FMS 2024: the Future of Memory and Storage

Methodologies, Workloads, and
Tools for Processing-in-Memory:
Enabling the Adoption of
Data-Centric Architectures

Geraldo F Oliveira
(https://geraldofojunior.github.io/)

Onur Mutlu

=% ETHzUrich SAFARI

Brief Self Introduction

* Geraldo F. Oliveira
Researcher @ SAFARI Research Group since November 2017
Soon, I will defend my PhD thesis, advised by Onur Mutlu
https://geraldofojunior.github.io/
geraldofojunior@gmail.com (best way to reach me)
https://safari.ethz.ch

* Research in:
- Computer architecture, computer systems, hardware security
Memory and storage systems
Hardware security, safety, predictability
Fault tolerance
Hardware/software cooperation

SAFARI 2 e

https://geraldofojunior.github.io/
mailto:agyaglikci@gmail.com
https://safari.ethz.ch/

Outline

1. Introduction

2. Identifying Memory Bottlenecks

Methodology Overview
Application Profiling
Locality-Based Clustering
Memory Bottleneck Analysis
DAMOV Benchmark Suite

3. Enabling Complex Operations using DRAM

SIMDRAM Framework
System Integration
Evaluation

SAFARI

—

w

Outline

1. Introduction

2. Identifying Memory Bottlenecks

Methodology Overview
Application Profiling
Locality-Based Clustering
Memory Bottleneck Analysis
DAMOV Benchmark Suite

3. Enabling Complex Operations using DRAM

SIMDRAM Framework
System Integration
Evaluation

SAFARI

—

NN

Data Movement Bottlenecks (1/2)

Data Movement

Off-Chip Lin

o TEm mmm o
s s o o o o -

Data movement bottlenecks happen because of:
- Not enough data locality — ineffective use of the cache hierarchy
- Not enough memory bandwidth
- High average memory access time

SAFARI 5 =

Data Movement Bottlenecks (2/2)

Compute-Centric Architecture

- EE— o S EE B SN S B EE B EEE SR BN B EEE SN RN BN M RS SR B M M R oy,

\
[
[
|
[

Off-Chip Lin

on mm Emm mm = o = =y

o e e e o o o o o e e e e e o .

- Abundant DRAM bandwidth
Off-Chip Link
anm ﬁ

- Shorter average memory
access time

o EEm o o o o o E—
- e e e e e = -

. Processing-in-Memory (PIM)

SAFARI =

Processing-in-Memory: Taxonomy

Two main approaches for Processing-in-Memory:

Processing-near-Memory: PIM logic is added to
the same die as memory or to the logic layer of 3D-stacked memory

2 Processing-using-Memory: uses the operational principles of
memory cells to perform computation

DRAM
(e.g., 3D-Stacked Memory) .. DRAM Bank
Processing-
DRAM Vault E
A
Vault / L
Controller \ |
r--------.--:_l \\‘ I -r=-~-9--1--r L
PHY + Processing | { 3
. ear-vault_ \\ _as
\\‘\ \ —
T T T 1
|

Processmg near-bank

SAFARI 7 e

Processing-in-Memory: Challenges

The lack of tools and system support for
PIM architectures limit the adoption of PIM system

To fully support PIM systems, we need to develop:

1 Workload characterization methodologies and
benchmark suites targeting PIM architectures

2 Frameworks that can facilitate the implementation of
complex operations and algorithms using PIM primitives

3 Compiler support and compiler optimizations
targeting PIM architectures

4_ Operating system support for PIM-aware virtual memory,
memory management, data allocation and mapping

5 Efficient data coherence and consistency mechanisms

SAFARI 8 e

In this Work

1 Workload characterization methodologies and
benchmark suites targeting PIM architectures

2 Frameworks that can facilitate the implementation of
complex operations and algorithms using PIM primitives

SAFARI 9 e

Outline

1. Introduction

2. Identifying Memory Bottlenecks

Methodology Overview
Application Profiling
Locality-Based Clustering
Memory Bottleneck Analysis
DAMOV Benchmark Suite

3. Enabling Complex Operations using DRAM

SIMDRAM Framework
System Integration
Evaluation

SAFARI

—

—
)

