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Data Movement Bottlenecks (1/2)

Data Movement

Off-Chip Lin
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Data movement bottlenecks happen because of:
- Not enough data locality — ineffective use of the cache hierarchy
- Not enough memory bandwidth
- High average memory access time
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Data Movement Bottlenecks (2/2)

Compute-Centric Architecture
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- Shorter average memory
access time
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. Processing-in-Memory (PIM)

______________________________
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Processing-in-Memory: Taxonomy

Two main approaches for Processing-in-Memory:

Processing-near-Memory: PIM logic is added to
the same die as memory or to the logic layer of 3D-stacked memory

2 Processing-using-Memory: uses the operational principles of
memory cells to perform computation

DRAM
(e.g., 3D-Stacked Memory) .. DRAM Bank
Processing-
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Processing-in-Memory: Challenges

The lack of tools and system support for
PIM architectures limit the adoption of PIM system

To fully support PIM systems, we need to develop:

1 Workload characterization methodologies and
benchmark suites targeting PIM architectures

2 Frameworks that can facilitate the implementation of
complex operations and algorithms using PIM primitives

3 Compiler support and compiler optimizations
targeting PIM architectures

4_ Operating system support for PIM-aware virtual memory,
memory management, data allocation and mapping

5 Efficient data coherence and consistency mechanisms
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In this Work

1 Workload characterization methodologies and
benchmark suites targeting PIM architectures

2 Frameworks that can facilitate the implementation of
complex operations and algorithms using PIM primitives
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Identifying Memory Bottlenecks

* Multiple approaches to identify applications that:
- suffer from data movement bottlenecks
- take advantage of NDP

* Existing approaches are not comprehensive enough

Roofline model High LLC MPKI
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The Problem

No available methodology can comprehensively:

- identify data movement bottlenecks

— correlate them with the most suitable
data movement mitigation mechanism
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* Our Goal: develop a methodology to:

- methodically identify sources of data movement
bottlenecks

- comprehensively compare compute- and memory-
centric data movement mitigation techniques
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Methodology Overview

Step 1
Application Profiling

User Input

Target Application
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Step 1: Application Profiling

 We analyze 345 applications from distinct domains:

- Graph Processing
- Deep Neural Networks
- Physics

- High-Performance Computing

- Genomics

- Machine Learning

- Databases

- Data Reorganization
- Image Processing

- Map-Reduce

- Benchmarking

- Linear Algebra

SAFARI
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Step 2: Locality-Based Clustering

We use K-means to cluster .

the applications across both
spatial and temporal
locality, forming two

g;I‘()llI)f; 0.75 -

1. Low locality
applications (in orange)

2. High locality
applications (in blue)
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Step 2: Locality-Based Clustering

1.00

The closer a function is to the bottom-left corner
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a deep cache hierarchy
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Step 3: Memory Bottleneck Analysis

Memory Bottleneck Class
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Step 3: Memory Bottleneck Analysis

Memory Bottleneck Class

1a: DRAM
Bandwidth

1b: DRAM Latency

1c: L1/L2
Cache Capacity

Temporal
Locality

Increasing Low Low 2a: L3 Cache
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High LFMR Low 2b: L1 Cache
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—
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Step 3: Memory Bottleneck Analysis

fMemory Bottleneck Class

1a: DRAM
Bandwidth

\

1b: DRAM Latency

4 N

Six classes of

data movement bottlenecks: le:L1/L2

Cache Capacity

each class <& data movement
\_ mitigation mechanism Y,

2a: L3 Cache
Contention

2b: L1 Cache
Capacity

2c: Compute-Bound
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Step 3: Memory Bottleneck Analysis

DAMOV: A New Methodology and Benchmark
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DAMOYV i1s Open-Source

* We open-source our benchmark suite and our toolchain

CMU-SAFARI | DAMOV

<> Code () Issues 1 Pull requests (») Actions [M1] Projects ) Security |~ Insights 51 Settings

# main ~ # 1branch © 0tags Go to file Add file ¥ About o)

DAMOV is a benchmark suite and a
Q omutlu Update README.md celbdea 17 days ago YO 5 commits methodical framework targeting the

