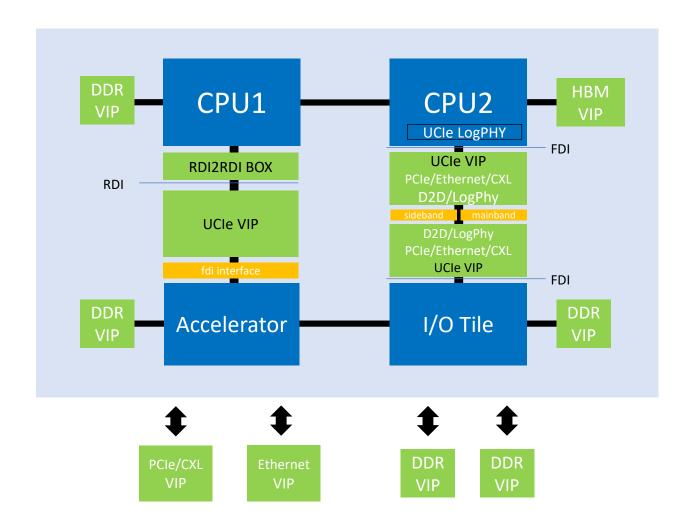
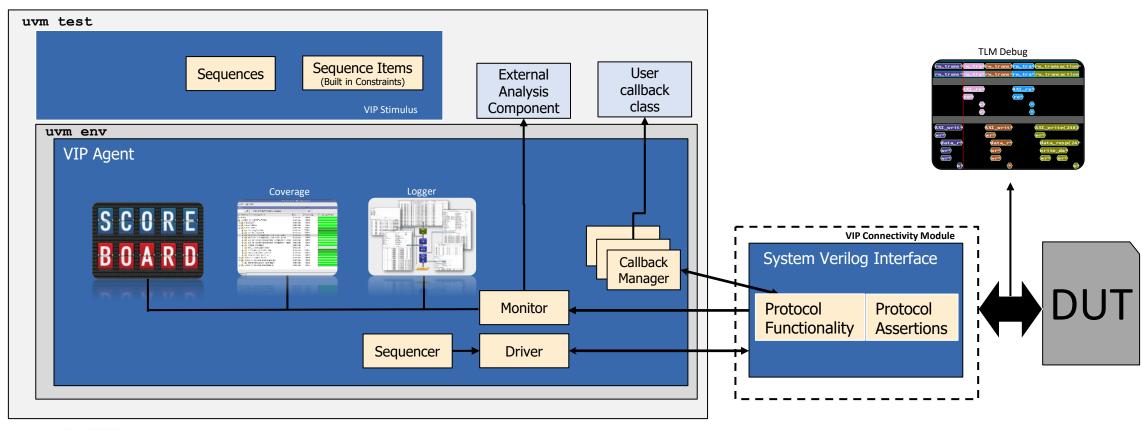
Verification Challenges and Solutions for Multi-Die Systems

Prashant Dixit
Senior Engineering Manager
Siemens EDA



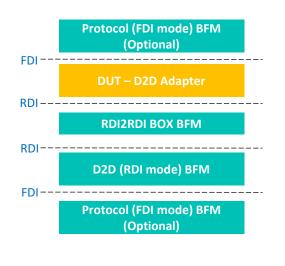
Agenda

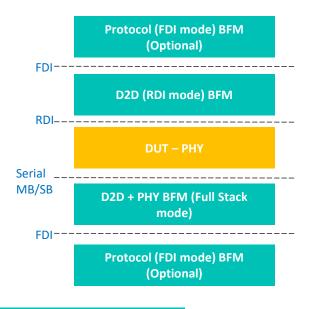
Typical Functional Verification Solution
Challenges
Verification IP
Verification Workflow
Automatic testbench generation
Verification Plan and Stimuli Compliance Test Suite SIG compliance
Verification IQ: Regression and coverage analysis
Protocol Checks
Debug: Trackers and Protocol Aware Debug
Summary

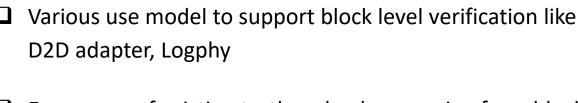


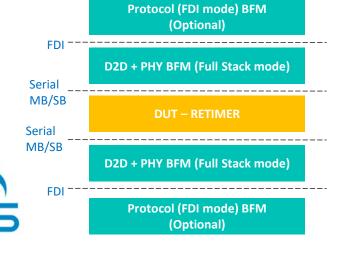
Multi-die SoC

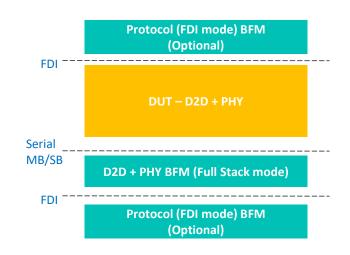
Typical Functional Verification Solution