Identifying Memory Bottlenecks

* Multiple approaches to identify applications that:
- suffer from data movement bottlenecks
- take advantage of NDP

* Existing approaches are not comprehensive enough

Roofline model High LLC MPKI
)

Performance (GOPS/s)\

4 NDP Speedup over CPD

\ __ Arithmetic Intensity (OPS/byte))

p—

p—

1l
)

SAFARI =

The Problem

No available methodology can comprehensively:

- identify data movement bottlenecks

— correlate them with the most suitable
data movement mitigation mechanism

SAFARI 12 o

* Our Goal: develop a methodology to:

- methodically identify sources of data movement
bottlenecks

- comprehensively compare compute- and memory-
centric data movement mitigation techniques

SAFARI 13 ==

Outline

1. Introduction

2. Identifying Memory Bottlenecks

Methodology Overview
Application Profiling
Locality-Based Clustering
Memory Bottleneck Analysis
DAMOV Benchmark Suite

3. Enabling Complex Operations using DRAM

SIMDRAM Framework
System Integration
Evaluation

SAFARI

—

[
S

Methodology Overview

Step 1
Application Profiling

User Input

Target Application

NS

Source Code

R e e e L PP PP PP

N\

roi_ begin
— N\~
— N\

roi_end

SAFARI

\ 4

{ 1d OxFF
g st OxAF
1d OxFF
st OxAF
1d OxFF

‘e o
..............................

.

., o
g
Yasnsmsssssnsssssnannnnnnnnnnnnnnnnns®

Outline

1. Introduction

2. Identifying Memory Bottlenecks

Methodology Overview
Application Profiling
Locality-Based Clustering
Memory Bottleneck Analysis
DAMOV Benchmark Suite

3. Enabling Complex Operations using DRAM

SIMDRAM Framework
System Integration
Evaluation

SAFARI

—

—
@)

Step 1: Application Profiling

 We analyze 345 applications from distinct domains:

- Graph Processing
- Deep Neural Networks
- Physics

- High-Performance Computing

- Genomics

- Machine Learning

- Databases

- Data Reorganization
- Image Processing

- Map-Reduce

- Benchmarking

- Linear Algebra

SAFARI

Signal

processing

Machine
learning

Genomics

Deep Neural
Networks

Data reorganizatiol

Graph
processing

17

Data
mining
Data
analytics

Linear

W algebra

Image
processing

. DETRLERS
Physics

Outline

1. Introduction

2. Identifying Memory Bottlenecks

Methodology Overview
Application Profiling
Locality-Based Clustering
Memory Bottleneck Analysis
DAMOV Benchmark Suite

3. Enabling Complex Operations using DRAM

SIMDRAM Framework
System Integration
Evaluation

SAFARI

—

—
o

Step 2: Locality-Based Clustering

We use K-means to cluster .

the applications across both
spatial and temporal
locality, forming two

g;I‘()llI)f; 0.75 -

1. Low locality
applications (in orange)

2. High locality
applications (in blue)

Temporal Locality

0.25 1

0.00+

SAFARI

0.50 4

e Ja = 1¢ 2b
Class
A 1b + 2a * 2c

0.00 0.25 0.50
Spatial Locality

19

0.75

Step 2: Locality-Based Clustering

1.00

The closer a function is to the bottom-left corner

— less likely it is to of
a deep cache hierarchy

C

o

(&)

o
1

Temporal Lo

0.25 1

0.004 ;

Spatial Locality

SAFARI 20 o

Outline

1. Introduction

2. Identifying Memory Bottlenecks

Methodology Overview
Application Profiling
Locality-Based Clustering
Memory Bottleneck Analysis
DAMOV Benchmark Suite