EEEEEEEEEEEEEEEE, study of data movement bottlenecks

I3
DAM OV- SI M o I simulator . Cleaning 19 days ago in modern applications. It is intended
A ] »

'6' ;EA'D:M'E :n; mEmEE Update README.md 17 days ago to study new architectures, such as
siNEEEEEN e ’ near-data processing. Described by

DAM OV : [ get_workloads.sh DAMOV -- first commit 19 days ago Oliveira et al. (preliminary version at

YEEEEEEEEEEEEEER https://arxiv.org/pdf/2105.03725.pdf)
Benchmark

a
n
-
»
‘= README.md Ve 0 Readme

DAMOV: A New Methodology and Benchmark Suite for Releases
Evaluating Data Movement Bottlenecks No releases published

Create a new release

DAMOV is a benchmark suite and a methodical framework targeting the study of data movement bottlenecks in

modern applications. It is intended to study new architectures, such as near-data processing.
Packages

The DAMOV benchmark suite is the first open-source benchmark suite for main memory data movement-related No packages published
studies, based on our systematic characterization methodology. This suite consists of 144 functions representing Publish your first package
different sources of data movement bottlenecks and can be used as a baseline benchmark set for future data-

movement mitigation research. The applications in the DAMOV benchmark suite belong to popular benchmark

suites, including BWA, Chai, Darknet, GASE, Hardware Effects, Hashjoin, HPCC, HPCG, Ligra, PARSEC, Parboil, Languages

PolyBench, Phoenix, Rodinia, SPLASH-2, STREAM.
G — ] |
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DAMOYV i1s Open-Source

Get DAMOV at:

SAFARI 28 o


https://github.com/CMU-SAFARI/DAMOV
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Inside a DRAM Chip

Bitline ~N
- Wordline
Subarray -~ DRAM Cells
// Wordline )

(2D Array
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DRAM Cell Operation

wordline
S 2 Vpp
ACCESS bitline
storage _
. H transistor
capacitor
enable
sense
amplifier
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DRAM Cell Operation (1/3)

wordline
1. raise wordline 1 YoWNpp+ &

access

storage _

: i transistor
capacitor

3. capacitor thsagehargstorbitline

bitline

1. ACTIVATE (ACT)

4. amplify deviation
in the bitline

3. enable
sense amplifier

enable

sense
amplifier
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DRAM Cell Operation (2/3)

wordline
- VDD
i R — bitline
storage _
- transistor
capacitor
2. READ/WRITE

enable . @&=)  read/write charge

sense  latched in sense amplifier
amplifier
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DRAM Cell Operation (3/3)

1.lower yordline

wordline 1 VW, 2 Precharge bitline for next access
SCceos bitline
storage _
. transistor
capacitor

3. PRECHARGE (PRE)

3. disable .

sense amplifier €nable
sense

amplifier
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RowClone: In-DRAM Row Copy (1/2)

source A

—— 72 Vipp

i Row copy

command sequence?:

destination B

enable
sense
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RowClone: In-DRAM Row Copy (2/2)

source A

1. ACTIVATE source row A
bitline
- s
2.
3. BRiaeIWilGBbpuihed | | COMMAnd sequence™
to clfergrektadaeissow A

destination B

3. ACTIVATE destination row B

4. charge level of source row A will
be copied to destination row B

enable
sense
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Triple-Row Activation: Majority Function

A
— Y2 Vip
bitline
i I  Majority function |
B : command sequence3: :
— | |
| |
| |
| |
| |
H | |
c— | meeememmee——-
enable
sense
SAFARI 37 amplifier ==

3V. Seshadri et al.,, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations Using Commodity DRAM Technology", MICRO, 2017



Triple-Row Activation: Majority Function

A
1. ACTIVATE three rows

I Y2 VDD

bitline

Majority function
command sequence3:

MAJ(A,B,C) =
MA]J (Vo Vaar 0) = Vyq

3.valuesincells A, B, C - -
will be overwritten
with the majority output i ----- _
:  SLLLIELCLLELTTEPN
4. PRECHARGE bitline RRRE "
for next access enable
sense
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Ambit: In-DRAM Bulk Bitwise AND/OR

