this);

endtask

endclass

-trai Coverage
Prestrained | | o it — W uvm | g

Script —— Prompt — LLM report

from random import randint, choice
import random
from pathlib import Path

file = Path("script.txt")

if file.is_file():
raw = open(”script.txt”, "r+")
raw.seek(@)

e » Script 2 Python-based script to generate the prompt for LLM

O ressest i e e o sestcase class e) * Prompt =2 Instructions for LLM with minimal details for test_list

P e e * Pre-trained LLM - Deepseek model used to generate the test_list
» Test_list > Test with args

A « UVM > Methodology to execute the test and generate coverage report

14

Functional block diagram

® Pre-trained LLM

" UVM
Vl y2 Y3 Y4
— dut Output Token
Vectors
simulation H H H ﬂ
scripts [
| _sim [J
o || Decoder :
| |
_ T 1. 0.1
) " Embeddings [J
—» top_test & & B +
- Input Tokens
(Tokenization)
lanIt E‘I'IE'I'xale X2 eqt:;ce ;49
UVM testbench has the test_list that combines the regression e e v e

tests with which majority of coverage can be achieved _ _
Each decoder block contains masked self attention,

A Layer normalization and fully connected layer

\ - ©2024 Conference Concepts, Inc. 15

All Rights Reserved

Experimental setup

SI No Iltem Configuration

1 DUT NAND Behavioral model

2 TB Basic UVM testbench

3 Tool for test execution Xrun

4 LLM Deepseek-coder-6.7b-instruct
Reference : https://huggingface.co/deepseek-
ai/deepseek-coder-6.7b-instruct

©2024 Conference Concepts, Inc.
All Rights Reserved

16

https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-instruct
https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-instruct

Execution and Results : Example 1

* we gave the code of mem_seq_item, write_read _sequence,and mem_write_read_test as input and asked the model
to trigger the scenario in which write to address 0 is followed by write to address 1 followed by reads for the same
address and the model is able to understand all the input code and the instructions and able to update

read_write_sequence by creating new read/write sequences with specified address and random input data to write.

textl = "1)The following is sequence item,class mem_seq_item extends uvm_sequence_item;\n//--—---- - oo oo e wn//data and
control fields\n//--—- - - - oo e -=-=-%n rand bit [1:@] addr;\nrand bit wr_en;\nrand bit rd_en;\nrand bit [7:0]
wdata;\nblt [7:8] rdata;\n//------=—----c-cc e e e e — e - o= wn//Utlility and Fleld macros\n//------==-=-cccccccm e e e e e e ——— ==
AnTuvm_object_utils_begin(mem_seq_item)\n uvm_field_int(addr,uUuvM_aLL_ON)\n uvm_field_int(wr_en,UvM_ALL_ON)\n uvm_field_int{rd_en,UVM_ALL_ON)\n
Tuvm_field int(wdata,UvM_ALL_ON)\n uvm_object_utils end\n//------cc s mm e e e e e R T . T T T L L
-------------- \nfunction new(string name = “mem_seq_item”);\nsuper.new(name);\nendfunction\//f--cc e mmm i cmmcc e e e e e e
wn//constaint, to generate any one among write and read\n/ /- - - - - - - - - m m e m e e e - Znconstraint wr_rd ¢ { wr_en = rd_en; };
\nendclass . 2)The following is write read sequence;class write_read_sequence extends uvm_sequence#
(mem_seq_3item) :\n\n uvm_cobject_utils(write_read sequence)\n//-------m e e e e e e e e e — - \n//Constructor\n/ /- - - - - e — e —— e ——
----------------- \nfunction new(string name = “"write_read_sequence’)};\nsuper.new{name);\nendfunction\nvirtual task body():;\n uvm_do_with{req,
{req.wr_en==1;})\n" uvm_do_with(req,{req.rd_en==1;})\nendtask \nendclass. 3)The following is write read test\n, class mem_wr_rd_test extends
mem_model base_test;\n “uvm_component_utils{mem_wr_rd_test)i\n//------- o m e e m o m e wn// sequence instance \w\n//f----------—---
-------------------------- \n write_read_sequence seq:\N/f/--—--c-cem e e cm e e e e e e e s e e === \NS S/ CcONStructor\n//----- e e e e — e
nfunction new(string name = “mem_wr_rd_test’ ,uvm_component parent=null);\n super.new{name,parent);:;\n endfunction : new\n//-----
---------------------------------- wn// build_phase\n//-----=--- s e e e r e e e e s e - = =\nwvirtual function veid build_phase(uvm_phase
phase); \nsuper.build_phase(phase);:;\n// Create the sequence\n seq = write_read_sequence: :type_id::create(’'seq’);:\n endfunction :
build phase\n/ /- - - - - m s o e e e e e wn/S run_phase - starting the test\n//--- - - mm mm e “Wn task
run_phase{uvm_phase phase);\nphase.raise_objection(this);\nseqg.start{env.mem_agnt.sequencer);\n phase.drop_objection(this);:;wn//set a drain-
time for the environment if desired\nphase.phasze_done.set_drain_time(this, 5@);\nendtask : run_phase\n endclass @ mem_wr_rd_test”

