
Performance Analysis and Optimization for

Multicore Crimson

Liu, Chunmei chunmei.liu@intel.com
Cheng, Yingxin yingxin.cheng@intel.com

Contents
• Cross core stage mutex analysis and optimization
• Crimson and alien store thread policy
• Avoid sharing variables between threads
• Avoid extra copy for cross-core ptr
• Make some stage concurrent
• Read amplification caused by not coarse-grained cache
• Enlarge LRU cache
• Original vs optimized performance comparation

1

Cross core stage
mutex analysis

Original exclusive stage workflow

• Exclusive stage to guarantee IO
request order, only one request go
into the stage.

• Using perf to see that seastar
reactor polling time is about 50%,
seems it has heavy starvation.

• Calculate enter and exit stage time
and found IO request stay in some
stages for a long time.

• The stage is cross core stage,when
send request to another core,
mutex will not be unlocked until
request is send to another core to
guarantee cross core sequence, so
block the following request.

• Cross core send take more times.

3

Exclusive
stage

IO request

Exclusive stage

Exclusive
stage

Exclusive stage

Crimson core 1 Crimson core 2

Cross core stage
mutex optimization

Optimize cross core exclusive stage

• Optimize the stage phase, free
the lock before send request to
another core.

• And use seq number to
guarantee the cross core sending
sequence.

• The target core will check the
sequence number order for a
certain original core.

• Then Using perf to see that
seastar reactor polling time is
below 10%

4

IO request

Exclusive
stage

Exclusive
stage

Exclusive
stage

Exclusive
stage

Exclusive
stage

Seq++ Check
seq

Seq++
Check
seq

Crimson core 1 Crimson core 2

Crimson+Alienstore
threads analysis

Original crimson and Alien Store
threads policy

• Crimson osd is seastar thread,
and bluestore is POSIX thread.
Alienstore is a wrapper of
bluestore to provide interface to
crimson osd.

• At the testing beginning, crimson
threads, alien threads, and
bluestore threads mixed and
share the same cores. This
thread policy can’t provide the
best throughput since crimson
osd is run to complete design
which use almost the whole cpu.

5

Core 0 Core 1

Osd 0

Core n

OSD inst

Crimson
osd

dev dev dev

network

Alien
thread

Osd 0

OSD inst

Crimson
osd

Blue
Store

Alien
thread

Osd 0

OSD inst

Crimson
osd

Alien
thread

Blue
Store

Blue
Store

Crimson+Alienstore
threads optimization

crimson and Alien Store threads policy
optimization

• Optimize the thread policy, let
each crimson osd thread occupy
a logic core, and POSIX threads
share other logical cores.

• After adjust the ratio of crimson
osd thread cores and alien
thread cores, also alien thread
numbers, we can get the best
performance for a certain total
cores test case.

6

Core 0 Core 1

Osd 0

Core n

Crimson
osd

network

Osd 0

Crimson
osd

Osd 0

OSD inst

Alien
thread

Alien
thread

Blue
Store

Core m

Osd 0

OSD inst

Alien
thread

Alien
thread

Blue
Store

Data queue

Avoid sharing variables

• Original mempool counters • Optimized for crimson

7

threadthread thread
Thread

local
Couter
index

Thread
local

Couter
index

Thread
local

Couter
index

automic
counter

Crimson
thread

Crimson
thread

Crimson
thread

CPU
Sharded
counter

CPU
Sharded
counter

CPU
Sharded
counter

Avoid extra copy

• Original foreign_ptr usage

• Optimized foreign_ptr usage avoid
cross-core copy

8

Shared_ptr
(conn)

Foreign_ptr

Shared_ptr

Local_shared

Foreign_ptr

Shared_ptr

Foreign_ptr

Local_shared

Foreign_ptr

Shared_ptr

Local_shared

Foreign_ptr

Local_shared

Foreign_ptr

Shared_ptr

Core x Core y Core z

Shared_ptr
(Conn)

Foreign_ptr

Shared_ptr

Local_shared

Foreign_ptr

Shared_ptr

Core x Core y Core z

Shared_ptr
(conn)

Copy

1

2

3 Foreign_ptr

Shared_ptr

4

Local_shared

Foreign_ptr

Shared_ptr

Submit concurrently

• Original alien submit to crimson osd • Optimized alien submit to crimson osd

9

Exclusive
stage

concurrent
stage

Write op Alien
thread Blue store

Finish
threadFinish fun

Wait_repop

Wait submit finish

submit

Exclusive
stage

concurrent
stage

Write op Alien
thread Blue store

Finish
thread

Finish fun

Wait_repop

submit

submit
submit

Change exclusive stage to ordered concurrent stage
• Exclusive stage • Ordered concurrent stage

10

Exclusive stage

Exclusive stage

3

2

1

Ordered concurrent
stage

1

2

3

1
2
3

recover_missing
Exclusive stage

Get_obc
(Load obc)

Exclusive stage

recover_missing
(head and snaps)

process
Exclusive stage

recover_missing
(head and snaps)

recover_missing
Exclusive stage

Get_obc
Exclusive stage

Lock_obc (load obc)
Ordered concurrent stage

process
Exclusive stageIn order of request

this stage lock

Free last stage lock
once enter this stage

Make read disk concurrency

Only request lock, may not get at
the time of enter concurrent stage

op in order

Reduce read amplification by partially read extent
• Original Read whole extent • Optimized to read partially

11

root

node node

node

LBA tree

Physical extent

cache extent

read

4M

4M

4M

root

node node

node

LBA tree

Physical extent

cache

Buffer space
Offset
length

Offset
length Offset length

Partially read

4M

Increase obc LRU cache size
• Small cache size causing read

data from device frequently
• Enlarge cache size to increase

cache hitting ratio

12

Load obj

LRU

LRU

LRU

Find obj

dev

Load obj

LRU

LRU

LRU

Find obj

dev

LRU

LRU

LRU

Original vs optimized performance

13

1

2.14

0

0.5

1

1.5

2

2.5

original optimized

ba
nd

w
id

th
(M

B/
s)

bluestore random read(4K) 16 cores

1

2.22

0

0.5

1

1.5

2

2.5

original optimized
ba

nd
w

id
th

(M
B/

s)

bluestore random write(4K) 16 cores

Reference
1. Cross core stage: https://github.com/ceph/ceph/pull/53537 and

https://github.com/ceph/ceph/pull/53934
2. Mempool shared counter: https://github.com/ceph/ceph/pull/53130
3. Make loading-obc concurrent: https://github.com/ceph/ceph/pull/55488
4. Alienstore submission: https://github.com/ceph/ceph/pull/55039
5. Optimize foreign copy: https://github.com/ceph/ceph/pull/54896
6. Reduce read amplification: https://github.com/ceph/ceph/pull/57787
7. Enlarge cache size: https://github.com/ceph/ceph/pull/55188
8. Crimson and alien threads policy: https://github.com/ceph/ceph/pull/55767
9. multi-core crimson messenger: https://github.com/ceph/ceph/pull/51916

14

Thanks!

Q & A