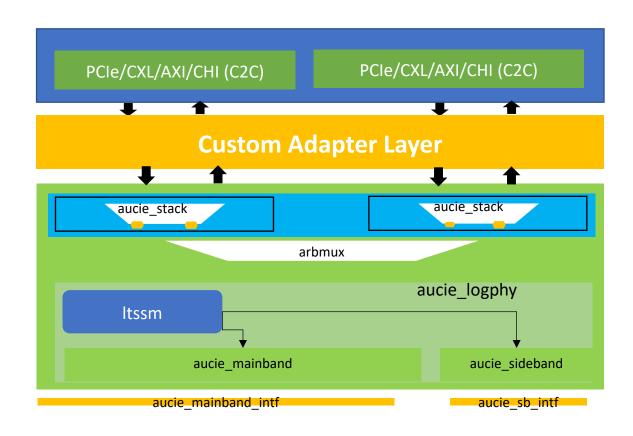



Challenges


Transition from block-level to system-level verification
Update in the functionality, newer versions of products – changing the protocol layer
Usability ☐ useful APIs to achieve the desired scenarios ☐ common use cases to corner cases
Controllability ☐ traffic flowing from top layer to pin interface ☐ error injection testing ☐ Bypass initialization at each layer and each state of LTSM ☐ Blocking and non-blocking mode of txn ☐ Txn monitoring and scoreboarding
System-level analysis like bandwidth, throughput measurement, benchmarking
UVM Register Adapter Layer with model
Simulation to emulation and even prototyping scope


Block to subsystem to multi-die





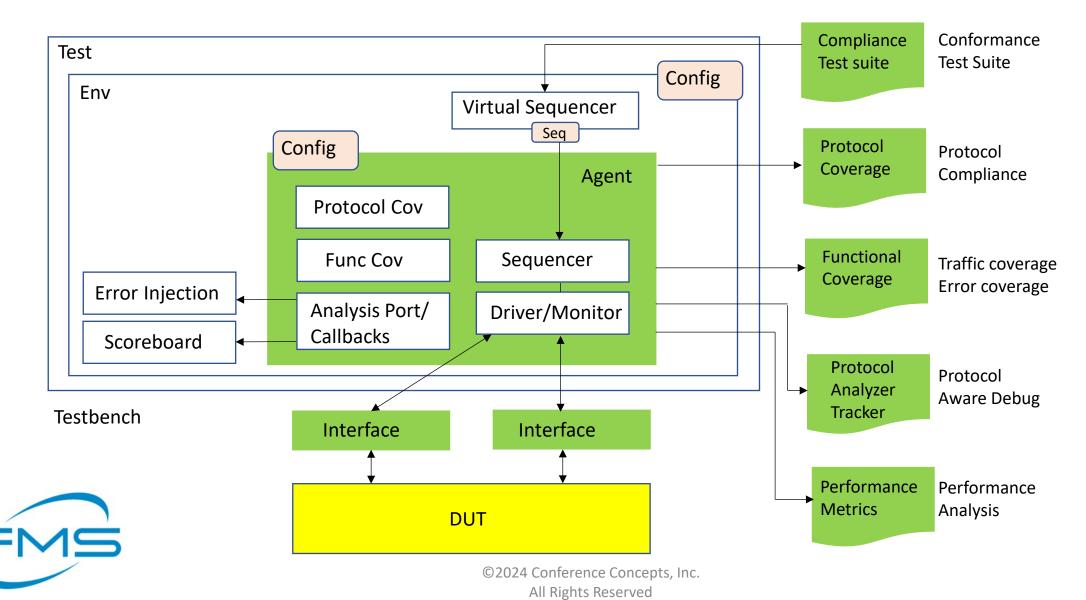
- ☐ Easy reuse of existing testbench when moving from block-level to subsystem and multi-die environments
- ☐ Utilizing the existing infrastructure of block level in subsystem and multi-die level verification environment

