
Methodologies, Workloads, and
Tools for Processing-in-Memory:

Enabling the Adoption of
Data-Centric Architectures

Geraldo F. Oliveira
(https://geraldofojunior.github.io/)

Onur Mutlu

FMS 2024: the Future of Memory and Storage

2

Brief Self Introduction
• Geraldo F. Oliveira

- Researcher @ SAFARI Research Group since November 2017
- Soon, I will defend my PhD thesis, advised by Onur Mutlu
- https://geraldofojunior.github.io/
- geraldofojunior@gmail.com (best way to reach me)
- https://safari.ethz.ch

• Research in:
- Computer architecture, computer systems, hardware security
- Memory and storage systems
- Hardware security, safety, predictability
- Fault tolerance
- Hardware/software cooperation
- …

https://geraldofojunior.github.io/
mailto:agyaglikci@gmail.com
https://safari.ethz.ch/

3

1. Introduction

Methodology Overview
2. Identifying Memory Bottlenecks

Application Profiling
Locality-Based Clustering
Memory Bottleneck Analysis
DAMOV Benchmark Suite

3. Enabling Complex Operations using DRAM
SIMDRAM Framework
System Integration
Evaluation

Outline

4

1. Introduction

Methodology Overview
2. Identifying Memory Bottlenecks

Application Profiling
Locality-Based Clustering
Memory Bottleneck Analysis
DAMOV Benchmark Suite

3. Enabling Complex Operations using DRAM
SIMDRAM Framework
System Integration
Evaluation

Outline

5

Data Movement Bottlenecks (1/2)

DRAM
CPUCPUCPU

L2L1
L3L2L1 L2L1 L2L1CPU

Data Movement

Data movement bottlenecks happen because of:
- Not enough data locality → ineffective use of the cache hierarchy
- Not enough memory bandwidth
- High average memory access time

Off-Chip Link

6

- Abundant DRAM bandwidth

- Shorter average memory
access time

Data Movement Bottlenecks (2/2)

DRAM
CPUCPUCPU

L2L1
L3L2L1 L2L1 L2L1CPU

Compute-Centric Architecture

Off-Chip Link

DRAM
CPUCPUCPU

L1L1L1L1CPU

Off-Chip Link

Memory-Centric Architecture

Processing-in-Memory (PIM)

…

7
Processing-near-bank

DRAM BankDRAM
(e.g., 3D-Stacked Memory)

Vault
Controller

PHY Processing-
near-vault

DRAM Vault

Processing-in-Memory: Taxonomy

Two main approaches for Processing-in-Memory:
1 Processing-near-Memory: PIM logic is added to

the same die as memory or to the logic layer of 3D-stacked memory

2 Processing-using-Memory: uses the operational principles of
memory cells to perform computation

Processing-
using-DRAM

…

…

8

Processing-in-Memory: Challenges

The lack of tools and system support for
PIM architectures limit the adoption of PIM system

To fully support PIM systems, we need to develop:
1 Workload characterization methodologies and

benchmark suites targeting PIM architectures

2 Frameworks that can facilitate the implementation of
complex operations and algorithms using PIM primitives

3 Compiler support and compiler optimizations
targeting PIM architectures

4 Operating system support for PIM-aware virtual memory,
memory management, data allocation and mapping

5 Efficient data coherence and consistency mechanisms

9

In this Work

The lack of tools and system support for
PIM architectures limit the adoption of PIM system

To fully supportt PIM systems, we need to develop:

3 Compiler support and compiler optimizations
targeting PIM architectures

4 Operating system support for PIM-aware virtual memory,
memory management, data allocation and mapping

5 Efficient data coherence and consistency mechanisms

1 Workload characterization methodologies and
benchmark suites targeting PIM architectures

2 Frameworks that can facilitate the implementation of
complex operations and algorithms using PIM primitives

10

1. Introduction

Methodology Overview
2. Identifying Memory Bottlenecks

Application Profiling
Locality-Based Clustering
Memory Bottleneck Analysis
DAMOV Benchmark Suite