—— 72 Vpp

i bitline

MA]J (A, B, 0) = AND (A, B)

C - MAJ (A, B,1) = OR (A, B)

enable

sense
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The Capability of COTS DRAM Chips

We demonstrate that COTS DRAM chips:

1 Can simultaneously activate up to
48 rows in two neighboring subarrays

2 Can perform NOT operation
with up to 32 output operands

3 Can perform up to 16-input
AND, NAND, OR, and NOR operations
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The Capability of COTS DRAM Chips

Functionally-Complete Boolean Logic in Real DRAM Chips:
Experimental Characterization and Analysis

Ismail Emir Yiiksel Yahya Can Tugrul

Ataberk Olgun F. Nisa Bostanci
Geraldo F. Oliveira Haocong Luo  Juan Gémez-Luna Mohammad Sadrosadati

A. Giray Yaglikei
Onur Mutlu

ETH Ziirich

Processing-using-DRAM (PuD) is an emerging paradigm
that leverages the analog operational properties of DRAM cir-
cuitry to enable massively parallel in-DRAM computation. PuD
has the potential to significantly reduce or eliminate costly
data movement between processing elements and main memory.
A common approach for PuD architectures is to make use of
bulk bitwise computation (e.g., AND, OR, NOT). Prior works
experimentally demonstrate three-input MAJ (i.e., MAJ3) and
two-input AND and OR operations in commercial off-the-shelf
(COTS) DRAM chips. Yet, demonstrations on COTS DRAM
chips do not provide a functionally complete set of operations
(e.g., NAND or AND and NOT).

systems and applications [12, 13]. Processing-using-DRAM
(PuD) [29-32] is a promising paradigm that can alleviate the
data movement bottleneck. PuD uses the analog operational
properties of the DRAM circuitry to enable massively parallel
in-DRAM computation. Many prior works |29-53] demonstrate
that PuD can greatly reduce or eliminate data movement.

A widely used approach for PuD is to perform bulk bitwise
operations, i.e., bitwise operations on large bit vectors. To per-
form bulk bitwise operations using DRAM, prior works pro-
pose modifications to the DRAM circuitry [29-31,33, 35, 36,
43,44,46,48-58]. Recent works [38,41,42,45] experimentally
demonstrate the feasibility of executing data copy & initializa-

https://arxiv.org/pdf/2402.18736.pdf
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PuM: Prior Works

* DRAM and other memory technologies that are capable
of performing computation using memory

Shortcomings:

* Support only basic operations (e.g., Boolean
operations, addition)

- Not widely applicable

* Support a limited set of operations

- Lack the flexibility to support new operations

* Require significant changes to the DRAM

- Costly (e.g., area, power)
SAFARI 42 =



PuM: Prior Works

Need a framework that aids general adoption of PuM, by:

- Efficiently implementing complex operations

- Providing flexibility to support new operations

SAFARI 43 o



Goal: Design a PuM framework that

- Efficiently implements complex operations

- Provides the flexibility to support new desired
operations

- Minimally changes the DRAM architecture

SAFARI 4 T
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SIMDRAM: PuM Substrate

* SIMDRAM framework is built around a DRAM substrate
that enables two techniques:

(1) Vertical data layout (2) Majority-based computation

most significant bit (MSB) C,..=AB +AC, +BC,,
3 4 4 )
; A
§ g B Cout
3 g
N i Cin
- P \_ .

least significant bit (LSB)

Pros compared to the
conventional horizontal layout:

Pros compared to AND/OR/NOT-
based computation:

* Implicit shift operation
e Massive parallelism

* Higher performance
* Higher throughput
* Lower energy consumption
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SIMDRAM Framework

