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Overview of a Modern Solid-State Drive
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Key Problem: Path Conflicts in Modern SSDs

Multiple flash memory chips are connected to the 
SSD Controller using a shared channel 

I/O requests attempt to simultaneously access the 

flash chips using a single path       Path Conflict                                                 

Path Conflicts cause I/O requests to be 
transferred serially on the shared channel

Limits SSD parallelism and reduces performance
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Delay Caused by Path Conflicts

• Case 1: Same Channel

• Case 2: Different Channels
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Performance Impact of Path Conflicts

Path conflicts increase the average I/O latency 

by 57% in our experiments 

on a performance-optimized SSD

The performance overhead of path conflicts 

increases by 1.6x in our experiments

 for high-I/O-intensity workloads
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Prior Approaches
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do not provide path diversity to flash chips
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Our Goal

To fundamentally address the 
path conflict problem in SSDs by
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1. increasing the number of paths to each flash chip 
(i.e., path diversity) at low cost

2. effectively utilizing the increased path diversity 
for communication between the SSD controller 
and flash chips
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Our Proposal

Venice

Named after the network of canals in the city of Venice
https://en.wikipedia.org/wiki/Venice

A low-cost interconnection network of flash chips in the SSD

Conflict-free path reservation for each I/O request

A non-minimal fully-adaptive routing algorithm for path identification
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Venice: Architecture
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Our Proposal

Named after the network of canals in the city of Venice
https://en.wikipedia.org/wiki/Venice

A low-cost interconnection network of flash chips in the SSD

Conflict-free path reservation for each I/O request

A non-minimal fully-adaptive routing algorithm for path identification
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Venice: Path Reservation (I)

• Venice uses a small scout packet to reserve a 
conflict-free path for each I/O request
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Venice: Path Reservation (II)

• Venice uses a small scout packet to reserve a 
conflict-free path for each I/O request
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Venice: Path Reservation

• Venice uses a small scout packet to reserve a 
conflict-free path for each I/O request
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Reserved Path

The overhead of path reservation is negligible 

due to the small size of the scout packet

Path reservation eliminates path conflicts 
by enabling conflict-free I/O transfer



Our Proposal

Named after the network of canals in the city of Venice
https://en.wikipedia.org/wiki/Venice

A low-cost interconnection network of flash chips in the SSD

Conflict-free path reservation for each I/O request

A non-minimal fully-adaptive routing algorithm for path identification
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Venice: Non-Minimal Fully Adaptive Routing

• Venice uses a non-minimal fully-adaptive routing algorithm to 
route scout packets when a minimal path is unavailable

• Effectively utilizes the idle links in the interconnection network 
to find a conflict-free path
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More in the Paper

• Venice’s non-minimal fully-adaptive routing algorithm

• Handling deadlock and livelock scenarios

• Overhead of exercising a non-minimal path

• Analysis of prior architectures proposed to mitigate 
the path conflict problem

• Detailed background on modern SSD architecture
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Simulating SSDs: MQSim [FAST 2018] 

◼ Arash Tavakkol, Juan Gomez-Luna, Mohammad Sadrosadati, Saugata 
Ghose, and Onur Mutlu,
"MQSim: A Framework for Enabling Realistic Studies of Modern 
Multi-Queue SSD Devices"
Proceedings of the 16th USENIX Conference on File and Storage 
Technologies (FAST), Oakland, CA, USA, February 2018.
[Slides (pptx) (pdf)]
[Source Code]

https://github.com/CMU-SAFARI/MQSim 

https://people.inf.ethz.ch/omutlu/pub/MQSim-SSD-simulation-framework_fast18.pdf 
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Simulating Memory: Ramulator 2.0

◼ Haocong Luo, Yahya Can Tugrul, F. Nisa Bostanci, Ataberk Olgun, A. Giray 
Yaglikci, and Onur Mutlu,
"Ramulator 2.0: A Modern, Modular, and Extensible DRAM Simulator"
Preprint on arxiv, August 2023.
[arXiv version]
[Ramulator 2.0 Source Code]
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https://github.com/CMU-SAFARI/ramulator2 
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Open Source Tools: SAFARI GitHub
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SSD Course (Spring 2023)

◼ Spring 2023 Edition: 

❑ https://safari.ethz.ch/projects_and_seminars/spring2023/
doku.php?id=modern_ssds

◼ Fall 2022 Edition: 