3. Enabling Complex Operations using DRAM

SIMDRAM Framework
System Integration
Evaluation

SAFARI

21

—

Step 3: Memory Bottleneck Analysis

Memory Bottleneck Class

Temporal
Locality

Increasin Low Low

High Low
—

SAFARI 22

Low

High

Step 3: Memory Bottleneck Analysis

Memory Bottleneck Class

1a: DRAM
Bandwidth

1b: DRAM Latency

1c: L1/L2
Cache Capacity

Temporal
Locality

Increasing Low Low 2a: L3 Cache
MPKI Contention
High LFMR Low 2b: L1 Cache

Capacity
—

SAFARI 23

Low

: 2c: Compute-Bound
High

Step 3: Memory Bottleneck Analysis

fMemory Bottleneck Class

1a: DRAM
Bandwidth

\

1b: DRAM Latency

4 N

Six classes of

data movement bottlenecks: le:L1/L2

Cache Capacity

each class <& data movement
_ mitigation mechanism Y,

2a: L3 Cache
Contention

2b: L1 Cache
Capacity

2c: Compute-Bound

SAFARI 24

Step 3: Memory Bottleneck Analysis

DAMOV: A New Methodology and Benchmark
Suite for Evaluating Data Movement Bottlenecks

GERALDO F. OLIVEIRA"7, JUAN GOMEZ-LUNA"!, (Member, IEEE), LOIS OROSA’, (Member, IEEE),
SAUGATA GHOSE 2, (Member, IEEE), NANDITA VIJAYKUMAR?, IVAN FERNANDEZ'+4,
MOHAMMAD SADROSADATI', AND ONUR MUTLU", (Fellow, IEEE)

! Department of Information Technology and Electrical Engineering (D-ITET), ETH Ziirich, 8092 Ziirich, Switzerland
IDepartment of Computer Science, University of Illinois Urbana—Champaign, Champaign, IL 61801, USA
3Dcpﬂl'tﬂll:11t of Computer Science, University of Toronto, Toronto, ON M5S 2B1, Canada

4Department of Computer Architecture, University of Malaga, 29016 Milaga, Spain

Corresponding author: Geraldo F. Oliveira (geraldod @inf.ethz.ch)

https://arxiv.org/abs/2105.03725

SAFARI 25

https://arxiv.org/abs/2105.03725

Outline

1. Introduction

2. Identifying Memory Bottlenecks

Methodology Overview
Application Profiling
Locality-Based Clustering
Memory Bottleneck Analysis
DAMOV Benchmark Suite

3. Enabling Complex Operations using DRAM

SIMDRAM Framework
System Integration
Evaluation

SAFARI

—

()
@)

DAMOYV i1s Open-Source

* We open-source our benchmark suite and our toolchain

CMU-SAFARI | DAMOV

<> Code () Issues 1 Pull requests (») Actions [M1] Projects) Security |~ Insights 51 Settings

main ~ # 1branch © 0tags Go to file Add file ¥ About o)

DAMOV is a benchmark suite and a
Q omutlu Update README.md celbdea 17 days ago YO 5 commits methodical framework targeting the

EEEEEEEEEEEEEEEE, study of data movement bottlenecks

I3
DAM OV- SI M o I simulator . Cleaning 19 days ago in modern applications. It is intended
A] »

'6' ;EA'D:M'E :n; mEmEE Update README.md 17 days ago to study new architectures, such as
siNEEEEEN e ’ near-data processing. Described by

DAM OV : [get_workloads.sh DAMOV -- first commit 19 days ago Oliveira et al. (preliminary version at

YEEEEEEEEEEEEEER https://arxiv.org/pdf/2105.03725.pdf)
Benchmark

a
n
-
»
‘= README.md Ve 0 Readme

DAMOV: A New Methodology and Benchmark Suite for Releases
Evaluating Data Movement Bottlenecks No releases published

Create a new release

DAMOV is a benchmark suite and a methodical framework targeting the study of data movement bottlenecks in

modern applications. It is intended to study new architectures, such as near-data processing.
Packages

The DAMOV benchmark suite is the first open-source benchmark suite for main memory data movement-related No packages published
studies, based on our systematic characterization methodology. This suite consists of 144 functions representing Publish your first package
different sources of data movement bottlenecks and can be used as a baseline benchmark set for future data-

movement mitigation research. The applications in the DAMOV benchmark suite belong to popular benchmark

suites, including BWA, Chai, Darknet, GASE, Hardware Effects, Hashjoin, HPCC, HPCG, Ligra, PARSEC, Parboil, Languages

PolyBench, Phoenix, Rodinia, SPLASH-2, STREAM.
G —] |

SAFARI 27 o

DAMOYV i1s Open-Source

Get DAMOV at:

SAFARI 28 o

https://github.com/CMU-SAFARI/DAMOV

Outline

1. Introduction

2. Identifying Memory Bottlenecks

Methodology Overview
Application Profiling
Locality-Based Clustering
Memory Bottleneck Analysis
DAMOV Benchmark Suite

3. Enabling Complex Operations using DRAM

SIMDRAM Framework
System Integration
Evaluation

SAFARI

—

N
O

Inside a DRAM Chip

Bitline ~N
- Wordline
Subarray -~ DRAM Cells
// Wordline)

(2D Array
of DRAM Cells) ~~-_

_ Access
« -~ | Transistor

Q
=
Sense Amplifiers -} | E Q
- I
Row Buffer ----~ | | N - /
\ i ' Storage
. DRAM Bank Rl Capacitor
s DRAM Module

DRAM Chips -

SAFARI =

DRAM Cell Operation

wordline
S 2 Vpp
ACCESS bitline
storage _
. H transistor
capacitor
enable
sense
amplifier

SAFARI 31 o

DRAM Cell Operation (1/3)

wordline
1. raise wordline 1 YoWNpp+ &

access

storage _

: i transistor
capacitor

3. capacitor thsagehargstorbitline

bitline

1. ACTIVATE (ACT)

4. amplify deviation
in the bitline

3. enable
sense amplifier

enable

sense
amplifier

SAFARI 32 o

DRAM Cell Operation (2/3)

wordline
- VDD
i R — bitline
storage _
- transistor
capacitor
2. READ/WRITE

enable . @&=) read/write charge

sense latched in sense amplifier
amplifier

SAFARI 33 wo

DRAM Cell Operation (3/3)

1.lower yordline

wordline 1 VW, 2 Precharge bitline for next access
SCceos bitline
storage _
. transistor
capacitor

3. PRECHARGE (PRE)

3. disable .

sense amplifier €nable
sense

amplifier

SAFARI 34 o

RowClone: In-DRAM Row Copy (1/2)

source A

—— 72 Vipp

i Row copy

command sequence?:

destination B

enable
sense

SAFARI 35 amplifier ==

RowClone: In-DRAM Row Copy (2/2)

source A

1. ACTIVATE source row A
bitline
- s
2.
3. BRiaeIWilGBbpuihed | | COMMAnd sequence™
to clfergrektadaeissow A

destination B

3. ACTIVATE destination row B

4. charge level of source row A will
be copied to destination row B

enable
sense

SAFARI 36 amplifier ==

2V. Seshadri et al.,, “RowClone: Fast and Energy-Efficient In-DRAM Bulk Data Copy and Initialization", MICRO, 2013

Triple-Row Activation: Majority Function

A
— Y2 Vip
bitline
i I Majority function |
B : command sequence3: :
— | |
| |
| |
| |
| |
H | |
c— | meeememmee——-
enable
sense
SAFARI 37 amplifier ==

3V. Seshadri et al.,, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations Using Commodity DRAM Technology", MICRO, 2017

Triple-Row Activation: Majority Function

A
1. ACTIVATE three rows

I Y2 VDD

bitline

Majority function
command sequence3:

MAJ(A,B,C) =
MA]J (Vo Vaar 0) = Vyq

3.valuesincells A, B, C - -
will be overwritten
with the majority output i ----- _
: SLLLIELCLLELTTEPN
4. PRECHARGE bitline RRRE "
for next access enable
sense
SAFARI 38 amplifier ==

3V. Seshadri et al.,, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations Using Commodity DRAM Technology", MICRO, 2017

Ambit: In-DRAM Bulk Bitwise AND/OR

—— 72 Vpp

i bitline

MA]J (A, B, 0) = AND (A, B)

C - MAJ (A, B,1) = OR (A, B)

enable

sense
SAFARI 39 amplifier ==

V. Seshadri et al.,, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations Using Commodity DRAM Technology", MICRO, 2017

The Capability of COTS DRAM Chips

We demonstrate that COTS DRAM chips:

1 Can simultaneously activate up to
48 rows in two neighboring subarrays

2 Can perform NOT operation
with up to 32 output operands

3 Can perform up to 16-input
AND, NAND, OR, and NOR operations

SAFARI 40 e

The Capability of COTS DRAM Chips

Functionally-Complete Boolean Logic in Real DRAM Chips:
Experimental Characterization and Analysis