’————N

’____-

User Input [ Step 1: Generate { Step 2: Generate \ SIMDRAM OQutput
Desired operation . MA]IOgIC ........ sequence of
............................................... I ; .“: I I DRAM COmmandS
l i1 1 [acT/PRE
|:> ACT/PRE
| 11| act/erE
............................................... I “rtesrsesmesneenn’ | 1| ACT/ACT/PRE
AND/OR/NOT logic \ MAJ/NOTlogic j 1 | qone
rogram
N AN N instruction
- —_— —_— —_— —_— —_— —_— —_— —_— —_— —_— —_— ~
User Input 7  Step 3: Execution according to pProgram  \ SIMDRAM Output
SIMDRAM-enabled application ! s, ‘ 1 Instruction result
::‘.‘-f.oo() ..... { .................................... y g I : ‘_ ACT/PRE I ..... l !?.m.e.’??.o..’:).]".
1 A ACT/PRE 1|~
: H | acT/PRE S
bbop_new I::>I ACT/PRE/PRE S
R SETTTYTTTY) >
) l k. done | : S
R “| 1| Control Unit uProgram 1|i < :
\ Memory Controller V4 D >

\____________,
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System Integration

Efficiently transposing data
Programming interface

Handling page faults, address translation,
coherence, and interrupts

Handling limited subarray size
Security implications

Limitations of our framework
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More in the Paper

SIMDRAM: An End-to-End Framework for
Bit-Serial SIMD Computing in DRAM

*Nastaran Hajinazar?  *Geraldo F. Oliveira! ~ Sven Gregorio! =~ Jo#o Dinis Ferreira'
Nika Mansouri Ghiasi! =~ Minesh Pate]! =~ Mohammed Alser! =~ Saugata Ghose®
Juan Gémez-Luna! Onur Mutlu?

'ETH Ziirich 2Simon Fraser University 3University of Illinois at Urbana—Champaign

Handling page faults, address translation,
coherence, and interrupts

Handling limited subarray size

Security implications
Limitations of our framework
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Methodology: Experimental Setup

* Simulator: gem5

* Baselines:
- A multi-core CPU (Intel Skylake)
- A high-end GPU (NVidia Titan V)
- Ambit: a state-of-the-art in-memory computing mechanism

* Evaluated SIMDRAM configurations (all using a DDR4
device):
- 1-bank: SIMDRAM exploits 65’536 SIMD lanes (an 8 kB row
buffer)
- 4-banks: SIMDRAM exploits 262’144 SIMD lanes
- 16-banks: SIMDRAM exploits 1'048’576 SIMD lanes
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Methodology: Workloads

Evaluated:
* 16 complex in-DRAM operations:
- Absolute - Predication
- Addition/Subtraction - ReLU
- BitCount - AND-/OR-/XOR-
Reduction

- Equality/ Greater/Greater Equal - Division/Multiplication

7 real-world applications
- BitWeaving (databases) - LeNET (Neural Networks)
- TPH-H (databases) - VGG-13/VGG-16 (Neural Networks)
- KNN (machine learning) - brightness (graphics)
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Throughput Analysis

Average normalized throughput across all 16 SIMDRAM
operations

OSIMDRAM - 1 Bank  OSIMDRAM - 4 Banks @ SIMDRAM - 16 Banks
88.0

—

-

O

-
|

220 31.6

£ 7.9

logscale
o
o

2.0

Ambit

(GOPS/s) --
5

CPU

Average Normalized Throughput

0.1 -
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Energy Analysis

Average normalized energy efficiency across all 16
SIMDRAM operations

O SIMDRAM - 1 Bank OSIMDRAM - 4 Banks O SIMDRAM - 16 Banks

>’i;lOOO .
= 3 257
L W
58
= O
5 -, 100 -
Bo 31
L ©
S =
m —
52 1
é_)‘ % 2-6
22 ol
1
CPU GPU Ambit

SIMDRAM is more energy-efficient than
all state-of-the-art baselines for a wide range of operations
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Real-World Application

Average speedup across 7 real-world applications

OSIMDRAM - 1 Bank

OSIMDRAM - 4 Banks

21.0

© 100.0 -
>
o0
k=
100 - 8.7
) 3.0
D
)
5 10
¥ CPU
=3
0.1 -

2.1
03 09 [

2.5

GPU

Ambit

O SIMDRAM - 16 Banks

17.5

SIMDRAM effectively and efficiently accelerates
many commonly-used real-world applications
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In this Work

Compiler support and compiler optimizations
targeting PIM architectures
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MIMDRAM: Programmer-Transparent PuM