Common custom adapter layer

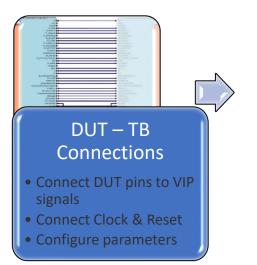
- Seamless integration of various protocol layer like PCIe, CXL or streaming protocols like AXI, CHI etc. with or without CXS/C2C
 - ☐ PCIe/CXL-UCIe
 - ☐ CHI-CXL-CXS-UCIe
 - ☐ CHI-C2C-UCle
 - ☐ AXI-C2C-UCle
- Easy migration of one to other using common adapter and adaptable higher layer stimulus using common APIs with no changes.
- ☐ Enables the reuse of various test related infrastructures (like regression suite, compliance test suites) of respective protocol layers over the UCle using the set of common APIs.

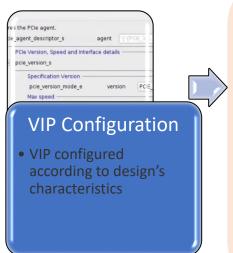
Usability: Ease of Use

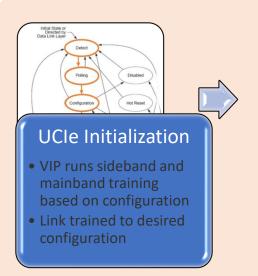

- ☐ Only two data classes : Flit and Sideband packet
- ☐ Randomize flits, sideband packet with built in constraints
- ☐ Total and direct control on each field
- ☐ BFMs D2D handles sequence and CRC generation
- ☐ Built-in APIs for various operations
 - ☐ Dynamic BFM behaviour variations
 - ☐ Sending desired flits and sideband packets
 - ☐ Entry/Exit APIs for cold reset
 - ☐ Entry/Exit APIs for all LSM states

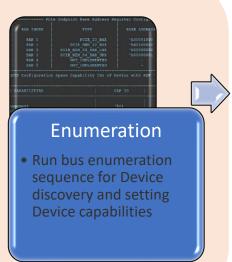

Controllability: Full Control

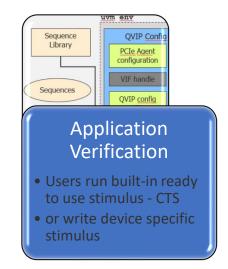
- ☐ Comprehensive callbacks to control the traffic flowing through various layers and components which enables
 - scoreboarding
 - performance monitoring
 - error injection
- ☐ User traffic injection
- ☐ Built-in APIs for various operations
 - ☐ LTSM transition
 - pause/stall LTSM
 - ☐ timeout scenarios

