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Cross core stage 
mutex analysis

Original exclusive stage workflow

• Exclusive stage to guarantee IO 
request order, only one request go 
into the stage.

• Using perf to see that seastar
reactor polling time is about 50%, 
seems it has heavy starvation.

• Calculate enter and exit stage time 
and found IO request stay in some 
stages for a long time.

• The stage is cross core stage,when
send request to another core,  
mutex will not be unlocked until 
request is send to another core to 
guarantee cross core sequence, so 
block the following request.

• Cross core send take more times. 
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Cross core stage 
mutex optimization

Optimize cross core exclusive stage

• Optimize the stage phase, free 
the lock before send request to 
another core.

• And use seq number to 
guarantee the cross core sending 
sequence. 

• The target core will check the 
sequence number order for a 
certain original core. 

• Then Using perf to see that 
seastar reactor polling time is 
below 10%
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Crimson+Alienstore
threads analysis

Original crimson and Alien Store 
threads policy

• Crimson osd is seastar thread, 
and bluestore is POSIX thread. 
Alienstore is a wrapper of 
bluestore to provide interface to 
crimson osd.

• At the testing beginning, crimson 
threads, alien threads, and 
bluestore threads mixed and 
share the same cores. This 
thread policy can’t provide the 
best throughput since crimson 
osd is run to complete design 
which use almost the whole cpu.
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Crimson+Alienstore
threads optimization

crimson and Alien Store threads policy 
optimization

• Optimize the thread policy, let 
each crimson osd thread occupy 
a logic core, and POSIX threads 
share other logical cores.

• After adjust the ratio of  crimson 
osd thread cores and alien 
thread cores, also alien thread 
numbers,  we can get the best 
performance for a certain total 
cores test case.  
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Avoid sharing variables 

• Original mempool counters • Optimized for crimson
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Avoid extra copy 

• Original foreign_ptr usage

• Optimized foreign_ptr usage avoid 
cross-core copy
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Submit concurrently 

• Original alien submit to crimson osd • Optimized alien submit to crimson osd
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Change exclusive stage to ordered concurrent stage
• Exclusive stage • Ordered concurrent stage
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Reduce read amplification by partially read extent
• Original Read whole extent • Optimized to read partially  
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Increase obc LRU cache size
• Small cache size causing read 

data from device frequently
• Enlarge cache size to increase 

cache hitting ratio
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Original vs optimized performance
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