Ismail Emir Yiiksel Yahya Can Tugrul

Ataberk Olgun F. Nisa Bostanci
Geraldo F. Oliveira Haocong Luo Juan Gémez-Luna Mohammad Sadrosadati

A. Giray Yaglikei
Onur Mutlu

ETH Ziirich

Processing-using-DRAM (PuD) is an emerging paradigm
that leverages the analog operational properties of DRAM cir-
cuitry to enable massively parallel in-DRAM computation. PuD
has the potential to significantly reduce or eliminate costly
data movement between processing elements and main memory.
A common approach for PuD architectures is to make use of
bulk bitwise computation (e.g., AND, OR, NOT). Prior works
experimentally demonstrate three-input MAJ (i.e., MAJ3) and
two-input AND and OR operations in commercial off-the-shelf
(COTS) DRAM chips. Yet, demonstrations on COTS DRAM
chips do not provide a functionally complete set of operations
(e.g., NAND or AND and NOT).

systems and applications [12, 13]. Processing-using-DRAM
(PuD) [29-32] is a promising paradigm that can alleviate the
data movement bottleneck. PuD uses the analog operational
properties of the DRAM circuitry to enable massively parallel
in-DRAM computation. Many prior works |29-53] demonstrate
that PuD can greatly reduce or eliminate data movement.

A widely used approach for PuD is to perform bulk bitwise
operations, i.e., bitwise operations on large bit vectors. To per-
form bulk bitwise operations using DRAM, prior works pro-
pose modifications to the DRAM circuitry [29-31,33, 35, 36,
43,44,46,48-58]. Recent works [38,41,42,45] experimentally
demonstrate the feasibility of executing data copy & initializa-

https://arxiv.org/pdf/2402.18736.pdf

SAFARI

41

https://arxiv.org/pdf/2402.18736.pdf

PuM: Prior Works

* DRAM and other memory technologies that are capable
of performing computation using memory

Shortcomings:

* Support only basic operations (e.g., Boolean
operations, addition)

- Not widely applicable

* Support a limited set of operations

- Lack the flexibility to support new operations

* Require significant changes to the DRAM

- Costly (e.g., area, power)
SAFARI 42 =

PuM: Prior Works

Need a framework that aids general adoption of PuM, by:

- Efficiently implementing complex operations

- Providing flexibility to support new operations

SAFARI 43 o

Goal: Design a PuM framework that

- Efficiently implements complex operations

- Provides the flexibility to support new desired
operations

- Minimally changes the DRAM architecture

SAFARI 4 T

Outline

1. Introduction

2. Identifying Memory Bottlenecks

Methodology Overview
Application Profiling
Locality-Based Clustering
Memory Bottleneck Analysis
DAMOV Benchmark Suite

3. Enabling Complex Operations using DRAM

SIMDRAM Framework
System Integration
Evaluation

SAFARI

45

—

SIMDRAM: PuM Substrate

* SIMDRAM framework is built around a DRAM substrate
that enables two techniques:

(1) Vertical data layout (2) Majority-based computation

most significant bit (MSB) C,..=AB +AC, +BC,,
3 4 4)
; A
§ g B Cout
3 g
N i Cin
- P _ .

least significant bit (LSB)

Pros compared to the
conventional horizontal layout:

Pros compared to AND/OR/NOT-
based computation:

* Implicit shift operation
e Massive parallelism

* Higher performance
* Higher throughput
* Lower energy consumption

SAFARI 46 o

SIMDRAM Framework

’————N

’____-

User Input [Step 1: Generate { Step 2: Generate \ SIMDRAM OQutput
Desired operation . MA]IOgIC sequence of
... I ; .“: I I DRAM COmmandS
l i1 1 [acT/PRE
|:> ACT/PRE
| 11| act/erE
... I “rtesrsesmesneenn’ | 1| ACT/ACT/PRE
AND/OR/NOT logic \ MAJ/NOTlogic j 1 | qone
rogram
N AN N instruction
- —_— —_— —_— —_— —_— —_— —_— —_— —_— —_— —_— ~
User Input 7 Step 3: Execution according to pProgram \ SIMDRAM Output
SIMDRAM-enabled application ! s, ‘ 1 Instruction result
::‘.‘-f.oo() { y g I : ‘_ ACT/PRE I l !?.m.e.’??.o..’:).]".
1 A ACT/PRE 1|~
: H | acT/PRE S
bbop_new I::>I ACT/PRE/PRE S
R SETTTYTTTY) >
) l k. done | : S
R “| 1| Control Unit uProgram 1|i < :
\ Memory Controller V4 D >

