

Stream CSD: Reducing Enterprise/DC SSD WA & Improving SS Performance

Presenter: John Li | VP of Marketing & Operations

Agenda

- Trends in the Storage Industry
- Garbage Collection(GC) Issues in NAND Flash
- Existing Approaches to Reduce Block Interface Tax
- Technologies Enabling DapuStor StreamCSD
- Design Overview of StreamCSD
- Benefits of DapuStor StreamCSD

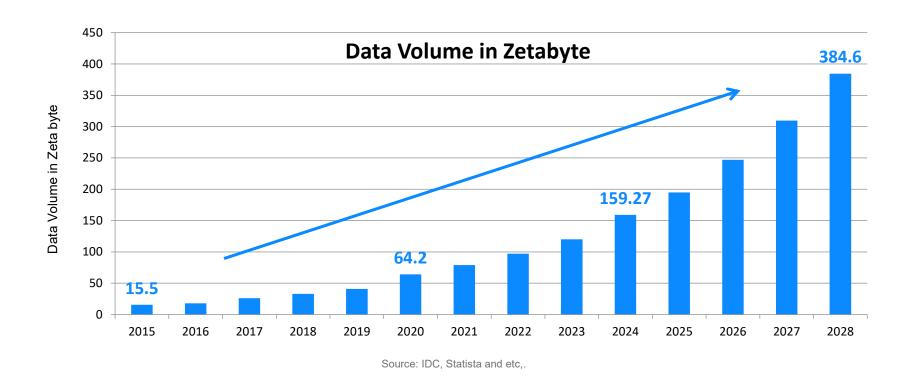
What's Happening in the Industry?

-How to Balance Demand & Supply?

NAND Only Unit: M USD 2000 1239 **758** 1000 0 Q4/22 Q1/23 Q2/23 Q3/23 Q4/23 Q1/24 Q2/24 E -1000 -2000 -3000 -3149 -4000 -4086 -5000 -6000 -5518 -5650 -6190 -7000

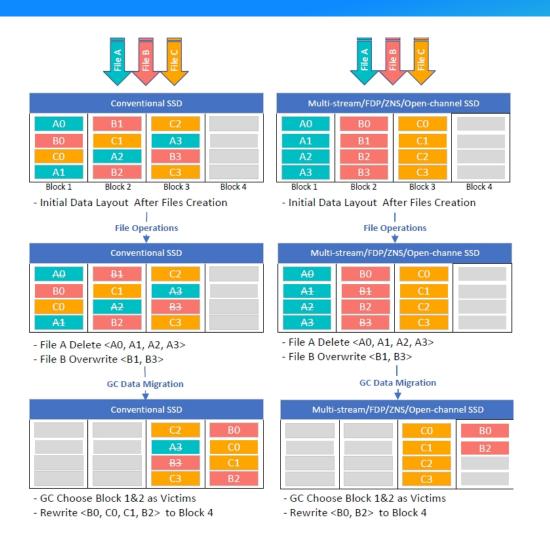
Source: Public info.

Vendors	2024 CapEx YoY
Samsung	-15%
SK Hynix	-38.7%
Micron	-10%

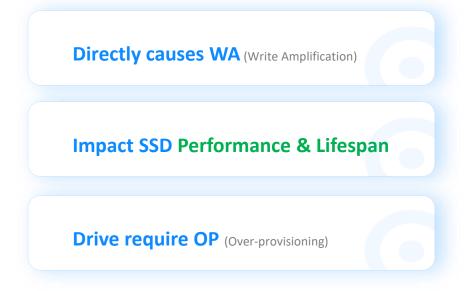

Source: Trendforce

Operating Profit (Loss): Samsung, SK Hynix, Micron, and KIOXIA incurred a \$24.593 billion loss in their NAND business.