3. Enabling Complex Operations using DRAM
SIMDRAM Framework
System Integration
Evaluation

Outline

11

Identifying Memory Bottlenecks
• Multiple approaches to identify applications that:

- suffer from data movement bottlenecks
- take advantage of NDP

• Existing approaches are not comprehensive enough

Arithmetic Intensity (OPS/byte)

Pe
rf

or
m

an
ce

 (G
O

PS
/s

)

Roofline model

Last-Level Cache MPKIN
D

P
Sp

ee
du

p
ov

er
 C

PU

High LLC MPKI

12

The Problem
• Multiple approaches to identify applications that:

- suffer from data movement bottlenecks
- take advantage of NDP

• Existing approaches are not comprehensive enough

Arithmetic Intensity (OPS/byte)

Pe
rf

or
m

an
ce

 (G
O

PS
/s

)

Roofline model

Last-Level Cache MPKIN
D

P
Sp

ee
du

p
ov

er
 C

PU

High LLC MPKI

No available methodology can comprehensively:

− identify data movement bottlenecks

 − correlate them with the most suitable
 data movement mitigation mechanism

13

• Our Goal: develop a methodology to:
− methodically identify sources of data movement

bottlenecks

− comprehensively compare compute- and memory-
centric data movement mitigation techniques

Our Goal

14

1. Introduction

Methodology Overview
2. Identifying Memory Bottlenecks

Application Profiling
Locality-Based Clustering
Memory Bottleneck Analysis
DAMOV Benchmark Suite

3. Enabling Complex Operations using DRAM
SIMDRAM Framework
System Integration
Evaluation

Outline

15

DAMOV-SIM Simulator

Methodology Overview

Cores

Scalability Analysis

ld 0xFF
st 0xAF
ld 0xFF
st 0xAF
ld 0xFF

Memory Traces

Temp.
Locality

LFMR

LFMR Low

High

High

Low

…

roi_begin

roi_end

Profiler

Step 1
Application ProfilingTarget Application

So
ur

ce
 C

od
e

User Input

Temporal Locality

Spatial Locality

Step 2
Locality-based Clustering

DRAM Bandwidth

DRAM Latency

L1/L2 Cache Capacity

L3 Cache Contention

L1 Cache Capacity

Compute-Bound

M
em

or
y

Bo
tt

le
ne

ck
 C

la
ss

es

Methodology Output

LLC MPKI

Last-to-First
Miss Ratio (LFMR)

Arithmetic Intensity

Step 3
Memory Bottleneck Class.

16

1. Introduction

Methodology Overview
2. Identifying Memory Bottlenecks

Application Profiling
Locality-Based Clustering
Memory Bottleneck Analysis
DAMOV Benchmark Suite

3. Enabling Complex Operations using DRAM
SIMDRAM Framework
System Integration
Evaluation

Outline

17

Step 1: Application Profiling
• We analyze 345 applications from distinct domains:

- Graph Processing
- Deep Neural Networks
- Physics
- High-Performance Computing
- Genomics
- Machine Learning
- Databases
- Data Reorganization
- Image Processing
- Map-Reduce
- Benchmarking
- Linear Algebra
 …

Physics

Security

Machine
learning

Database
Graph

processing

Data
analytics

Data reorganization

Genomics

Deep Neural
Networks

Image
processing

Linear
algebra

Signal
processing

Data
mining

18

1. Introduction

Methodology Overview
2. Identifying Memory Bottlenecks

Application Profiling
Locality-Based Clustering
Memory Bottleneck Analysis
DAMOV Benchmark Suite

3. Enabling Complex Operations using DRAM
SIMDRAM Framework
System Integration
Evaluation

Outline

19

Step 2: Locality-Based Clustering
We use K-means to cluster
the applications across both
spatial and temporal
locality, forming two
groups
1. Low locality

applications (in orange)
2. High locality

applications (in blue)

20

Step 2: Locality-Based Clustering
We use K-means to cluster
the applications across both
spatial and temporal
locality, forming two
groups
1. Low locality

applications (in orange)
2. High locality

applications (in blue)