____________,

SAFARI 47 ~

Outline

1. Introduction

2. Identifying Memory Bottlenecks

Methodology Overview
Application Profiling
Locality-Based Clustering
Memory Bottleneck Analysis
DAMOV Benchmark Suite

3. Enabling Complex Operations using DRAM

SIMDRAM Framework
System Integration
Evaluation

SAFARI

48

—

System Integration

Efficiently transposing data
Programming interface

Handling page faults, address translation,
coherence, and interrupts

Handling limited subarray size
Security implications

Limitations of our framework

SAFARI 49 wo

More in the Paper

SIMDRAM: An End-to-End Framework for
Bit-Serial SIMD Computing in DRAM

*Nastaran Hajinazar? *Geraldo F. Oliveira! ~ Sven Gregorio! =~ Jo#o Dinis Ferreira'
Nika Mansouri Ghiasi! =~ Minesh Pate]! =~ Mohammed Alser! =~ Saugata Ghose®
Juan Gémez-Luna! Onur Mutlu?

'ETH Ziirich 2Simon Fraser University 3University of Illinois at Urbana—Champaign

Handling page faults, address translation,
coherence, and interrupts

Handling limited subarray size

Security implications
Limitations of our framework

IEILZ&?‘EI

SAFARI =0 __%g%

Outline

1. Introduction

2. Identifying Memory Bottlenecks

Methodology Overview
Application Profiling
Locality-Based Clustering
Memory Bottleneck Analysis
DAMOV Benchmark Suite

3. Enabling Complex Operations using DRAM

SIMDRAM Framework
System Integration
Evaluation

SAFARI

51

—

Methodology: Experimental Setup

* Simulator: gem5

* Baselines:
- A multi-core CPU (Intel Skylake)
- A high-end GPU (NVidia Titan V)
- Ambit: a state-of-the-art in-memory computing mechanism

* Evaluated SIMDRAM configurations (all using a DDR4
device):
- 1-bank: SIMDRAM exploits 65’536 SIMD lanes (an 8 kB row
buffer)
- 4-banks: SIMDRAM exploits 262’144 SIMD lanes
- 16-banks: SIMDRAM exploits 1'048’576 SIMD lanes

SAFARI 52 s

Methodology: Workloads

Evaluated:
* 16 complex in-DRAM operations:
- Absolute - Predication
- Addition/Subtraction - ReLU
- BitCount - AND-/OR-/XOR-
Reduction

- Equality/ Greater/Greater Equal - Division/Multiplication

7 real-world applications
- BitWeaving (databases) - LeNET (Neural Networks)
- TPH-H (databases) - VGG-13/VGG-16 (Neural Networks)
- KNN (machine learning) - brightness (graphics)

SAFARI 53 wo

Throughput Analysis

Average normalized throughput across all 16 SIMDRAM
operations

OSIMDRAM - 1 Bank OSIMDRAM - 4 Banks @ SIMDRAM - 16 Banks
88.0

—

-

O

-
|

220 31.6

£ 7.9

logscale
o
o

2.0

Ambit

(GOPS/s) --
5

CPU

Average Normalized Throughput

0.1 -

SAFARI 54 e

Energy Analysis

Average normalized energy efficiency across all 16
SIMDRAM operations

O SIMDRAM - 1 Bank OSIMDRAM - 4 Banks O SIMDRAM - 16 Banks

>’i;lOOO .
= 3 257
L W
58
= O
5 -, 100 -
Bo 31
L ©
S =
m —
52 1
é_)‘ % 2-6
22 ol
1
CPU GPU Ambit