❑ https://safari.ethz.ch/projects_and_seminars/fall2022/do

ku.php?id=modern_ssds 

◼ Youtube Livestream (Spring 2023):

❑ https://www.youtube.com/watch?v=4VTwOMmsnJY&list
=PL5Q2soXY2Zi_8qOM5Icpp8hB2SHtm4z57&pp=iAQB

◼ Youtube Livestream (Fall 2022):

❑ https://www.youtube.com/watch?v=hqLrd-
Uj0aU&list=PL5Q2soXY2Zi9BJhenUq4JI5bwhAMpAp13&p
p=iAQB

◼ Project course

❑ Taken by Bachelor’s/Master’s students

❑ SSD Basics and Advanced Topics

❑ Hands-on research exploration

❑ Many research readings

29https://www.youtube.com/onurmutlulectures 
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Evaluation Methodology

• Using MQSim [Tavakkol+, FAST’18], a state-of-the-art SSD simulator

• Two SSD configurations
• Performance-Optimized (Samsung Z-NAND SSD)

• Cost-Optimized (Samsung PM9A3)

• Nineteen data-intensive workloads from
• MSR Cambridge, YCSB, Slacker, SYSTOR ‘17 and RocksDB 

• Prior Approaches
• Baseline SSD: A typical multi-channel shared bus SSD

• Packetized SSD (pSSD) [Kim+, MICRO’22]: Uses packetization to double the 
flash channel bandwidth

• Packetized Network SSD (pnSSD) [Kim+, MICRO’22]: Increases path diversity 
by introducing vertical channels

• Network-on-SSD (NoSSD) [Tavakkol+, CAL 2012]: Proposes an 
interconnection network of flash chips with simple deterministic routing

• Path-conflict-free SSD: An ideal SSD with no path conflicts

24



Results: Performance Analysis (I)

• Performance-Optimized SSD
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Results: Performance Analysis (II)

• Cost-Optimized SSD
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Results: Performance Analysis (III)

• Performance-Optimized SSD

• Cost-Optimized SSD
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Results: Reduction in Path Conflicts
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by using path reservation and 

effective utilization of path diversity   

99.98% of I/O requests 
do not experience path conflicts
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Results: SSD Energy Consumption

0.0

0.2

0.4

0.6

0.8

1.0

1.2

MSR Cambridge YCSB Slacker SYSTOR '17 YCSB RocksDB AVG

pSSD pnSSD NoSSD Venice

E
n

e
rg

y
 C

o
n

su
m

p
ti

o
n

 
(N

o
rm

. t
o

 B
a

se
li

n
e

 S
S

D
)

Venice reduces the SSD energy consumption 

by 46% on average 

over the most efficient prior work

Baseline SSD 61%
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Tail Latency

• Comparison of tail latencies in the 99th percentile of 
I/O requests 
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Tail Latency

• Comparison of tail latencies in the 99th percentile of 
I/O requests 
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Venice reduces tail latencies 

by effectively mitigating path conflicts



More in the Paper

• Power and area overhead analysis

• Tail latency analysis

• Sensitivity to interconnection network 

configurations

• Performance on mixed workloads

• Detailed evaluation methodology
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More in the Paper

https://arxiv.org/abs/2305.07768
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Venice: Summary

Mitigates path conflicts by efficiently utilizing the 

path diversity of the SSD interconnection network

Improves performance 

by 1.9x/1.5x over the best-performing prior work

on performance-optimized/cost-optimized SSD

Reduces energy consumption 

by 46% on average over the most efficient prior work

33

Low-cost and requires 

no changes to commodity flash chips
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Venice

Can Enable More Effective 

In-Storage Processing



In-Storage Genomic Data Filtering [ASPLOS 2022] 

◼ Nika Mansouri Ghiasi, Jisung Park, Harun Mustafa, Jeremie Kim, Ataberk Olgun, Arvid 

Gollwitzer, Damla Senol Cali, Can Firtina, Haiyu Mao, Nour Almadhoun Alserr, Rachata 
Ausavarungnirun, Nandita Vijaykumar, Mohammed Alser, and Onur Mutlu,

"GenStore: A High-Performance and Energy-Efficient In-Storage Computing 

System for Genome Sequence Analysis"
Proceedings of the 27th International Conference on Architectural Support for 
Programming Languages and Operating Systems (ASPLOS), Virtual, February-March 
2022.