Unlikely to recover the losses by the end of 2024

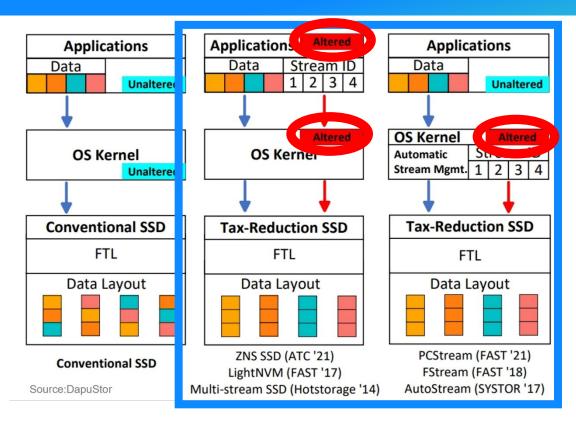


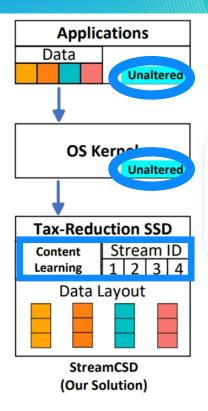
Globle Data is About to Explode O



An Inevitable Issue of NAND Flash Memory: Garbage Collection (GC)

Program operations (writes) occur at the page level. Pages cannot be overwritten; they can only be re-written after they have been erased. Erases happen at the block level.




For decades, the entire industry has been seeking various solutions to optimize the GC process and reduce WA.

The Garbage Collection Process

DapuStor

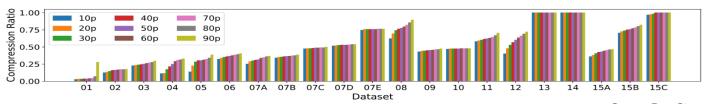
Existing Approaches to Reduce Block Interface Tax6

DapuStor's Solution: StreamCSD

Drawbacks

- O Host involvement is required
- Ecosystem compatibility challenge

Technologies Enabling DapuStor StreamCSD®


| Data Content & Compression Ratio

ID	Application	Format	Description
01	Biology	VCF	Gene sequence variations
02	EarthScience	CSV	Sea surface temperature
03	GIS	GeoJSON	Geographical coordinates
04	Security	JSON	IP flow records
05	Networks	CORS	UCSD-NT FlowTuple
06	Agriculture	TXT	Plants Database
07A	Advertising	JSON	Checkin timestamps
07B	Advertising	JSON	Business location and attributes
07C	Advertising	JSON	User short tips text
07D	Advertising	JSON	User full review text
07E	Advertising	JSON	User friend mapping
08	Energy	H5	Household energy usage
09	Healthcare	CSV	Curated medical text data
10	ImageProcess	TSV	Image url, size, and digest
11	Neuroscience	EEG	Electroencephalography
12	SocialNetwork	TXT	YouTube video relation graph
13	MachineLearning	NPZ	Numpy compressed array
14	Weather	PNG	Weather image
15A	AIGC	TXT	OpenAI ChatGPT
15B	AIGC	PNG	OpenAI Dall-E
15C	AIGC	MP3	OpenAI TTS

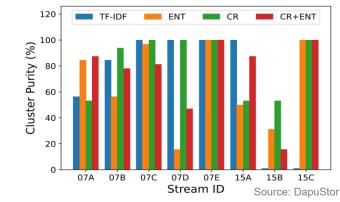
DATASET

Source: DapuStor

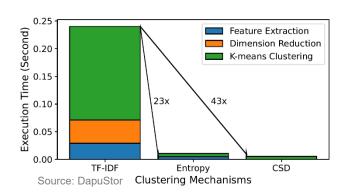
- 18 Large-scale datasets from various domains.
- 3 Al-generated content (AIGC) data from OpenAl, such as ChatGPT text, Dall-E image, and TTS voice.