* MIMDRAM: a hardware/software co-designed PuM

\
Transparently:
extract SIMD parallelism from an application, and
schedule PUD instructions while maximizing utilization
y
Three new LLVM-based passes targeting PUD execution
ooooo.....COdedentification | |_code generation__
source code loop auto-vectorization ) final binary

for(i; 1<1024;i++) f S t—trerereh et Gt | *A=pim malloc (s, mat;)

( . *D=pim malloc(s,mat;)
CLil=A[i]+B[i]; $3=add<1024 x i32> %1,%2 *t=pim_malloc (s, mat;)
FILI=DILi]*E[1i];: || e — bbop add (C,A,B,mat:)
GLT=CLil-F[i]; %6=mul<1024 x i32> %4,%5 bbop_mul (F,D, E,mat;)

} bbop mov (t, F)

for () {} \ ¥7-sub<1024 x 132> %3,%6 J bbop_sub (G, C, t,mats)
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MIMDRAM: Programmer-Transparent PuM

2024 IEEE International Symposium on High-Performance Computer Architecture (HPCA)

MIMDRAM: An End-to-End Processing-using-DRAM System
for Energy-Efficient and Programmer-Transparent MIMD Computing

Geraldo F. Oliveirat Ataberk Olgunf A. Giray Yaglikcit Nisa Bostancit
Juan Gémez-Lunat Saugata Ghose: Onur Mutlut

+ ETH Ziirich ¥ University of Illinois at Urbana-Champaign

https://arxiv.org/abs/2402.19080
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In this Work

4 Operating system support for PIM-aware virtual memory,
memory management, data allocation and mapping
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PUMA: Low-Cost Data Allocation & Alighment

* PUMA: a flexible memory allocation mechanism that

- allows programmers to have control over physical memory

allocation

- enables PUD execution from the operating system viewpoint

PUMA memory allocator

source code

PUMA memory pool

allocation
hashmap

f vaddr ) 0
T T T
[0x0 joxaa} - {ox3B||| @
o vadd
r\_L] > 43 <«—
S 123 size
5 o
> <
° )| hint
4 4 ador
worst-fit allocation

—

size Q

pim_preallocate(pool_size);
foo(){

p) int #src = pim_alloc(size);

bbop_cpy (dst, src, size);

}

int *dst = pim_alloc_align(size,src);

v

pool_size

subarray 43
free areas = 99

subarray 123
free areas = 99

head ¥

(1007997 .. 1

1]

ordered array

([ huge page pool )

I

l|=

\_____.r____
L pool_size

Reversed-engineered
DRAM interleaving

[free subarray ids] e @

[hint subarray ids] e

]
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PUMA: Efficient and Low-Cost Memory Allocation and Alignment Support for
Processing-Using-Memory Architectures

Geraldo F. Oliveira

Emanuele G. Esposito

Juan Gémez-Luna Onur Mutlu

ETH Ziirich

1. Motivation & Problem

Processing-in-memory (PIM) [1-12] is a promising
paradigm that aims to alleviate the ever-growing cost of mov-
ing data back and forth between computing (e.g., CPU, GPU,
accelerators) and memory (e.g., caches, main memory, stor-
age) elements. In PIM architectures, computation is done by
adding logic units near memory arrays, i.e., processing-near-

We observe that (i) independently of the allocation size
for input operands, using malloc and posix_memalign
memory allocators results in 0% of the operations being
executed in the PUD substrate due to data misalignment;
and (ii) for large-enough allocation sizes (e.g., 32 Kb), only
up 60% of the PUD operations that use huge pages-based

memory allocation can successfully be executed in DRAM.

https://arxiv.org/pdf/2403.04539
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https://arxiv.org/pdf/2403.04539

In this Work

The lack of tools and system support for
PIM architectures limit the adoption of PIM system

To fully supportt PIM systems, we need to develop:

1 Workload characterization methodologies and
benchmark suites targeting PIM architectures

2 Frameworks that can facilitate the implementation of
complex operations and algorithms using PIM primitives

3 Compiler support and compiler optimizations
targeting PIM architectures

4_ Operating system support for PIM-aware virtual memory,
memory management, data allocation and mapping

5 Efficient data coherence and consistency mechanisms
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