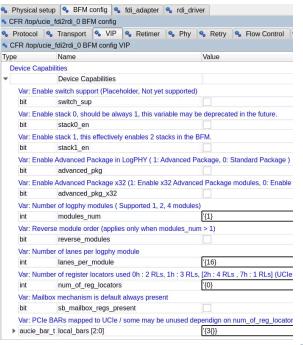


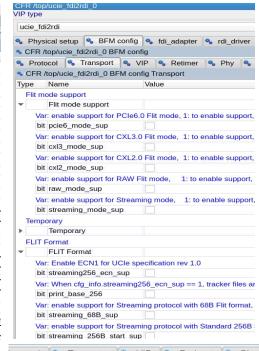


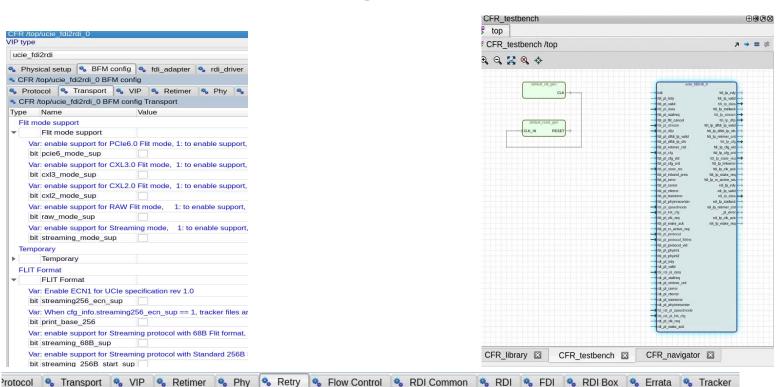

Verification IP

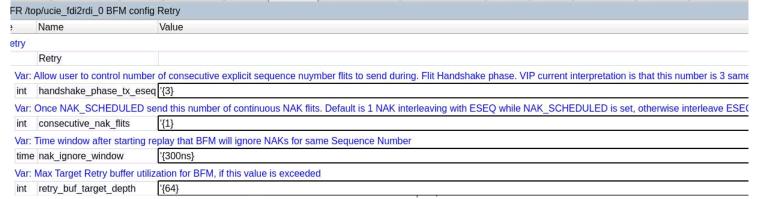



Verification Workflow






Getting Started possible in hours

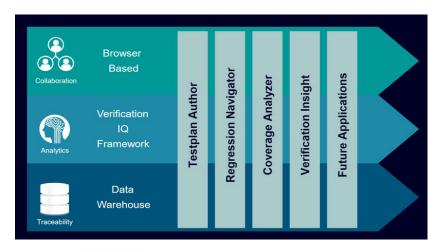


Automatic UVM testbench generation

Verification Plan with Stimuli

- ☐ Compliance Test Suite
 - ☐ Exhaustive and ready to use test suite
 - ☐ Covers all layers : Protocol, D2D adapter, logphy
 - ☐ Covers all interfaces : FDI, RDI, mainband, sideband
 - ☐ Config Space, LTSSM, sideband packets, retry, parity, parameter exchange
 - ☐ Multi-module, multi-protocol
 - ☐ Power Management
 - ☐ Error injection scenarios for various errors
 - ☐ Various resets
 - ☐ Started on Security IDE, TDISP, SPDM/CMA, DOE, KM
 - ☐ GUI based tool (VIQ) to enable feature/layer wise selection and run stimuli

Stimuli


- ☐ SIG compliance suite
 - ☐ As per UCle specs
 - ☐ PCle compliance
 - ☐ CXL compliance

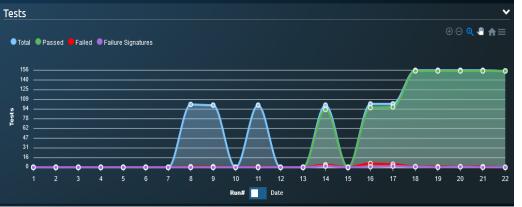
Verification IQ (VIQ)

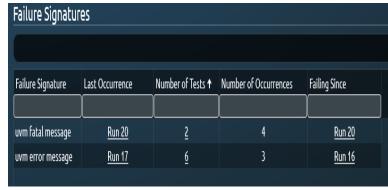
One tool to rule them all !!

- ☐ Unified support of multiple tools
- ☐ Collaborative tool with Analytical Navigation and Smart Visualization
- ☐ Test selection as per DUT feature support
- ☐ AI/ML based debug
 - ☐ Smart Regressions
 - ☐ Failure Predictors
 - ☐ Smoke test predictors
 - ☐ Accelerate Coverage Hole Debug

VIQ – Test Selection & analysis

#	Section	Coverage %
- 1	Parity	100.00%
▶ 1.1	aucie_uvm_err_inject_parity_seq	100.00%
▶ 1.2	aucie_uvm_enable_parity_seq	100.00%
2	Sideband	95.00%
	Parameter Exchange	83.33%
4	Retry	100.00%
▶ 4.1	aucie_uvm_rand_flit_replay_seq	100.00%
▶ 4.2	aucie_uvm_ack_nak_ignore_seq	100.00%
▶ 4.3	aucie_uvm_nak_rule0_seq	100.00%
▶ 4.4	aucie_uvm_nak_rule2_seq	100.00%
▶ 4.5	aucie_uvm_seq_num0_acknak_seq	100.00%
▶ 4.6	aucie_uvm_nop_nak_timing_seq	100.00%
▶ 4.7	aucie_uvm_retimer_stall_seq	100.00%
5	LTSSM	98.00%
▶ 5.1	SBINIT	100.00%
▶ 5.2	MBINIT	100.00%
▶ 5.3	MBTRAIN	100.00%
▼ 5.4	PHYRETRAIN	88.00%
▶ 5.4.1	aucie_uvm_adapter_init_phy_retrain_seq	80.00%
▶ 5.4.2	aucie_uvm_config_retrain_seq	100.00%
▶ 5.4.3	aucie_uvm_multi_config_speed_change_seq	100.00%
▶ 5.4.4	aucie_uvm_phy_init_phy_retrain_seq	80.00%
▶ 5.4.5	aucie_uvm_phy_die_init_phy_retrain_seq	80.00%
▶ 5.5	PM Flow	100.00%
▶ 5.6	Miscellaneous	100.00%
6	Config Space	100.00%
▼ 6.1	UCIe Link DVSEC	100.00%
▶ 6.1.1	aucie_uvm_check_ro_reg_dvsec_seq	100.00%
▶ 6.1.2	aucie_uvm_dvsec_default_reg_values_seq	100.00%
▶ 6.1.3	aucie_uvm_dvsec_rsvd_chk_seq	100.00%
▶ 6.1.4	aucie_uvm_dvsec_cap_desc_chk_seq	100.00%
	aucie_uvm_dvsec_link_cap_chk_seq	100.00%
▶ 6.1.6	aucie_uvm_dvsec_random_wr_rd_seq	100.00%
▶ 6.1.7	aucie_uvm_cfg_sp_raw_mode_and_adv_pkt_enable_seq	100.00%
▶ 6.1.8	aucie_uvm_link_status_change_seq	100.00%