Source: DapuStor

Potentially Achievable: Make Streams More Differentiated by CRs



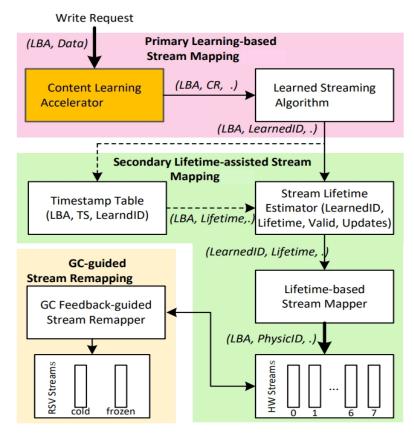
Technologies Enabling DapuStor StreamCSD


TF-IDF & K-means Clustering

Clustering Accuracy

*7A-7F are TF-IDF friendly, and 15A-15C from Al applications

Computational Overhead



- 1. TF-IDF works well for some datasets, but not all.
- 2. Traditional K-means clustering is based on entire batches (multi-pages).
- 3. DapuStor StreamCSD operates directly on pages, ensuring better performance.

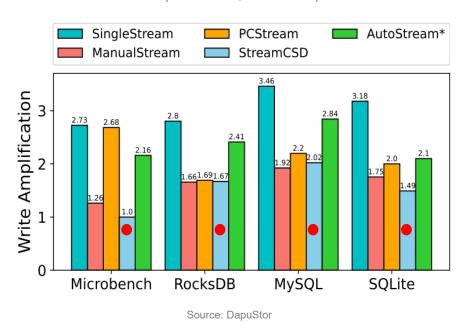
Design Overview of StreamCSD

Firmware Running Process

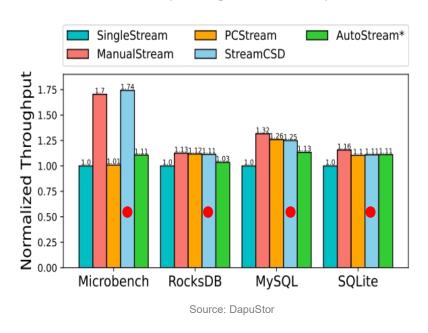
Source: DapuStor

The Most Important Step

Using CR(Compression Ratio)


to divide data pages into different learned streams

Major Benefits of StreamCSD

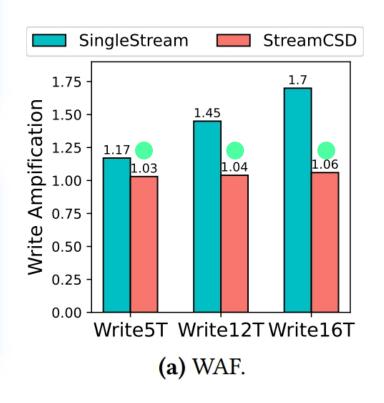

WAF Improvements

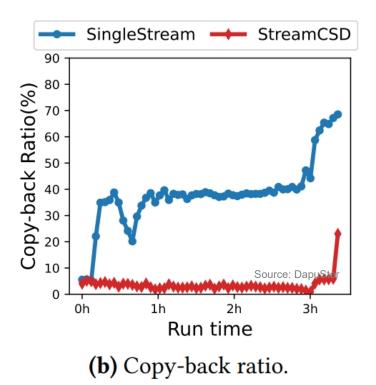
(The lower, the better)

SSD Performance Benchmark

(The higher, the better)

- StreamCSD achieves up to 63.4% reductions in WAF.
- StreamCSD offers performance comparable to other host-involvement methods.




What We Can Do for Multimodal Generative Al Workloads?

Use StreamCSD to check performance using data from OpenAl & Runway

Focuse on the multimodal scenario, streaming ChatGPT txt, DALL-E png, OpenAI TTS mp3, and Gen-2 mp4 data into a 7.68TB SSD

Achieved a maximum decrease in WAF by 37.6%

0

DapuStor Roealsen6 StreamCSD

To the Users

- Host transparent— easy to use
- · Improved SS performance
- Extended drive lifespan(5-8years)
- · Reduced TCO

To the Industry

· A ground-breaking method to

address GC/WAF issues

Balancing the booming demand

trend and the NAND supply

Visit DapuStor at Booth#911

DopuStor