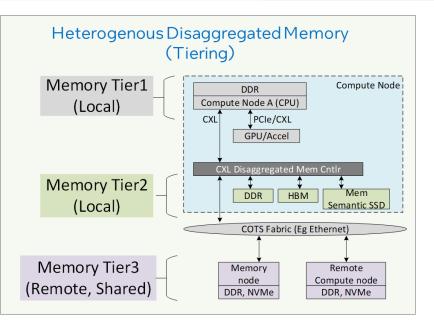
Use Cases for CXL-based Active Memory Tiering and Near Memory Accelerators

Presenter: Divya Vijayaraghavan (Altera) Co-authors: Tom Schulte and Pekon Gupta (Altera)

Two Prominent CXL Use Cases

- 1. Active Memory Tiering
 - Local and remote memory tiers, migration of hot and cold pages between tiers
- 2. Near Memory Compute Acceleration
 - Remote memory tiers accelerate or process data near memory elements

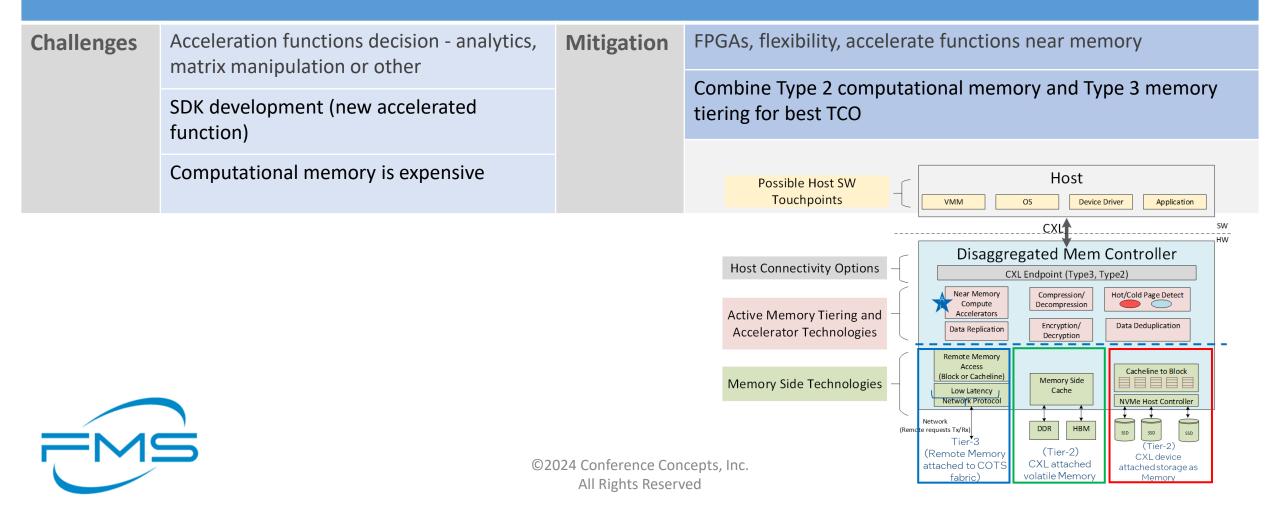

Active	Near Memory	Architecture \ Attributes	Memory Expansion	Memory Disaggregation	Acceleration
Memory Tiering	Compute Acceleration	Use Cases	Capacity Expansion Bandwidth Expansion Software assisted Tiering	Hardware assisted Tiering Differentiated Memory pooling Multi-host management	Inline acceleration Look-aside acceleration (QAT)
High Performance Compute	SmartNIC, IPU	Cost Sensitivity	High	Moderate	Moderate
		Bandwidth	80% of line-rate	~ 80% of line-rate	~ TBD
		Form-factors	EDSFF (E3.S, E1.S)	PCIe CEM, Blade, Custom	PCIe CEM, Blade, OCP, custom
	Financial Services	Latency (round trip)	<100ns	~200ns to 350ns	~300ns to 500ns
		Media	DRAM	DRAM DDR4/5, NAND, Emerging persistent Memory	DDR4/5 DRAM, NAND
		Power	Low: 50% ~ 90% of DDR5	твр	твр

