

Host Managed Live Migration Panel

Sponsored by NVM Express organization, the owner of NVMe® specifications

Host Managed Live Migration Panel Agenda

- Open Ecosystem Alignment (Klaus Jensen Samsung)
- Real Customer Use Cases:
 - Microsoft (Lee Prewitt)
 - Google (Nicolae Mogoreanu)
 - Nvidia (Chaitanya Kulkarni)
- Questions & Answers

Speakers

Samsung Live Migration Use Case: Host Integration, Dirty Tracking and Virtualization

What the **Open Ecosystem** Must Solve

- 1. Migration Management Host Integration
 - Full function pass-through or mediation

What the **Open Ecosystem** Must Solve

- 2. Dirty Tracking
 - Translation Agent or Device assisted

- 3. NVMe[®] Controller and PCIe[®] Function **Virtualization** Generational and/or cross-vendor compatibility, MC privilege restriction
 - may be provided by device, or
 - if device is mediated, can be done in host software

Microsoft Live Migration Use Case: VM Support

Why Use Live Migration?

- Customers expect long up times on their VMs with no interruptions
- While very reliable overall, server nodes are complex and have issues:
 - Hardware failures; both immediate and predicted (ML)
 - Firmware updates; security, bugs, features
 - Resource exhaustion; load balancing
- Live migration allows for robust VM support on imperfect hardware

NVMe[®] Live Migration

- One standard for use across multiple CSPs
 - Reduces work for vendors (common FW, reduced validation)
- Allows for secure separation of Host controller and Guest VM controllers (MPF, SR-IOV)
- Allows for independent encryption and sanitization
- Allows for Host controller to have access to telemetry for debuggability

Google Live Migration Use Case: Remote and Local Storage

Remote Storage Use Case

Local Storage Past and Present

12

Google Industry Alignment Focus Areas

Google Compute Engine (GCE)

- Controller presentation on the admin queue
- Antagonist and untrusted workload isolation
- Controller insight debuggability / telemetry

Internal

- Root of trust and encryption
- Left shift, reduce time to market.
 - Reduce iterations, expose requirements and validation

NVIDIA Live Migration Use Case: Live Migration Flow

Why Use NVM Express[®] with Virtual Function I/O (VFIO Mode)?

- Virtual machines often make use of <u>direct device</u> <u>access</u> when configured for the <u>highest possible</u> <u>I/O performance</u>
- From a device and host perspective, this simply turns the <u>VM into a userspace driver</u>, with the <u>benefits</u> of <u>significantly reduced latency</u>, <u>higher</u> <u>bandwidth</u>

Why Use NVM Express[®] with VFIO Mode ?

- Applications, particularly in the high-performance computing field, also benefit from <u>low-overhead</u>, direct device access from user space
- Examples include network adapters (often non-TCP/IP based) and compute accelerators
- NVMe[®] Protocol is particularly designed for the <u>high</u> <u>performance</u> where users can get maximum performance out of storage

Performance Matrix

- IOPS (K)/Bandwidth (MB/s)/Latency
- CPU Guest User/ System
- CPU Host User/System
- IOPS Per Core/Bandwidth Per Core
- Block Size 4k, jobs 1 and 4
- Queue Depth 1/2/4/8/16
- Backend Categories:-
 - Pass-through (VFIO)
 - QEMU Userspace NVMe driver NVMe controller (3 Modes)
 - QEMU virio-blk on NVMe controller (5 Modes)
 - File created on XFS formatted on NVMe controller (5 Modes)

IOPS (K) BS=4k (Higher is better)

Number of Jobs-Queue Depth

Passthru_IOPS
nvme_cache_writeback_IOPS
nvme_cache_unsafe_IOPS
block_cache_writeback_IOPS
block_cache_unsafe_IOPS
block_cache_directsync_IOPS
block_cache_writethrough_IOPS
xfs_cache_unsafe_IOPS

VFIO NVM Express[®] Live Migration FSM

- Supporting Live Migration includes creating vfio-nvme implementation that will support VFIO live migration Finite State Machine (FSM). See next slide
- This also includes support from the NVM Express[®] protocol that will allow us to execute the subsequent command that are sent from the VFIO FSM

Simplistic View of VFIO Live Migration FSM

Questions?

Architected for Performance

Backup Slides

Remote Storage Past and Present

Local Storage Past and Present

Google Industry Alignment Focus Areas

Internal

- 1. Security
 - a. Root of trust. I am who I say I am and I run a proven firmware. Caliptra?
 - b. Key Management / Encryption. Keys secure, Encrypt at rest. LOCK?
- 2. Isolation. Read vs Write, head-of-line blocking and inadvertently antagonistic workloads.
- 3. Telemetry
- 4. Debuggability
- 5. Left Shift / Time to Market. Reduce iterations; Speed up cycle times
- 6. WAF Reduction

Cloud

- 1. Baremetal Presentation
- 2. VM Presentation
- 3. Live Migration
- 4. Antagonist Isolation
 - a. Rate limiting read/write/trim
 - b. Hotspot isolation
- 5. Malicious Activity Containment
 - a. Controller takeover. Impact on other VFs and PF + Host
- 6. Debuggability
 - Windows communicated obscure messages 3 days ago at 7:34 AM fix it.
 - b. My filesystem says it's corrupt