SIMDRAM is more energy-efficient than
all state-of-the-art baselines for a wide range of operations
SAFARI 55 ==

v

Real-World Application

Average speedup across 7 real-world applications

OSIMDRAM - 1 Bank

OSIMDRAM - 4 Banks

21.0

© 100.0 -
>
o0
k=
100 - 8.7
) 3.0
D
)
5 10
¥ CPU
=3
0.1 -

2.1
03 09 [

2.5

GPU

Ambit

O SIMDRAM - 16 Banks

17.5

SIMDRAM effectively and efficiently accelerates
many commonly-used real-world applications

SAFARI

56

In this Work

Compiler support and compiler optimizations
targeting PIM architectures

SAFARI 57 wo

MIMDRAM: Programmer-Transparent PuM

* MIMDRAM: a hardware/software co-designed PuM

\
Transparently:
extract SIMD parallelism from an application, and
schedule PUD instructions while maximizing utilization
y
Three new LLVM-based passes targeting PUD execution
ooooo.....COdedentification | |_code generation__
source code loop auto-vectorization) final binary

for(i; 1<1024;i++) f S t—trerereh et Gt | *A=pim malloc (s, mat;)

(. *D=pim malloc(s,mat;)
CLil=A[i]+B[i]; $3=add<1024 x i32> %1,%2 *t=pim_malloc (s, mat;)
FILI=DILi]*E[1i];: || e — bbop add (C,A,B,mat:)
GLT=CLil-F[i]; %6=mul<1024 x i32> %4,%5 bbop_mul (F,D, E,mat;)

} bbop mov (t, F)

for () {} \ ¥7-sub<1024 x 132> %3,%6 J bbop_sub (G, C, t,mats)

SAFARI 58 =s

MIMDRAM: Programmer-Transparent PuM

2024 IEEE International Symposium on High-Performance Computer Architecture (HPCA)

MIMDRAM: An End-to-End Processing-using-DRAM System
for Energy-Efficient and Programmer-Transparent MIMD Computing

Geraldo F. Oliveirat Ataberk Olgunf A. Giray Yaglikcit Nisa Bostancit
Juan Gémez-Lunat Saugata Ghose: Onur Mutlut

+ ETH Ziirich ¥ University of Illinois at Urbana-Champaign

https://arxiv.org/abs/2402.19080

SAFARI 59 wo

https://arxiv.org/abs/2402.19080

In this Work

4 Operating system support for PIM-aware virtual memory,
memory management, data allocation and mapping

SAFARI 60 wo

PUMA: Low-Cost Data Allocation & Alighment

* PUMA: a flexible memory allocation mechanism that

- allows programmers to have control over physical memory

allocation

- enables PUD execution from the operating system viewpoint

PUMA memory allocator

source code

PUMA memory pool

allocation
hashmap

f vaddr) 0
T T T
[0x0 joxaa} - {ox3B||| @
o vadd
r_L] > 43 <«—
S 123 size
5 o
> <
°)| hint
4 4 ador
worst-fit allocation

—

size Q

pim_preallocate(pool_size);
foo(){

p) int #src = pim_alloc(size);

bbop_cpy (dst, src, size);

}

int *dst = pim_alloc_align(size,src);

v

pool_size

subarray 43
free areas = 99

subarray 123
free areas = 99

head ¥

(1007997 .. 1

1]

ordered array

([huge page pool)

I

l|=

_____.r____
L pool_size

Reversed-engineered
DRAM interleaving

[free subarray ids] e @

[hint subarray ids] e

]

SAFARI

61

PUMA: Efficient and Low-Cost Memory Allocation and Alignment Support for
Processing-Using-Memory Architectures

Geraldo F. Oliveira

Emanuele G. Esposito

Juan Gémez-Luna Onur Mutlu

ETH Ziirich

1. Motivation & Problem

Processing-in-memory (PIM) [1-12] is a promising
paradigm that aims to alleviate the ever-growing cost of mov-
ing data back and forth between computing (e.g., CPU, GPU,
accelerators) and memory (e.g., caches, main memory, stor-
age) elements. In PIM architectures, computation is done by
adding logic units near memory arrays, i.e., processing-near-

We observe that (i) independently of the allocation size
for input operands, using malloc and posix_memalign
memory allocators results in 0% of the operations being
executed in the PUD substrate due to data misalignment;
and (ii) for large-enough allocation sizes (e.g., 32 Kb), only
up 60% of the PUD operations that use huge pages-based

memory allocation can successfully be executed in DRAM.

