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Brief Self Introduction
• Geraldo F. Oliveira 

- Researcher @ SAFARI Research Group since November 2017
- Soon, I will defend my PhD thesis, advised by Onur Mutlu
- https://geraldofojunior.github.io/
- geraldofojunior@gmail.com (best way to reach me)
- https://safari.ethz.ch

• Research in:
- Computer architecture, computer systems, hardware security
- Memory and storage systems
- Hardware security, safety, predictability
- Fault tolerance
- Hardware/software cooperation
- … 

https://geraldofojunior.github.io/
mailto:agyaglikci@gmail.com
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Data Movement Bottlenecks (1/2)

DRAM
CPUCPUCPU

L2L1
L3L2L1 L2L1 L2L1CPU

Data Movement

Data movement bottlenecks happen because of:
-  Not enough data locality → ineffective use of the cache hierarchy
-  Not enough memory bandwidth
-   High average memory access time 

Off-Chip Link
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- Abundant DRAM bandwidth

- Shorter average memory 
access time   

 

Data Movement Bottlenecks (2/2)

DRAM
CPUCPUCPU

L2L1
L3L2L1 L2L1 L2L1CPU

Compute-Centric Architecture

Off-Chip Link

DRAM
CPUCPUCPU

L1L1L1L1CPU

Off-Chip Link

Memory-Centric Architecture

Processing-in-Memory (PIM)

…



7
Processing-near-bank

DRAM BankDRAM
(e.g., 3D-Stacked Memory)

Vault
Controller

PHY Processing-
near-vault

DRAM Vault

Processing-in-Memory: Taxonomy 

Two main approaches for Processing-in-Memory:
1 Processing-near-Memory: PIM logic is added to 

the same die as memory or to the logic layer of 3D-stacked memory

2 Processing-using-Memory: uses the operational principles of 
memory cells to perform computation

Processing-
using-DRAM

…

…
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Processing-in-Memory: Challenges

The lack of tools and system support for 
PIM architectures limit the adoption of PIM system

To fully support PIM systems, we need to develop:
1 Workload characterization methodologies and 

benchmark suites targeting PIM architectures

2 Frameworks that can facilitate the implementation of 
complex operations and algorithms using PIM primitives

3 Compiler support and compiler optimizations 
targeting PIM architectures

4 Operating system support for PIM-aware virtual memory, 
memory management, data allocation and mapping

5 Efficient data coherence and consistency mechanisms
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In this Work

The lack of tools and system support for 
PIM architectures limit the adoption of PIM system

To fully supportt PIM systems, we need to develop:

3 Compiler support and compiler optimizations 
targeting PIM architectures

4 Operating system support for PIM-aware virtual memory, 
memory management, data allocation and mapping

5 Efficient data coherence and consistency mechanisms

1 Workload characterization methodologies and 
benchmark suites targeting PIM architectures

2 Frameworks that can facilitate the implementation of 
complex operations and algorithms using PIM primitives
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Identifying Memory Bottlenecks
• Multiple approaches to identify applications that:

- suffer from data movement bottlenecks 
- take advantage of NDP

• Existing approaches are not comprehensive enough
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The Problem
• Multiple approaches to identify applications that:

- suffer from data movement bottlenecks 
- take advantage of NDP

• Existing approaches are not comprehensive enough
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No available methodology can comprehensively:

−  identify data movement bottlenecks

    −  correlate them with the most suitable 
        data movement mitigation mechanism
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• Our Goal: develop a methodology to:
− methodically identify sources of data movement 

bottlenecks

− comprehensively compare compute- and memory-
centric data movement mitigation techniques

Our Goal
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DAMOV-SIM Simulator

Methodology Overview

# Cores

Scalability Analysis
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roi_end

Profiler

Step 1
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Step 2
Locality-based Clustering
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Step 3
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Step 1: Application Profiling 
• We analyze 345 applications from distinct domains:

- Graph Processing
- Deep Neural Networks
- Physics
- High-Performance Computing
- Genomics 
- Machine Learning 
- Databases 
- Data Reorganization
- Image Processing
- Map-Reduce
- Benchmarking 
- Linear Algebra  
   …

Physics

Security

Machine 
learning

Database
Graph 

processing

Data 
analytics

Data reorganization

Genomics

Deep Neural 
Networks

Image 
processing

Linear 
algebra

Signal 
processing

Data 
mining
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Step 2: Locality-Based Clustering 
We use K-means to cluster 
the applications across both 
spatial and temporal 
locality, forming two 
groups
1. Low locality 

applications (in orange)
2. High locality 

applications (in blue) 
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Step 2: Locality-Based Clustering 
We use K-means to cluster 
the applications across both 
spatial and temporal 
locality, forming two 
groups
1. Low locality 

applications (in orange)
2. High locality 

applications (in blue) 