Active Memory Tiering Considerations

Approaches

- S/W driven: Kernel scans memory allocation, identifies local vs. remote memory references ⁽¹⁾
- H/W-based hot page detection: Identifies most frequently accessed physical pages in Tier 2 memory
- Hardware-assisted application-transparent memory tiering management ⁽²⁾

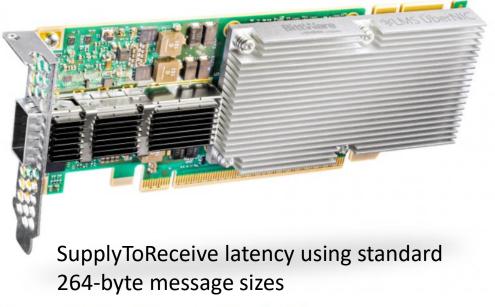
Challenges	Accuracy of "hotness" classification	Mitigation	Increased offload of hot page detection to hardware	
	Page migration latency		Provide enhanced memory access monitoring/reporting	
	Understanding of workload characteristics		capabilities on cxl.mem HDM interface	
	Hardware vs. software partitioning		Identify frequently used Host Physical Addresses	



2 Near Memory Compute Acceleration Considerations

Approaches

- Near memory processing engine implemented in proximity to EMIF controller on CXL EP device ⁽³⁾
- Memory tiering with computational memory devices and standard memory devices ⁽⁴⁾



Performance Metrics

 Publicly disclosed data points emerging showing latency advantage of CXL Type 2 Near Memory Acceleration vs. traditional PCIe⁽⁵⁾

Posted June 25, 2024

STAC Report: LMS ÜberNIC CXL with 10GbE and 25GbE under STAC-N1

New records from the first tests of a pure FPGA-based or CXL-based UDP stack.

Intel-UIUC ksm offload to CXL Type 2 device

- Kernel features increase tail latency of applications and consume CPU cycles
- Offloading the kernel features to CXL Type-2 device
 - 83% lower tail latency of application
 - 61% fewer CPU cycle consumption by ksm

Measured CXL.cache latency 68% lower than PCIe

Protocol	Tool	Initiator	Target	Design Used/Command
CXL.cache	Intel CXL Stress Tester	Device	Host	CXL Type2 ED/ Rdcurr
PCIe	MCDMA Driver	Device	Host	MCDMA ED / Mem Read

©2024 Conference Concepts, Inc. All Rights Reserved

Takeaways

- CXL-based Memory Tiering and Near Memory Acceleration provide advantages
 - Reduction in system TCO
 - Offloading of processing from CPU
 - Reduction in processing latency for specific workloads
- Some challenges can be mitigated by FPGA-based solutions
 - CXL IP and design example with configurable pre-built accelerator functions
 - Dynamic reconfigurability

Contributors from Altera

- Bhushan Chitlur
- Sung San Choe
- Shawn Slockers
- Navneet Rao
- Zhongqian Yu
- Lingyan Li
- Xuan Zhao
- Jiwei He

References

(1) Meta, UMichigan - TPP: Transparent Page Placement for CXL-enabled Tiered-Memory: https://arxiv.org/abs/2206.02878

(2) Google - <u>https://doi.org/10.1145/3582016.3582031</u>

(3) SKHynix - <u>https://www.youtube.com/watch?v=pbnTlY41h08</u>

(4) SmartModular - https://www.youtube.com/watch?v=A_PML20fk-Y

(5) STAC - STAC Report: LMS ÜberNIC CXL with 10GbE and 25GbE under STAC-

N1 | STAC - Insight for the Algorithmic Enterprise | STAC (stacresearch.com)

(6) Unifabrix - <u>https://www.unifabrix.com/</u>

Backup

