BBCube 3D: Heterogeneous 3D Integration Using WoW/CoW for Near Memory Computing

Norio Chujo ^{1,2}, Hiroyuki Ryoson ¹, Koji Sakui ¹, Shinji Sugatani ¹, Masao Taguchi ¹ and Takayuki Ohba ¹

¹ Tokyo Institute of Technology, IIR, The WOW Alliance ² Hitachi Ltd. Research & Development Group

Outline

- Motivation
- Analysis Models
- Analysis Results (Thermal)
- Analysis Results (Electrical)
- Conclusion

Motivation

- Demands for high data bandwidth are increasing
- HBM has been introduced
 - High bandwidth with the same power
 - 2D transmission prevents improvement of access energy
- Heterogeneous 3D integration
 - Paving the way to 10 TB/s

Heterogeneous 3DI challenges

- Cooling
 - xPU cannot dissipate heat sufficiently
- Power delivery
 - Impedance of TSV causes supply voltage drop and large droop
- BBCube has potential to solve 3DI issues
 - Dense TSVs
 - Thin dies

Structure of BBCube 3D

- BBCube 3D comprises
 - Multiple xPU chiplets
 - Last level cache die
 - Laminated DRAMs
 - Base die
- Stacked by WoW and CoW

Process Flow of BBCube 3D (CoW)

Process Flow of BBCube 3D (WoW)

Process Flow of BBCube 3D (WoW)

(9) Repeat step 6 to 8

(13) Dicing and singulation

Superior Connectivity of BBCube

- Bumpless Via-Last interconnect similar to Cu/Low-k BEOL process
 - Stacking and thinning first, TSV formation last
 - Wafer/die bonding used SiOC adhesives. No needs nano-scale planarization
 - BEOL-based high reliability interconnects with low-thermal budget

Nanometer-size particles create void

Nanometer-level recess control is needed

Hybrid Bonding

BBCube

TSV characteristics

- Dense TSV realize high BW
- Short and slim TSV decreases C
- Direct Cu-Cu contact, thin bonding layer decreases Rth

1/20

Frequency [GHz]

CFig. 2 TSV capacitance

0.1

TSV capacitance [fF]

00

10

0.01

BBCube

Conventional 3DI

10

N. Chujo et al., VLSI Symposium 2020, N. Chujo et al., ECTC 2023

Power supply impedance analysis

- Comparison with BBCube and conventional 3DI in impedance
 - 22-times lower at 10 MHz
 - 220-times lower at 5 GHz
- DC drop is decreased 65.1 mV \rightarrow 2.9 mV
 - When 45 W (50 A) xPU is stacke on 8 laminated DRAMs

N. Chujo et al., ECTC2023

Bit Access Energy Calculation

Calculate energy from row activation to last level cache in xPU

Access route of HBM

Bit access energy

- BBCube 3D reaches
 - 30X higher bandwidth, 20X lower access energy than DDR5
 - 4X higher bandwidth, 5X lower access energy than HBM2E

DRAM temperature

- In BBCube[™] 3D, over 47 W xPUs can be stacked
- If ×9 BBCube (≈ reticle size), over 423 W xPUs can be stacked

Conclusion

- We proposed a heterogeneous 3DI technology called BBCube 3D
 - Combined use of bumpless WoW and CoW processes with high-density and lowcapacitance TSVs
- BBCube 3D achieves
 - High reliability with a low-temp. process
 - 30X higher bandwidth, 20X lower access energy than DDR5. 4X higher bandwidth, 5X lower access energy than HBM2E
 - 45 W xPUs stacked on a DRAM cube. If ×9 BBCube (≈ reticle size), over 423 W xPUs can be stacked

Let's Eat BBCube!

• TECH EXTENSIONS Co. Ltd. (TEX) handles the WoW and CoW stacking by BBCube.

COW Hetero-Stack

WOW/COW Multi-Stack