The closer a function is to the bottom-left corner

→ less likely it is to take advantage of
a deep cache hierarchy

21

1. Introduction

Methodology Overview
2. Identifying Memory Bottlenecks

Application Profiling
Locality-Based Clustering
Memory Bottleneck Analysis
DAMOV Benchmark Suite

3. Enabling Complex Operations using DRAM
SIMDRAM Framework
System Integration
Evaluation

Outline

22

Step 3: Memory Bottleneck Analysis

Temporal
Locality

LFMR

MPKI
AI

AI

MPKI AI

LFMR

MPKI

MPKI

AI

AI

Decreasing

High

Increasing

Low

Low

High

High

Low

Low

Low

Low

High

Low

Low

Low

Low

Low

Memory Bottleneck Class

23

Step 3: Memory Bottleneck Analysis

Temporal
Locality

LFMR

MPKI
AI

AI

MPKI AI

LFMR

MPKI

MPKI

AI

AI

Decreasing

High

Increasing

Low

Low

High

High

Low

Low

Low

Low

High

Low

Low

Low

Low

Low

1a: DRAM
Bandwidth

1b: DRAM Latency

1c: L1/L2
Cache Capacity

2a: L3 Cache
Contention

2b: L1 Cache
Capacity

Memory Bottleneck Class

2c: Compute-Bound

24

Step 3: Memory Bottleneck Analysis

Temporal
Locality

Low

High

LFMR

Decreasing

High
MPKI

High
AI

AI

MPKI AI

LFMR

MPKI

MPKI
Low

Increasing
AI

AI

Low

Low

Low

Low

High

Low

Low

Low

Low

Low

1a: DRAM
Bandwidth

1b: DRAM Latency

1c: L1/L2
Cache Capacity

2a: L3 Cache
Contention

2c: Compute-Bound

2b: L1 Cache
Capacity

Memory Bottleneck Class

Six classes of
data movement bottlenecks:

each class data movement
 mitigation mechanism

25

Step 3: Memory Bottleneck Analysis

Temporal
Locality

Low

High

LFMR

Decreasing

High
MPKI

High
AI

AI

MPKI AI

1a: DRAM
Bandwidth

1b: DRAM Latency

1c: L1/L2
Cache Capacity

2a: L3 Cache
Contention

LFMR

MPKI

MPKI
Low

Increasing
AI

AI

2c: Compute-Bound

2b: L1 Cache
Capacity

Low

Low

Low

Low

High

Low

Low

Low

Low

Low

Memory Bottleneck Class

https://arxiv.org/abs/2105.03725

https://arxiv.org/abs/2105.03725

26

1. Introduction

Methodology Overview
2. Identifying Memory Bottlenecks

Application Profiling
Locality-Based Clustering
Memory Bottleneck Analysis
DAMOV Benchmark Suite

3. Enabling Complex Operations using DRAM
SIMDRAM Framework
System Integration
Evaluation

Outline

27

DAMOV is Open-Source
• We open-source our benchmark suite and our toolchain

DAMOV-SIM

DAMOV
Benchmark

28

DAMOV is Open-Source
• We open-source our benchmark suite and our toolchain

DAMOV-SIM

DAMOV
Benchmark

Get DAMOV at:
https://github.com/CMU-SAFARI/DAMOV

https://github.com/CMU-SAFARI/DAMOV

29

1. Introduction

Methodology Overview
2. Identifying Memory Bottlenecks

Application Profiling
Locality-Based Clustering
Memory Bottleneck Analysis
DAMOV Benchmark Suite

3. Enabling Complex Operations using DRAM
SIMDRAM Framework
System Integration
Evaluation

Outline

30

Access
Transistor

Storage
Capacitor

Bitline

Wordline

Wordline

Bi
tli

ne

Subarray
(2D Array

of DRAM Cells)