The closer a function is to the bottom-left corner
 

→ less likely it is to take advantage of
a deep cache hierarchy
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Step 3: Memory Bottleneck Analysis
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Step 3: Memory Bottleneck Analysis
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Step 3: Memory Bottleneck Analysis
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Six classes of 
data movement bottlenecks:

each class  data movement
 mitigation mechanism 



25

Step 3: Memory Bottleneck Analysis
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https://arxiv.org/abs/2105.03725

https://arxiv.org/abs/2105.03725
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DAMOV is Open-Source
• We open-source our benchmark suite and our toolchain

DAMOV-SIM

DAMOV 
Benchmark
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DAMOV is Open-Source
• We open-source our benchmark suite and our toolchain

DAMOV-SIM

DAMOV 
Benchmark

Get DAMOV at: 
https://github.com/CMU-SAFARI/DAMOV 

https://github.com/CMU-SAFARI/DAMOV
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Access 
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Storage 
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Bitline

Wordline
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Sense Amplifiers

DRAM Module

DRAM Chips
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DRAM Cells

Row Buffer

Inside a DRAM Chip 
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DRAM Cell Operation

wordline

bitline

sense 
amplifier

enable

storage
capacitor

access 
transistor

½ VDD

1. ACTIVATE (ACT)

2. READ/WRITE 

3. PRECHARGE (PRE)
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1. ACTIVATE (ACT)

2. READ/WRITE

3. PRECHARGE (PRE)

DRAM Cell Operation (1/3)

wordline

bitline

sense 
amplifier

enable

storage
capacitor

access 
transistor

½ VDD1. raise wordline

2. capacitor loses charge to bitline 

4. amplify deviation 
in the bitline

+ δ

3. enable 
sense amplifier

VDD

5. capacitor charge is restored
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1. ACTIVATE (ACT)

2. READ/WRITE

3. PRECHARGE (PRE)

DRAM Cell Operation (2/3)

wordline

bitline

sense 
amplifier

enable

storage
capacitor

access 
transistor

VDD

read/write charge 
latched in sense amplifier
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1. ACTIVATE (ACT)

2. READ/WRITE

3. PRECHARGE (PRE)

DRAM Cell Operation (3/3)

wordline

bitline

sense 
amplifier

enable

storage
capacitor

access 
transistor

VDD½ VDD
2. precharge bitline for next access

1. lower 
wordline

3. disable
sense amplifier
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RowClone: In-DRAM Row Copy (1/2)

sense 
amplifier

enable

½ VDD
source A

destination B
1. ACTIVATE (ACT)

2. ACTIVATE (ACT)

3. PRECHARGE (PRE)

Row copy
command sequence2:
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RowClone: In-DRAM Row Copy (2/2)

bitline

sense 
amplifier

enable

½ VDD
source A

destination B

1. ACTIVATE source row A

2. bitline will be pulled 
to charge level of row A

VDD

3. ACTIVATE destination row B

4. charge level of source row A will 
be copied to destination row B

5. PRECHARGE bitline 
for next access

½ VDD

2 V. Seshadri et al., “RowClone: Fast and Energy-Efficient In-DRAM Bulk Data Copy and Initialization", MICRO, 2013

1. ACTIVATE (ACT)

2. ACTIVATE (ACT)

3. PRECHARGE (PRE)

Row copy
command sequence2:
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Triple-Row Activation: Majority Function 

bitline

sense 
amplifier

enable

½ VDD
A

B

C

1. ACTIVATE (ACT)

2. PRECHARGE (PRE)

Majority function
command sequence3:

3 V. Seshadri et al., “Ambit: In-Memory Accelerator for Bulk Bitwise Operations Using Commodity DRAM Technology", MICRO, 2017
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Triple-Row Activation: Majority Function

bitline

sense 
amplifier

enable

½ VDD
A

B

C

1. ACTIVATE three rows 
simultaneously 

→ triple-row activation 

2. bitline will be pulled 
to the majority of 

cells A, B, and C

VDD

3. values in cells A, B, C 
will be overwritten 

with the majority output

1. ACTIVATE (ACT)

2. PRECHARGE (PRE)

Majority function
command sequence3:

