
Case study of Optimized CXL platforms for

AI/ML Check Points

Presenter:

©2024 Conference Concepts, Inc.
All Rights Reserved

Sathish Kumar M

Associate Technical Director

Samsung Semiconductor Inc

1

Ratish Gopinath

Associate Staff Engineer

Samsung Semiconductor Inc

Arun V Pillai

Senior Staff Engineer

Samsung Semiconductor Inc

Agenda

• Background
• CXL and use cases
• CXL Ecosystem in AI/ML Infra
• CXL Direct access
• CNN Ecosystem Comparison
• Case study Results
• Summary

©2024 Conference Concepts, Inc.
All Rights Reserved

2

©2024 Conference Concepts, Inc.
All Rights Reserved

3

Data Growth vs Processor Scaling

CPU Performance Growth is slowing
down

Original data up to the year 2010 collected and plotted by M.
Horowitz, F, Labonte, O. Shacham, K. Olukotun, L. Hammond, and C.

Batten
New plot and data collected for 2010-2021 by K. Rupp

50 Years of Microprocessor Trend Data

Data Gravity

Moving data closer to compute

Source: Medium

Volume of Data exponentially
increases

Source: Statista

©2024 Conference Concepts, Inc.
All Rights Reserved

4

Edge Computing

AI/ML Applications

HPC

Database & in Memory compute

Cloud Computing

CXL Use cases

CXL Industry Trends
• CPU to reach data much faster and closer

• 500x faster
• Many Industry usecases

Source: https://www.snia.org/education/what-is-persistent-memory

CXL Ecosystem in AI/ML Infrastructure

©2024 Conference Concepts, Inc.
All Rights Reserved

5

Conventional Architecture

DRAM CPU

Pe
rf

or
m

an
ce

SSDs / Server

CPU
Performance Ceiling

Today

Performance ceiling

SSD

SSD Controller

NAND Flash

SSD

SSD Controller

NAND Flash

CXL Architecture

DRAM CPU

FlexBus

Pe
rf

or
m

an
ce

CXL W/o Server

CXL enabled ecosystem

Performance scales

PCIeGPU GPU

SSD

SSD Controller

NAND Flash

SSD

SSD Controller

NAND Flash

CXL
device

• Conventional infrastructure:
• CPU + GPU + Memory + SSD
• Memory is limited
• Long CPU waiting for read/write

• CXL infrastructure:
• CPU + GPU + Memory + CXL memory devices + SSD
• CXL brings

• More memory
• Dynamic expansion

CXL - DAX access

©2024 Conference Concepts,
Inc. All Rights Reserved

Application

DAX File System

DAX Device

Byte Level Access

CXL Type 3 Memory device

DAX(Direct Access) File System:
- Memory is byte oriented
- Byte level access

- CXL memory/Persistent memory
- Dual benefit

- CXL + DAX
CXL Memory provisioning:
1. Create namespace using ‘ndctl’ on the CXL memory
2. Create xfs filesystem
3. Mount with ‘-o dax’ option

Applications can use mounted DAX file system directly

CNN Ecosystem Comparison

©2024 Conference Concepts, Inc.
All Rights Reserved 7

NVMe SSD

Application
Data Flow

Main Memory

GPU

NVMe SSD

Application
Data Flow

Main MemoryMain Memory

GPU

Convolutional Application Convolutional Application

• U-Net: Convolutional Neural Networks for Biomedical Image Segmentation
• Brain tumor image segmentation for the MRI 3D-scan images
• High In-Memory computing and large checkpoints
• Focus on checkpoints on the low latency device

Check Point

DRAM

CPUCPU

DRAM

Source : https://lmb.informatik.uni-freiburg.de/people/ronneber/u-net/

• Safeguards intermediate models
• CP size increases with complexity

Check Point

Check Points(CP)

Traditional Infrastructure CXL Infrastructure

CXL Memory

DAX FS

https://lmb.informatik.uni-freiburg.de/people/ronneber/u-net/

Study Results

©2024 Conference Concepts, Inc.
All Rights Reserved

8

Sample data Set details

Image Size 32 x 32

Volume slices taken from each image 3 [63-66]

Scale factor 32

Dataset size 13GB

~20% latency reduction on
training time

950

1000

1050

1100

1150

1200

1250

1 2 3 4 5 6 7 8 9 10 11

Ti
m

e
Ta

ke
n

in
 se

c

Epoch

Training Time Efficiency : NVMe SSD vs DAX CXL

NVMe SSD DAX CXL

163

55

0
20
40
60
80

100
120
140
160
180

95G

Checkpoint Timing(secs)

NVMe SSD DAX CXL

3x

Summary
• Saving Checkpoint in CXL memory reduces the training time
• Disaggregated CXL infra helps to reduce the TCO

 - Memory will be pooled across AI/ML infrastructure
 - CXL memory can be reused across systems and applications
 - Memory infra can be scaled in terms of capacity and bandwidth

Future work:

• Experiment the checkpoint latency with LLM applications

©2024 Conference Concepts, Inc.
All Rights Reserved

9

Enhancement of Functional code Coverage in UVM-based

verification environment using LLM-based model

©2024 Conference Concepts, Inc.
All Rights Reserved

Ramya B T

Senior Staff Engineer

Samsung Semiconductor Inc

10

Harshit Sharma

Student Trainee

Samsung Semiconductor Inc

Sairam Jujjarapu

Associate Staff Engineer

Samsung Semiconductor Inc

Sachin Suresh Upadhya

Senior Staff Engineer

Samsung Semiconductor Inc

Keerthi Kiran J

Director

Samsung Semiconductor Inc

Kyungmin Kim

Principal Engineer

Samsung Electronics

Sathish Kumar M

Associate Technical Director

Samsung Semiconductor Inc

Agenda

• Background and Purpose
• Proposed Solution

• Architecture
• Experimental setup
• Execution and Results

• Conclusion

©2024 Conference Concepts, Inc.
All Rights Reserved

11

©2024 Conference Concepts, Inc.
All Rights Reserved

12

Background and Purpose
• UVM (Universal Verification Methodology)

• Standardized methodology for verifying digital designs
• Provides a mechanism for building functional test benches for achieving 100% functionality coverage

• Types of testing
• Random testing
• Directed testing
• Coverage-driven testing

• Drawbacks: Though randomization is supported in UVM,
• It takes time to achieve a 100% coverage
• Manual effort is needed to identify coverage holes and write directed tests to cover them

• ML-based tools can be good for this purpose to reduce manual effort and achieve high coverage

Fig : UVM architecture

©2024 Conference Concepts, Inc.
All Rights Reserved

13

Proposed Solution
• Python-based script shall generate the prompt for the model

• Prompt shall be specific and exhaustive enough to enable the model to generate the tests

• Pre-trained LLM model
• Model used shall be pre-trained with system verilog syntaxes and UVM rules/keywords and UVM TB

building
• Automates the process of test generation in UVM environment
• Target to achieve higher code coverage by generating sequences
• Deepseek LLM is chosen for this solution. Model is pre-trained to learn the UVM sequences and

testcase generation mechanism

• The generated test shall be run on DUT (Device Under Test) with UVM for coverage

• The coverage holes after UVM randomization can be aimed to be covered with the proposed model

Architecture of proposed solution

• Script  Python-based script to generate the prompt for LLM
• Prompt  Instructions for LLM with minimal details for test_list
• Pre-trained LLM  Deepseek model used to generate the test_list
• Test_list  Test with args
• UVM  Methodology to execute the test and generate coverage report

14

Functional block diagram

©2024 Conference Concepts, Inc.
All Rights Reserved

15

Each decoder block contains masked self attention,
Layer normalization and fully connected layer

UVM testbench has the test_list that combines the regression
tests with which majority of coverage can be achieved

Pre-trained LLM
UVM

Experimental setup

©2024 Conference Concepts, Inc.
All Rights Reserved 16

Sl No Item Configuration

1 DUT NAND Behavioral model

2 TB Basic UVM testbench

3 Tool for test execution xrun

4 LLM Deepseek-coder-6.7b-instruct
Reference : https://huggingface.co/deepseek-
ai/deepseek-coder-6.7b-instruct

https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-instruct
https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-instruct

Execution and Results : Example 1

©2024 Conference Concepts, Inc.
All Rights Reserved

17

Execution and Results : Example 2 (1/2)

©2024 Conference Concepts, Inc.
All Rights Reserved

18

©2024 Conference Concepts, Inc.
All Rights Reserved

19

Execution and Results : Example 2 (2/2)

Conclusion
• Deepseek is trained on multiple programming languages as well as UVM framework

• With few shot learning and various prompt inputs, it is possible to generate the output. So, instruction fine-tuning may not be
required (unlike other ML tools).

• The model shall help verification engineers to automate sequence, thus making their work easier and reducing the amount of time
required to create individual sequences.

• Proposed model can also be extended to generate an optimized regression testlist and directed testcases for achieving coverage
goals

Future work:

• Research to make the model analyze the coverage report and auto-generate the test sequences to achieve the coverage goals

©2024 Conference Concepts, Inc.
All Rights Reserved

20

©2024 Conference Concepts, Inc.
All Rights Reserved

21

THANK YOU !

	Case study of Optimized CXL platforms for�AI/ML Check Points
	Agenda
	Data Growth vs Processor Scaling
	CXL Industry Trends
	CXL Ecosystem in AI/ML Infrastructure
	CXL - DAX access
	CNN Ecosystem Comparison
	Study Results
	Summary
	Enhancement of Functional code Coverage in UVM-based verification environment using LLM-based model
	Agenda
	Background and Purpose
	Proposed Solution
	Architecture of proposed solution
	Functional block diagram
	Experimental setup
	Execution and Results : Example 1
	Execution and Results : Example 2 (1/2)
	Execution and Results : Example 2 (2/2)
	Conclusion
	Slide Number 21

