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Memory Wall Problem in the Client
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AI On Device: LLM Inference on Client Devices
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Size (Llama2 7B model size is 14GB) 

In today’s architecture, significant portion of weights need to reside on GPU VRAM

On client devices, GPUs have limited VRAM capacity (typically 4 to 16 GB)

Increasing VRAM for inference on the client is economically infeasible

8 GB GDDR6 VRAM



LLM Architecture
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Embedding layer Attention Layer MLP Layer

20% 8% 72%

Contribution of Layers towards the size of Model

The number of parameters in Gemma 2B : 2.51 billion.

Each parameter is of the type FP16 ( half – precision).

Sparse



Partially Reside LLM on VRAM
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Each LLM varies in the percentage composition of its layer components.

Based on the layer composition, we can keep some part of the LLM resident on the GPU VRAM.

Example: In Gemma 2B parameter model, keep 28% (20% of embedding layer (Emb.) and 8% of 
attention layer (Attn.) resident on the GPU and load 72% of MLP layer (non-resident) on demand.
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LLM loading from the NVMe device
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Alternate architecture that leverages Flash
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Can we stream parameters from flash memory into VRAM while achieving acceptable inference?

Several categories of LLMs exhibit a high degree of sparsity.
Can we leverage this to selectively load parameters to avoid redundant computations? 

LRP (Low Rank Predictor): Predict which neurons will remain active 

and which ones will be zero; we then omit the zeroed-out neurons.

Row Column Bundling: Clustering the up and down projection 

neurons. This will help in reducing number of reads from the SSD. 
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Can we co optimize the LLM and drive architecture? 



Summary
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Enabled Gemma to run on 4GB GPU VRAM machine by detecting sparsity using LRP.

Reduced data load time by a factor of 3 using XNVMe.

Integration of staging and prediction algorithm with XNVMe load/store.

Upcoming explorations
Train LRP on larger datasets to get enhanced accuracy.

Work on larger LLMs – as an example Llama2 7B model with ReLU activations with 90% sparsity.

Apply windowing techniques to load parameters only for recent tokens.
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