3 V. Seshadri et al., “Ambit: In-Memory Accelerator for Bulk Bitwise Operations Using Commodity DRAM Technology", MICRO, 2017

4. PRECHARGE bitline 
for next access

½ VDD

MAJ(A, B, C ) =
MAJ(Vdd, Vdd, 0) = Vdd
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Ambit: In-DRAM Bulk Bitwise AND/OR 

bitline

sense 
amplifier

enable

A

B

C

½ VDD

V. Seshadri et al., “Ambit: In-Memory Accelerator for Bulk Bitwise Operations Using Commodity DRAM Technology", MICRO, 2017

MAJ (A, B, 0)  =  AND (A, B)

MAJ (A, B, 1)  =  OR (A, B)
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The Capability of COTS DRAM Chips

We demonstrate that COTS DRAM chips:

Can simultaneously activate up to 
48 rows in two neighboring subarrays1

Can perform NOT operation 
with up to 32 output operands2

Can perform up to 16-input
AND, NAND, OR, and NOR operations3
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The Capability of COTS DRAM Chips

We demonstrate that COTS DRAM chips:

Can simultaneously activate up to 
48 rows in two neighboring subarrays1

Can perform NOT operation 
with up to 32 output operands2

Can perform up to 16-input
AND, NAND, OR, and NOR operations3 https://arxiv.org/pdf/2402.18736.pdf 

https://arxiv.org/pdf/2402.18736.pdf


42

• DRAM and other memory technologies that are capable 
of performing computation using memory

Shortcomings:

• Support only basic operations (e.g., Boolean 
operations, addition)

- Not widely applicable 

• Support a limited set of operations
- Lack the flexibility to support new operations

• Require significant changes to the DRAM
- Costly (e.g., area, power)

PuM: Prior Works
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• DRAM and other memory technologies that are capable 
of performing computation using memory

Shortcomings:

• Support only basic operations (e.g., Boolean 
operations, addition)

- Not widely applicable 

• Support a limited set of operations
- Lack the flexibility to support new operations

• Require significant changes to the DRAM
- Costly (e.g., area, power)

Need a framework that aids general adoption of PuM, by:
  - Efficiently implementing complex operations
  - Providing flexibility to support new operations

PuM: Prior Works
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Goal: Design a PuM framework that 

- Efficiently implements complex operations

- Provides the flexibility to support new desired 
operations

- Minimally changes the DRAM architecture

Our Goal
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• SIMDRAM framework is built around a DRAM substrate 
that enables two techniques:

(1) Vertical data layout

4-
bi
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le
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en
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iz

e

Ro
w

  D
ec

od
er

most significant bit (MSB)

least significant bit (LSB)

A

B Cout

Cin

MAJ

(2) Majority-based computation

Pros compared to the 
conventional horizontal layout:

• Implicit shift operation
• Massive parallelism

Cout= AB + ACin + BCin

Pros compared to AND/OR/NOT-
based computation:

• Higher performance
• Higher throughput
• Lower energy consumption

SIMDRAM: PuM Substrate
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SIMDRAM Output

Instruction result 
in memory

Step 3: Execution according to μProgram
 

Memory Controller

User Input

SIMDRAM-enabled application

ACT/PRE

ACT/PRE

ACT/PRE

ACT/ACT/PRE

done

SIMDRAM OutputUser Input

AND/OR/NOT logic

Desired operation

Main memory

ISA
bbop_new

New SIMDRAM 
instruction

Step 2: Generate 
sequence of 

DRAM commands

foo () {

bbop_new

} 
Control Unit AC

T/
PR

E

ACT/PRE

ACT/PRE

ACT/PRE

ACT/PRE/PRE

done

MAJ

MAJ/NOT logic

Step 1: Generate 
MAJ logic

𝜇𝜇Program

𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇

𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇

New SIMDRAM 𝜇𝜇Program

𝜇𝜇Program

SIMDRAM Framework
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Efficiently transposing data

Programming interface

Handling page faults, address translation, 
coherence, and interrupts

Handling limited subarray size

Security implications

Limitations of our framework

System Integration
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Efficiently transposing data

Programming interface

Handling page faults, address translation, 
coherence, and interrupts

Handling limited subarray size

Security implications

Limitations of our framework

More in the Paper
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Methodology: Experimental Setup 
• Simulator: gem5

• Baselines:
- A multi-core CPU (Intel Skylake)
- A high-end GPU (NVidia Titan V)
- Ambit: a state-of-the-art in-memory computing mechanism

• Evaluated SIMDRAM configurations (all using a DDR4 
device):