[Lightning Talk Slides (pptx) (pdf)]

[Lightning Talk Video (90 seconds)]
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In-Storage Metagenomics [ISCA 2024] 

◼ Nika Mansouri Ghiasi, Mohammad Sadrosadati, Harun Mustafa, Arvid Gollwitzer, 
Can Firtina, Julien Eudine, Haiyu Mao, Joel Lindegger, Meryem Banu Cavlak, 
Mohammed Alser, Jisung Park, and Onur Mutlu,
"MegIS: High-Performance and Low-Cost Metagenomic Analysis with 
In-Storage Processing"
Proceedings of the 51st Annual International Symposium on Computer 
Architecture (ISCA), Buenos Aires, Argentina, July 2024.
[Slides (pptx) (pdf)]
[arXiv version]
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Structure of a Scout Packet

• A scout packet consists of two 8 bit flits, a header flit 
and a tail flit

• The flash controller sends a scout packet to identify a 
conflict-free path for the I/O request

Type

Type

Destination Flash Chip ID

Source Flash

Controller ID
Unused Bits

2 bits

2 bits

6 bits

3 bits 3 bits

Scout Packet

8 bits

2-bit Type Info

1st

Bit

2nd

Bit

0: Cancel

1: Reserve

0: Header Flit

1: Tail Flit
1

2

Header

Flit

Tail

Flit
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Power Consumption (I)

• Router
• We implement the HDL and synthesize it using UMC 65nm 

technology node
• Router consumes 0.241mW for a 4KB page transfer

• Network Link
• ORION 3.0 power model tool
• Each network link consumes about 1.08mW for a 4KB page 

transfer
• Link capacitance is lower than bus capacitance -> 90% 

less power than that of the shared channel bus
• Links are shorter and thinner than a shared bus
• Two drivers in links compared to several drivers in a bus

Home with solid fill



Area Overhead

• Router 
• Area overhead estimated using router’s HDL model

• Each router has 
• an area of 614 𝜇m2 + 40 I/O

• A total area of 8mm2 -> 8% of a typical 100mm2 flash chip

• Network Link
• ORION 3.0 model for area analysis of network links

• 112 network links for a 8x8 flash array configuration

• 44% lower area than a baseline multi-channel shared bus 
architecture

• Links are thinner and require lower pitch sizes

Home with solid fill



Evaluated Configurations 
Home with solid fill



Workload Characteristics
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Mixed Workloads
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SSD Throughput  Analysis

• Performance-Optimized SSD

• Cost-Optimized SSD
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SSD Throughput  Analysis

• Performance-Optimized SSD

• Cost-Optimized SSD
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Venice improves SSD throughput over prior 

approaches by effectively mitigating 

path conflicts



Tail Latency

• Comparison of tail latencies in the 99th percentile of 
I/O requests 
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Tail Latency

• Comparison of tail latencies in the 99th percentile of 
I/O requests 
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32% reduction 22% reduction

Venice reduces tail latencies 

by effectively mitigating path conflicts



Power Consumption (II)

Venice reduces the average power consumption 

by 4% over Baseline SSD   
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Performance on Mixed Workloads
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Venice outperforms prior approaches 

on high-intensity mixed workloads 

by effectively mitigating path conflicts
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Sensitivity to Network Configurations
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Prior Approaches to Address Path Conflicts

• Network-On-SSD [2]
• Replaces a multi-channel shared bus architecture with an 

interconnection network of flash chips

• Significantly increases path diversity than a typical SSD

Links

F0 F1 F2 F3

F4 F5 F6 F7

F8 F9 F10 F11

F12 F13 F14 F15

FC0

FC1

FC2

FC3

5[2] Tavakkol+, “Network-on-SSD: A Scalable and High-Performance Communication Design Paradigm for SSDs”, IEEE CAL 2012



Prior Approaches to Address Path Conflicts

• Network-On-SSD [2]
• Replaces a multi-channel shared bus architecture with an 

interconnection network of flash chips

• Significantly increases path diversity than a typical SSD

Ongoing I/O 
request 

F0 F1 F2 F3

F4 F5 F6 F7

F8 F9 F10 F11

F12 F13 F14 F15

FC0

FC1

FC2

FC3

Target Chip

I/O Request to F2

Path Conflict

[2] Tavakkol+, “Network-on-SSD: A Scalable and High-Performance Communication Design Paradigm for SSDs”, IEEE CAL 2012

Network-On-SSD’s simple routing algorithm fails 

to mitigate path conflicts in SSDs
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