https://arxiv.org/pdf/2403.04539

SAFARI

62

PUMA: Low-Cost Data Allocation & Alighment

https://arxiv.org/pdf/2403.04539

In this Work

The lack of tools and system support for
PIM architectures limit the adoption of PIM system

To fully supportt PIM systems, we need to develop:

1 Workload characterization methodologies and
benchmark suites targeting PIM architectures

2 Frameworks that can facilitate the implementation of
complex operations and algorithms using PIM primitives

3 Compiler support and compiler optimizations
targeting PIM architectures

4_ Operating system support for PIM-aware virtual memory,
memory management, data allocation and mapping

5 Efficient data coherence and consistency mechanisms

SAFARI 63 wo

PIM Review and Open Problems

A Modern Primer on Processing in Memory

Onur Mutlu®®, Saugata Ghose®®, Juan G6mez-Luna?, Rachata Ausavarungnirund

SAFARI Research Group

“ETH Ziirich
bCarnegie Mellon University
¢ University of Illinois at Urbana-Champaign
4King Mongkut’s University of Technology North Bangkok

Onur Mutlu, Saugata Ghose, Juan Gomez-Luna, and Rachata Ausavarungnirun,

"A Modern Primer on Processing in Memory"
Invited Book Chapter in Emerging Computing: From Devices to Systems - Looking
Beyond Moore and Von Neumann, Springer, 2023

SAFARI 64 o

https://people.inf.ethz.ch/omutlu/pub/ModernPrimerOnPIM_springer-emerging-computing-bookchapter21.pdf
https://people.inf.ethz.ch/omutlu/projects.htm
https://people.inf.ethz.ch/omutlu/projects.htm

FMS 2024: the Future of Memory and Storage

Methodologies, Workloads, and
Tools for Processing-in-Memory:
Enabling the Adoption of
Data-Centric Architectures

Geraldo F Oliveira
(https://geraldofojunior.github.io/)

Onur Mutlu

=% ETHzUrich SAFARI

	Slide Number 1
	Brief Self Introduction
	Outline
	Outline
	Data Movement Bottlenecks (1/2)
	Data Movement Bottlenecks (2/2)
	Processing-in-Memory: Taxonomy
	Processing-in-Memory: Challenges
	In this Work
	Outline
	Identifying Memory Bottlenecks
	The Problem
	Our Goal
	Outline
	Methodology Overview
	Outline
	Step 1: Application Profiling
	Outline
	Step 2: Locality-Based Clustering
	Step 2: Locality-Based Clustering
	Outline
	Step 3: Memory Bottleneck Analysis
	Step 3: Memory Bottleneck Analysis
	Step 3: Memory Bottleneck Analysis
	Step 3: Memory Bottleneck Analysis
	Outline
	DAMOV is Open-Source
	DAMOV is Open-Source
	Outline
	Inside a DRAM Chip
	DRAM Cell Operation
	DRAM Cell Operation (1/3)
	DRAM Cell Operation (2/3)
	DRAM Cell Operation (3/3)
	RowClone: In-DRAM Row Copy (1/2)
	RowClone: In-DRAM Row Copy (2/2)
	Triple-Row Activation: Majority Function
	Triple-Row Activation: Majority Function
	Ambit: In-DRAM Bulk Bitwise AND/OR
	The Capability of COTS DRAM Chips�
	The Capability of COTS DRAM Chips�
	PuM: Prior Works
	PuM: Prior Works
	Our Goal
	Outline
	SIMDRAM: PuM Substrate
	SIMDRAM Framework
	Outline
	System Integration
	More in the Paper
	Outline
	Methodology: Experimental Setup
	Methodology: Workloads
	Throughput Analysis
	Energy Analysis
	Real-World Application
	In this Work
	MIMDRAM: Programmer-Transparent PuM
	MIMDRAM: Programmer-Transparent PuM
	In this Work
	PUMA: Low-Cost Data Allocation & Alignment
	PUMA: Low-Cost Data Allocation & Alignment
	In this Work
	PIM Review and Open Problems
	Slide Number 65