- 1-bank: SIMDRAM exploits 65’536 SIMD lanes (an 8 kB row 
buffer) 

- 4-banks: SIMDRAM exploits 262’144 SIMD lanes
- 16-banks: SIMDRAM exploits 1’048’576 SIMD lanes
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Methodology: Workloads
Evaluated:
• 16 complex in-DRAM operations:

- Absolute            - Predication
- Addition/Subtraction           - ReLU
- BitCount            - AND-/OR-/XOR-

Reduction
- Equality/ Greater/Greater Equal    - Division/Multiplication

• 7 real-world applications
- BitWeaving (databases)   - LeNET (Neural Networks)
- TPH-H (databases)      - VGG-13/VGG-16 (Neural Networks)
- kNN (machine learning)   - brightness (graphics)
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Throughput Analysis
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SIMDRAM significantly outperforms 
all state-of-the-art baselines for a wide range of operations

Average normalized throughput across all 16 SIMDRAM 
operations
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Energy Analysis
Average normalized energy efficiency across all 16 
SIMDRAM operations
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Real-World Application
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many commonly-used real-world applications

Average speedup across 7 real-world applications



57

In this Work

The lack of tools and system support for 
PIM architectures limit the adoption of PIM system

To fully supportt PIM systems, we need to develop:

4 Operating system support for PIM-aware virtual memory, 
memory management, data allocation and mapping

5 Efficient data coherence and consistency mechanisms

1 Workload characterization methodologies and 
benchmark suites targeting PIM architectures

2 Frameworks that can facilitate the implementation of 
complex operations and algorithms using PIM primitives

3 Compiler support and compiler optimizations 
targeting PIM architectures



58

MIMDRAM: Programmer-Transparent PuM

• MIMDRAM:  a hardware/software co-designed PuM
Transparently: 

extract SIMD parallelism from an application, and
schedule PUD instructions while maximizing utilization 

Go
al

Three new LLVM-based passes targeting PUD execution
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MIMDRAM: Programmer-Transparent PuM

• MIMDRAM:  a hardware/software co-designed PuM
Transparently: 

extract SIMD parallelism from an application, and
schedule PUD instructions while maximizing utilization 

Go
al

Three new LLVM-based passes targeting PUD execution

https://arxiv.org/abs/2402.19080 

https://arxiv.org/abs/2402.19080
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Compiler support and compiler optimizations 
targeting PIM architectures

3

In this Work

The lack of tools and system support for 
PIM architectures limit the adoption of PIM system

To fully supportt PIM systems, we need to develop:

5 Efficient data coherence and consistency mechanisms

1 Workload characterization methodologies and 
benchmark suites targeting PIM architectures

2 Frameworks that can facilitate the implementation of 
complex operations and algorithms using PIM primitives

4 Operating system support for PIM-aware virtual memory, 
memory management, data allocation and mapping
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PUMA: Low-Cost Data Allocation & Alignment

• PUMA: a flexible memory allocation mechanism that
- allows programmers to have control over physical memory 

allocation
- enables PUD execution from the operating system viewpoint
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PUMA: Low-Cost Data Allocation & Alignment

• PUMA: a flexible memory allocation mechanism that
- allows programmers to have control over physical memory 

allocation
- enables PUD execution from the operating system viewpoint

https://arxiv.org/pdf/2403.04539 

https://arxiv.org/pdf/2403.04539
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In this Work

The lack of tools and system support for 
PIM architectures limit the adoption of PIM system

To fully supportt PIM systems, we need to develop:

4 Operating system support for PIM-aware virtual memory, 
memory management, data allocation and mapping

5 Efficient data coherence and consistency mechanisms

1 Workload characterization methodologies and 
benchmark suites targeting PIM architectures

2 Frameworks that can facilitate the implementation of 
complex operations and algorithms using PIM primitives

3 Compiler support and compiler optimizations 
targeting PIM architectures
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Onur Mutlu, Saugata Ghose, Juan Gomez-Luna, and Rachata Ausavarungnirun,
"A Modern Primer on Processing in Memory"
Invited Book Chapter in Emerging Computing: From Devices to Systems - Looking 
Beyond Moore and Von Neumann, Springer, 2023

PIM Review and Open Problems

https://people.inf.ethz.ch/omutlu/pub/ModernPrimerOnPIM_springer-emerging-computing-bookchapter21.pdf
https://people.inf.ethz.ch/omutlu/projects.htm
https://people.inf.ethz.ch/omutlu/projects.htm
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