

Trends in Matching NVM Technology to the Right Application

Presenter

Jianjun Luo Professor, Hangzhou Dianzi University

©2024 Conference Concepts, Inc. All Rights Reserved

(BIO)

- Jianjun (Jerome) Luo is a professor at Hangzhou Dianzi University in China.
- I founded and served as Chairman of Sage Microelectronics, a company specializing in integrated circuits and solutions for digital storage and data security applications. Prior to establishing Sage Microelectronics, I was the Director of R&D at Initio Corporation in San Jose and Eastcom in China. With over 30 years of experience in communication and storage IC design, I brought extensive expertise to my roles.
- I earned a PhD in semiconductor technology from Zhejiang University in China, a Master's in Microelectronics from the Hangzhou Institute of Electronics Engineering, and a Bachelor's in Electronics Engineering from Shanghai Jiaotong University.
- E-mail: Jianjun.Luo@HDU.edu.cn

Data Storage facing Challenges

① Data Volume → Exploring

③ High Desnity vs. High Reliability → Conflicting

② High Performance Computing → Extreme faster

④ Data Encryption/Decryption → Emerging problems

Emerging Memories

©2024 Conference Concepts, Inc. All Rights Reserved

- □ After 28nm nodes, RRAM is one of the main embedded memory solutions in next-gen SOC.
- □ Many manufacturers have announced mass production.

Outstanding advantages in embedded memory and neuromorphic computing

Practicing in RRAM projects

PCIE-SAS/SATA HBA Card in Mass Production

Practicing in RRAM projects

Interface: PCIe Gen3.0 x 8Lane SATA 3.0 x 16 Port performance: 800K IOPS (4K RR) ; 6500MB/s (1MB SR) Host protocol : AHCI 1.3.1 Embedded Encryption: AES/SM4 OS: Win10, UBUNTU Linux, CentOS, KylinOS, UOS Connector: 4x4 SFF-8643 Formfactor: 167.65 mm x 68.90 mm Power Consumption: 3.5W

RRAM Challenges

RRAM LRS HRS SET LRS LRS Gurrent HRS HRS 0 Voltage RLow R_{High} 1k SET: 1.5V 25 °C RESET: -1.4V 100 10² 10³ 100 104 105 10¹ 106 Number of switching cycle

Memory Window

(a)

Resistance (KΩ)

10¹

10²

Challenges :

- Current on/off ratio is still small
- The effect of IR drop needed to be reduced
- Switch voltage is pretty high
- Uniformity and Reliability needed to be improved
- Optimizing power consumption and retention simultaneously.
- Universal selector for ultra-high density 3D integration

Challenge of SOT-MRAM

• Theoretical predicted Fast write speed of SOT-MRAM

Fail rate during write cycle

 Accurate and clear boundary of different Crystal plane and crystal orientation Nanoscale Res Lett

• Field free switching of SOT-MRAM

• Reduced write latency and power consumption IEDM20-229

• High resolution etch

IEDM20-516

©2024 Conference Concepts, Inc. All Rights Reserved

Thanks