Sense Amplifiers

DRAM Module

DRAM Chips

DRAM Bank

DRAM Cells

Row Buffer

Inside a DRAM Chip

31

DRAM Cell Operation

wordline

bitline

sense
amplifier

enable

storage
capacitor

access
transistor

½ VDD

1. ACTIVATE (ACT)

2. READ/WRITE

3. PRECHARGE (PRE)

32

1. ACTIVATE (ACT)

2. READ/WRITE

3. PRECHARGE (PRE)

DRAM Cell Operation (1/3)

wordline

bitline

sense
amplifier

enable

storage
capacitor

access
transistor

½ VDD1. raise wordline

2. capacitor loses charge to bitline

4. amplify deviation
in the bitline

+ δ

3. enable
sense amplifier

VDD

5. capacitor charge is restored

33

1. ACTIVATE (ACT)

2. READ/WRITE

3. PRECHARGE (PRE)

DRAM Cell Operation (2/3)

wordline

bitline

sense
amplifier

enable

storage
capacitor

access
transistor

VDD

read/write charge
latched in sense amplifier

34

1. ACTIVATE (ACT)

2. READ/WRITE

3. PRECHARGE (PRE)

DRAM Cell Operation (3/3)

wordline

bitline

sense
amplifier

enable

storage
capacitor

access
transistor

VDD½ VDD
2. precharge bitline for next access

1. lower
wordline

3. disable
sense amplifier

35

RowClone: In-DRAM Row Copy (1/2)

sense
amplifier

enable

½ VDD
source A

destination B
1. ACTIVATE (ACT)

2. ACTIVATE (ACT)

3. PRECHARGE (PRE)

Row copy
command sequence2:

36

RowClone: In-DRAM Row Copy (2/2)

bitline

sense
amplifier

enable

½ VDD
source A

destination B

1. ACTIVATE source row A

2. bitline will be pulled
to charge level of row A

VDD

3. ACTIVATE destination row B

4. charge level of source row A will
be copied to destination row B

5. PRECHARGE bitline
for next access

½ VDD

2 V. Seshadri et al., “RowClone: Fast and Energy-Efficient In-DRAM Bulk Data Copy and Initialization", MICRO, 2013

1. ACTIVATE (ACT)

2. ACTIVATE (ACT)

3. PRECHARGE (PRE)

Row copy
command sequence2:

37

Triple-Row Activation: Majority Function

bitline

sense
amplifier

enable

½ VDD
A

B

C

1. ACTIVATE (ACT)

2. PRECHARGE (PRE)

Majority function
command sequence3:

3 V. Seshadri et al., “Ambit: In-Memory Accelerator for Bulk Bitwise Operations Using Commodity DRAM Technology", MICRO, 2017

38

Triple-Row Activation: Majority Function

bitline

sense
amplifier

enable

½ VDD
A

B

C

1. ACTIVATE three rows
simultaneously

→ triple-row activation

2. bitline will be pulled
to the majority of

cells A, B, and C

VDD

3. values in cells A, B, C
will be overwritten

with the majority output

1. ACTIVATE (ACT)

2. PRECHARGE (PRE)

Majority function
command sequence3:

3 V. Seshadri et al., “Ambit: In-Memory Accelerator for Bulk Bitwise Operations Using Commodity DRAM Technology", MICRO, 2017

4. PRECHARGE bitline
for next access

½ VDD

MAJ(A, B, C) =
MAJ(Vdd, Vdd, 0) = Vdd

39

Ambit: In-DRAM Bulk Bitwise AND/OR

bitline

sense
amplifier

enable

A

B

C

½ VDD

V. Seshadri et al., “Ambit: In-Memory Accelerator for Bulk Bitwise Operations Using Commodity DRAM Technology", MICRO, 2017

MAJ (A, B, 0) = AND (A, B)

MAJ (A, B, 1) = OR (A, B)

40

The Capability of COTS DRAM Chips

We demonstrate that COTS DRAM chips:

Can simultaneously activate up to
48 rows in two neighboring subarrays1

Can perform NOT operation
with up to 32 output operands2

Can perform up to 16-input
AND, NAND, OR, and NOR operations3

41

The Capability of COTS DRAM Chips

We demonstrate that COTS DRAM chips:

Can simultaneously activate up to
48 rows in two neighboring subarrays1

Can perform NOT operation
with up to 32 output operands2

Can perform up to 16-input
AND, NAND, OR, and NOR operations3 https://arxiv.org/pdf/2402.18736.pdf

https://arxiv.org/pdf/2402.18736.pdf

42

• DRAM and other memory technologies that are capable
of performing computation using memory

Shortcomings:

• Support only basic operations (e.g., Boolean
operations, addition)

- Not widely applicable

• Support a limited set of operations
- Lack the flexibility to support new operations

• Require significant changes to the DRAM
- Costly (e.g., area, power)

PuM: Prior Works

43

• DRAM and other memory technologies that are capable
of performing computation using memory

Shortcomings:

• Support only basic operations (e.g., Boolean
operations, addition)

- Not widely applicable

• Support a limited set of operations
- Lack the flexibility to support new operations

• Require significant changes to the DRAM
- Costly (e.g., area, power)

Need a framework that aids general adoption of PuM, by:
 - Efficiently implementing complex operations
 - Providing flexibility to support new operations

PuM: Prior Works

44

Goal: Design a PuM framework that

- Efficiently implements complex operations

- Provides the flexibility to support new desired
operations

- Minimally changes the DRAM architecture

Our Goal

45

1. Introduction

Methodology Overview
2. Identifying Memory Bottlenecks

Application Profiling
Locality-Based Clustering
Memory Bottleneck Analysis
DAMOV Benchmark Suite

3. Enabling Complex Operations using DRAM
SIMDRAM Framework
System Integration
Evaluation

Outline

46

• SIMDRAM framework is built around a DRAM substrate
that enables two techniques:

(1) Vertical data layout

4-
bi

t e
le

m
en

t s
iz

e

Ro
w

 D
ec

od
er

most significant bit (MSB)

least significant bit (LSB)

A

B Cout

Cin

MAJ

(2) Majority-based computation

Pros compared to the
conventional horizontal layout:

• Implicit shift operation
• Massive parallelism

Cout= AB + ACin + BCin

Pros compared to AND/OR/NOT-
based computation:

• Higher performance
• Higher throughput
• Lower energy consumption

SIMDRAM: PuM Substrate

47

SIMDRAM Output

Instruction result
in memory

Step 3: Execution according to μProgram

Memory Controller

User Input

SIMDRAM-enabled application

ACT/PRE

ACT/PRE

ACT/PRE

ACT/ACT/PRE

done

SIMDRAM OutputUser Input

AND/OR/NOT logic

Desired operation

Main memory

ISA
bbop_new

New SIMDRAM
instruction

Step 2: Generate
sequence of

DRAM commands

foo () {

bbop_new

}
Control Unit AC

T/
PR

E

ACT/PRE

ACT/PRE

ACT/PRE

ACT/PRE/PRE

done

MAJ

MAJ/NOT logic

Step 1: Generate
MAJ logic

𝜇𝜇Program

𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇

𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇

New SIMDRAM 𝜇𝜇Program

𝜇𝜇Program

SIMDRAM Framework

48

1. Introduction

Methodology Overview
2. Identifying Memory Bottlenecks

Application Profiling
Locality-Based Clustering
Memory Bottleneck Analysis
DAMOV Benchmark Suite

3. Enabling Complex Operations using DRAM
SIMDRAM Framework
System Integration
Evaluation

Outline

49

Efficiently transposing data

Programming interface

Handling page faults, address translation,
coherence, and interrupts

Handling limited subarray size

Security implications

Limitations of our framework

System Integration

50

Efficiently transposing data

Programming interface

Handling page faults, address translation,
coherence, and interrupts

Handling limited subarray size

Security implications

Limitations of our framework

More in the Paper

51

1. Introduction

Methodology Overview
2. Identifying Memory Bottlenecks

Application Profiling
Locality-Based Clustering
Memory Bottleneck Analysis
DAMOV Benchmark Suite

3. Enabling Complex Operations using DRAM
SIMDRAM Framework
System Integration
Evaluation

Outline

52

Methodology: Experimental Setup
• Simulator: gem5

• Baselines:
- A multi-core CPU (Intel Skylake)
- A high-end GPU (NVidia Titan V)
- Ambit: a state-of-the-art in-memory computing mechanism