text=textl+ " \n You are an expert system verilog programmer who can understand the above sequence ,test completely.Modify the code to trigger
following scenaric: write to address @ followed by write to address 1 followed by reads for the same addresses, don't explain anything just
give the output.”

"systemverilog
class write_read_sequence extends uvm_sequence®#(mem_seq_item);

uvm_object_utils(write_read_sequence)
unction new(string name = ‘write_read_sequence”);

uper.new{name) ;
ndfunction

L)

irtual task body();
“uvm_do_with(req,{req.wr_en==1; req.addr==0; req.wdata==8"hee;})

)

S Tuvm_do_with(req,{req.wr_en==1; req.addr==1; req.wdata==8"hee;})
Tuvm_do_with(req,{req.rd_en==1; req.addr==08;})

F M S Tuvm_do_with(req,{req.rd_en==1; req.addr==1;3})
endtask

‘ - endclass

All Rights Reserved

Output

sequence

Execution and Results : Example 2

* we gave the code of mem_seq_item, write_read sequence,and mem_write_read_test as input and asked the model to give
the sequence and test code trIF er the scenario in which write to address 0 is followed by write to address 1 followeg by
reads for the same address and the model is able to understand all the input code and the instructions and able to update
read_write_sequence by creating new read/write sequences with specified address and random input data to write.

textl = "1)The following is sequence item,class mem_seq_item extends uvm_sequence_item;\n//-======sccscececcecacccccncnccccncnanas \n//data and
control fields\n//-==-ccccccmmmmmmm e ccncccan e \n rand bit [1:8] addr;\nrand bit wr_en;\nrand bit rd_en;\nrand bit [7:8]
wdata;\nbit [7:8] rdata;\n//=-cecessmcmncnene i nnccscccannacanaas \n//utility and Field macros\n//«===ssscccccccecacsccncccnsccansanacnns
\n"uvm_object_utils begin{mem_seq item)\n uvm_field int({addr,UVM_ALL_ON)\n uvm_field int(wr_en,UVM ALL_ON)\n uvm_field int(rd_en,UVM_ALL_ON)\n
“uvm_field int(wdata,UVM_ALL_ON)\n uvm object utils end\n//=-=ssscescccccscncccencccrnesnncnnrmnnnn= \n//Constructor\n//===s=rescscsscnencnnnmenn
-------------- \nfunction new(string name = ‘mem_seq_item’);\nsuper.new(name);\nendfunction\//-====--s-eerermrommrerennnccncnneeee
\n//constaint, to generate any one among write and read\n//---------- - - \nconstraint we_rd ¢ { wr_en != rd_en; };
wnendclaszs . 2)The following iz write read sequence,class write read sequence extends uvm_séquences

(mem_zeq item);\n\n uvm_object_utils(write_read sequence)\n//---------------mmommmcom oo \n/fConstructor\n//-r-mrrrmmrrsccasarcnas

