

Computational Storage Use Cases - FMS 2024

JB Baker, VP Products & Marketing

Agenda

- Promises of Computational Storage
- Deployment Examples:
 - HTAP Database
 - Cloud Parallel File System
 - Relational Database

Promises of Computational Storage

Promises of Computational Storage

Moving *compute functions to the data*

instead of *the data to a CPU* to improve:

Deployment Examples

Computational Storage for HTAP Database

- Deployment Characteristics
 - Hybrid Transactional Analytical Processing Database
 - Massive scale cloud service
 - 1000's of customers across 200+ countries and regions
- Desired Outcomes
 - Reduce **Cost** of infrastructure
 - Reduce Power consumption
 - Reduce Maintenance & Complexity
 - All while meeting existing SLAs

Computational Storage for HTAP Database

Using NVMe CSDs for Data Compression Ba se line With Ordinary NVMe SSDs Equipment Needed Im provement 60% lower: 26 Cabinets 65 Cabinets Power 260 Servers 650 Servers Space 3125 SSDs 7800 SSDs ✓ Cost

Computational Storage for Cloud Parallel File System

- Deployment Characteristics
 - Massively parallel file system
 - Microsecond access latencies required
 - Serving multiple workloads: AI Training, EDA simulation, CG rendering, and more
 - Triple Replication
- Desired Outcomes
 - Reduce Cost of infrastructure
 - Reduce TCO
 - Scale performance with number of users
 - Keep or improve Latency SLAs

Computational Storage for Cloud Parallel File System

Baseline With Ordinary NVMe SSDs

GPU Node

18 Arra ys
432 SSDs

Using NVMe CSDs for Data Compression

Equipment Needed

Improvement

50% lower storage Power, Space, Cost 40% lower latency

Computational Storage for Relational Database

- Deployment Characteristics
 - Database-as-a-Service provider
 - Tight performance and latency SLAs
 - Redundant systems
- Desired Outcomes
 - Reduce Cost of each cluster
 - Keep or improve Latency SLAs

Computational Storage for Relational Database

Baseline With Ordinary NVMe SSDs

Using NVMe CSDs for Data Compression

Equipment Needed

Im provement

50% Fewer Nodes 75% Fewer Drives

Looking for more info?

in fo @ Scale Flux.com

www.ScaleFlux.com