• Evaluated SIMDRAM configurations (all using a DDR4
device):

- 1-bank: SIMDRAM exploits 65’536 SIMD lanes (an 8 kB row
buffer)

- 4-banks: SIMDRAM exploits 262’144 SIMD lanes
- 16-banks: SIMDRAM exploits 1’048’576 SIMD lanes

53

Methodology: Workloads
Evaluated:
• 16 complex in-DRAM operations:

- Absolute - Predication
- Addition/Subtraction - ReLU
- BitCount - AND-/OR-/XOR-

Reduction
- Equality/ Greater/Greater Equal - Division/Multiplication

• 7 real-world applications
- BitWeaving (databases) - LeNET (Neural Networks)
- TPH-H (databases) - VGG-13/VGG-16 (Neural Networks)
- kNN (machine learning) - brightness (graphics)

54

Throughput Analysis

5.5

0.4
2.0

22.0

1.5

7.9

88.0

5.8

31.6

0.1

1.0

10.0

100.0

CPU GPU Ambit

Av
er

ag
e

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

(G
OP

S/
s)

 --
 l

og
 sc

al
e

SIMDRAM - 1 Bank SIMDRAM - 4 Banks SIMDRAM - 16 Banks

SIMDRAM significantly outperforms
all state-of-the-art baselines for a wide range of operations

Average normalized throughput across all 16 SIMDRAM
operations

55

Energy Analysis
Average normalized energy efficiency across all 16
SIMDRAM operations

257

31

2.6

1

10

100

1000

CPU GPU Ambit

Av
er

ag
e

En
er

gy
 E

ffi
ci

en
cy

(G

OP
S/

s/
W

at
t)

 --
 l

og
 sc

al
e

SIMDRAM - 1 Bank SIMDRAM - 4 Banks SIMDRAM - 16 Banks

SIMDRAM is more energy-efficient than
all state-of-the-art baselines for a wide range of operations

56

Real-World Application

3.0

0.3
2.5

8.7

0.9

7.3

21.0

2.1

17.5

0.1

1.0

10.0

100.0

CPU GPU Ambit

Av
er

ag
e

Sp
ee

du
p

 --
 l

og
 sc

al
e

SIMDRAM - 1 Bank SIMDRAM - 4 Banks SIMDRAM - 16 Banks

SIMDRAM effectively and efficiently accelerates
many commonly-used real-world applications

Average speedup across 7 real-world applications

57

In this Work

The lack of tools and system support for
PIM architectures limit the adoption of PIM system

To fully supportt PIM systems, we need to develop:

4 Operating system support for PIM-aware virtual memory,
memory management, data allocation and mapping

5 Efficient data coherence and consistency mechanisms

1 Workload characterization methodologies and
benchmark suites targeting PIM architectures

2 Frameworks that can facilitate the implementation of
complex operations and algorithms using PIM primitives

3 Compiler support and compiler optimizations
targeting PIM architectures

58

MIMDRAM: Programmer-Transparent PuM

• MIMDRAM: a hardware/software co-designed PuM
Transparently:

extract SIMD parallelism from an application, and
schedule PUD instructions while maximizing utilization

Go
al

Three new LLVM-based passes targeting PUD execution

59

MIMDRAM: Programmer-Transparent PuM

• MIMDRAM: a hardware/software co-designed PuM
Transparently:

extract SIMD parallelism from an application, and
schedule PUD instructions while maximizing utilization

Go
al

Three new LLVM-based passes targeting PUD execution

https://arxiv.org/abs/2402.19080

https://arxiv.org/abs/2402.19080

60

Compiler support and compiler optimizations
targeting PIM architectures

3

In this Work

The lack of tools and system support for
PIM architectures limit the adoption of PIM system

To fully supportt PIM systems, we need to develop:

5 Efficient data coherence and consistency mechanisms

1 Workload characterization methodologies and
benchmark suites targeting PIM architectures

2 Frameworks that can facilitate the implementation of
complex operations and algorithms using PIM primitives

4 Operating system support for PIM-aware virtual memory,
memory management, data allocation and mapping

61

PUMA: Low-Cost Data Allocation & Alignment

• PUMA: a flexible memory allocation mechanism that
- allows programmers to have control over physical memory

allocation
- enables PUD execution from the operating system viewpoint

62

PUMA: Low-Cost Data Allocation & Alignment

• PUMA: a flexible memory allocation mechanism that
- allows programmers to have control over physical memory

allocation
- enables PUD execution from the operating system viewpoint

https://arxiv.org/pdf/2403.04539

https://arxiv.org/pdf/2403.04539

63

In this Work

The lack of tools and system support for
PIM architectures limit the adoption of PIM system

To fully supportt PIM systems, we need to develop:

4 Operating system support for PIM-aware virtual memory,
memory management, data allocation and mapping

5 Efficient data coherence and consistency mechanisms

1 Workload characterization methodologies and
benchmark suites targeting PIM architectures

2 Frameworks that can facilitate the implementation of
complex operations and algorithms using PIM primitives

3 Compiler support and compiler optimizations
targeting PIM architectures

64

Onur Mutlu, Saugata Ghose, Juan Gomez-Luna, and Rachata Ausavarungnirun,
"A Modern Primer on Processing in Memory"
Invited Book Chapter in Emerging Computing: From Devices to Systems - Looking
Beyond Moore and Von Neumann, Springer, 2023

PIM Review and Open Problems

https://people.inf.ethz.ch/omutlu/pub/ModernPrimerOnPIM_springer-emerging-computing-bookchapter21.pdf
https://people.inf.ethz.ch/omutlu/projects.htm
https://people.inf.ethz.ch/omutlu/projects.htm

Methodologies, Workloads, and
Tools for Processing-in-Memory:

Enabling the Adoption of
Data-Centric Architectures

Geraldo F. Oliveira
(https://geraldofojunior.github.io/)

Onur Mutlu

FMS 2024: the Future of Memory and Storage

	Slide Number 1
	Brief Self Introduction
	Outline
	Outline
	Data Movement Bottlenecks (1/2)
	Data Movement Bottlenecks (2/2)
	Processing-in-Memory: Taxonomy
	Processing-in-Memory: Challenges
	In this Work
	Outline
	Identifying Memory Bottlenecks
	The Problem
	Our Goal
	Outline
	Methodology Overview
	Outline
	Step 1: Application Profiling
	Outline
	Step 2: Locality-Based Clustering
	Step 2: Locality-Based Clustering
	Outline
	Step 3: Memory Bottleneck Analysis
	Step 3: Memory Bottleneck Analysis
	Step 3: Memory Bottleneck Analysis
	Step 3: Memory Bottleneck Analysis
	Outline
	DAMOV is Open-Source
	DAMOV is Open-Source
	Outline
	Inside a DRAM Chip
	DRAM Cell Operation
	DRAM Cell Operation (1/3)
	DRAM Cell Operation (2/3)
	DRAM Cell Operation (3/3)
	RowClone: In-DRAM Row Copy (1/2)
	RowClone: In-DRAM Row Copy (2/2)
	Triple-Row Activation: Majority Function
	Triple-Row Activation: Majority Function
	Ambit: In-DRAM Bulk Bitwise AND/OR
	The Capability of COTS DRAM Chips�
	The Capability of COTS DRAM Chips�
	PuM: Prior Works
	PuM: Prior Works
	Our Goal
	Outline
	SIMDRAM: PuM Substrate
	SIMDRAM Framework
	Outline
	System Integration
	More in the Paper
	Outline
	Methodology: Experimental Setup
	Methodology: Workloads
	Throughput Analysis
	Energy Analysis
	Real-World Application
	In this Work
	MIMDRAM: Programmer-Transparent PuM
	MIMDRAM: Programmer-Transparent PuM
	In this Work
	PUMA: Low-Cost Data Allocation & Alignment
	PUMA: Low-Cost Data Allocation & Alignment
	In this Work
	PIM Review and Open Problems
	Slide Number 65