----------------- \nfunction new(string name = ‘write_read_sequence’);\nsuper.new{name);\nendfunction\nvirtual task body();\n uvm_do_with({req,
{req.vr_en==1; })\n"uvm_do_with(req, {req.rd_en==1;})\nendtask \nendclass. 3)The following is write read test\n, class mem_wr_rd_test extends
mem_model _base_test;\n ~uvm_component_utils(mem_wr_rd_test)\n//---c-ccccccccomcciancccccccaccccacaaaa \n// sequence instance \n//----------o-s
-------------------------- \n write_read sequence seqi\n//--ssssccsmsssscsssssnsssssnsnsnansannss=\SS cOnStrUCtOrAn// s mmssmmsms s s smmm
-------------- \nfunction new(string name = ‘mem_wr_rd_test’,uvm_component parent=null);\n super.new(name,parent);\n endfunction : new\n//-----
.................................. \n// build phase\n//======ssssecceccscscssnssnannnnseaanea=\nvirtual function void build phase(uvm _phase
phase);\nsuper.build_phase(phase);\n// Create the sequence\n seq = write_read sequence::type_id::create(’'seq');\n endfunction :
build_phase\n//======-reescreccrrarcnenerrnerrenmnnns \n// run_phase - starting the test\n//======resceccncmercrrrnnrercerrnnerenns \n task
run_phase (uvm_phase phase);\nphase.raise_objection(this);\nseq.start(env.mem_agnt.sequencer);\n phase.drop_objection(this);\n//set a drain-
time for the environment if desired\nphase.phase_done.set_drain_time(this, 5@);\nendtask : run_phase\n endclass : mem wr_rd test"”

text=textl+"\n You are an expert system verilog programmer who can underztand the above zequence ,test completely.Give me the zequence and
test code to trigger following scenario: write to address @ followed by write to address 1 followed by reads for the same addresses ,don’t
explain anything just give the output.”

\ / ©2024 Conference Concepts, Inc. 18

All Rights Reserved

Execution and Results : Example 2 (2/2

systemverilog Able to
update write

class write_sequence extends uvm_sequence#(mem_seq_item);
Twuvm_object_wutils(write_sequence)

function new(string name = “write_sequence™); Sequence

super .new{name) ; with address

endfunction

virtual task body():
Tuvm_do_with(req, {req.addr == @; reqg.wdata == 8"'hAA; req.wr_en == 1;:;})

"uvm_do_with(req, {req.addr == 1; req.wdata == 8"hBB; req.wr_en == 1:;7})
endtask

endclass

class read_sequence extends uvm_sequence#(mem_seq_item);
Tuvm_object_utils(read__sequence)

Able to update
read sequence

function new(string name = “read_sequence™);
super ..new{name) ;
endfunction

with address

virtual task body():
Tuvm_do_with(req, {req.addr == @; req.rd_en == 1;3%})
“uvm_do_with(req, {req.addr == 1; req.rd_en == 1;:;7%)
endtask
endclass

claszs write_read_sequence extends uvm_sequence®(mem__seq_item);
“wuvm_object_utils(write_read_sequence)

function new(string name = "“write_read_sequence™); Able to call
Lo o e read and
virtual task body(); write
peatiig e g~ sequence
write_seq = write_sequence::type_id::create("write_seq™);
///‘ﬂ_-.~\ read_seq = read_sequence::type_id: :create(“read_seq™);

write_seq.start(m_sequencer);

read_seq.start(m_sequencer);
F M S endtask
endclass
\ / ©2024 Conference Concepts, Inc.

19
All Rights Reserved

Conclusion

* Deepseek is trained on multiple programming languages as well as UVM framework

* With few shot learning and various prompt inputs, it is possible to generate the output. So, instruction fine-tuning may not be
required (unlike other ML tools).

* The model shall help verification engineers to automate sequence, thus making their work easier and reducing the amount of time
required to create individual sequences.

* Proposed model can also be extended to generate an optimized regression testlist and directed testcases for achieving coverage
goals

Future work:

* Research to make the model analyze the coverage report and auto-generate the test sequences to achieve the coverage goals

\ = ©2024 Conference Concepts, Inc. 20
All Rights Reserved

THANK YOU !

©2024 Conference Concepts, Inc.
All Rights Reserved

21

	Case study of Optimized CXL platforms for�AI/ML Check Points
	Agenda
	Data Growth vs Processor Scaling
	CXL Industry Trends
	CXL Ecosystem in AI/ML Infrastructure
	CXL - DAX access
	CNN Ecosystem Comparison
	Study Results
	Summary
	Enhancement of Functional code Coverage in UVM-based verification environment using LLM-based model
	Agenda
	Background and Purpose
	Proposed Solution
	Architecture of proposed solution
	Functional block diagram
	Experimental setup
	Execution and Results : Example 1
	Execution and Results : Example 2 (1/2)
	Execution and Results : Example 2 (2/2)
	Conclusion
	Slide Number 21