VIQ – Regression Analysis

- ☐ Quick summary for regression run
- ☐ Result analysis and incremental run
- ☐ Failure signature detection

VIQ – Coverage Analysis

- ☐ Hole analysis
- ☐ Heatmaps
- ☐ Bin distribution

Protocol Checks

- ☐ Exhaustive set of protocol checks (~500)
 - ☐ FDI, RDI, Logphy, Config Space
 - Parameter Negotiation
 - □ PCIe, CXL and AXI checks (~3000)
- ☐ Coverage of protocol checks
 - make sures that all the protocol scenarios has been exercised without violation


```
AUCIE ERROR 1US PM HANDSHAKE,
AUCIE ERROR FLIT CRC,
AUCIE ERROR RX SEQ NUMO
AUCIE ERROR RX INVALID SEO NUM,
AUCIE_ERROR_REPLAY_TIMEOUT,
AUCIE REPLAY TIMEOUT,
AUCIE_ESEQ_HANDSHAKE_TIMEOUT,
AUCIE ERROR UR DATA 1,
AUCIE ERROR DVSEC OFFSET,
AUCIE ERROR NON IDLE EXPLICIT SEQ RX,
AUCIE ERROR BAD SEQ NUMBER,
AUCIE ERROR FLIT CRC WAIT NAK,
AUCIE ERROR INVALID SEQ NUM WAIT NAK,
AUCIE SCHEDULE REPLAY,
AUCIE ERROR DUPLICATE SEQ,
AUCIE NAK SCHEDULE 1,
AUCIE ACK SCHEDULE 1,
AUCIE FLIT DISCARD 0,
AUCIE_ERROR_NAK_RECEIVED
AUCIE ERROR INVALID STACK ID,
AUCIE ERROR RX PARITY,
AUCIE PARAM EXCHANGE TIMEOUT,
AUCIE ERROR CP PARITY,
AUCIE_ERROR_DP_PARITY,
AUCIE ERROR SRCID,
AUCIE_ERROR_DSTID,
AUCIE_ERROR_SRC_DST_ID1,
AUCIE ERROR SRC DST ID2,
AUCIE ERROR SRC DST ID3,
AUCIE ERROR SRC DST ID4,
AUCIE_ERROR_VALID_SIGNAL,
AUCIE_LTSSM_TIMEOUT_ERROR,
AUCIE_LFSR_PATTERN_CHECK,
AUCIE_WARN_ERROR_READ_CFGSB,
AUCIE ERROR NO EZE CREDITS,
AUCIE ERROR EZE CREDITS EXEEDED,
AUCIE ERROR E2E INVALID MSG INFO,
AUCIE INVALID SB ADDR RL,
AUCIE ERR CONSECUTIVE ACKNAK,
AUCIE ERROR SB OPCODE INVALID,
AUCIE ERROR SB FIELD INVALID,
AUCIE_ERROR_SB_MSG_INFO_INVALID,
AUCIE_ERROR_FLIT_FIELD_ERR,
AUCIE ERROR MBINIT PARAMS,
AUCIE ERROR FDI RDI SB PAYLOAD SIZE,
AUCIE ERROR CREDIT MISMATCH RDI,
AUCIE ERROR CREDIT MISMATCH FDI,
AUCIE ERROR CREDIT UNDERFLOW RDI,
AUCIE ERROR CREDIT UNDERFLOW FDI,
AUCIE ERROR CREDIT OVERFLOW RDI,
AUCIE ERROR CREDIT OVERFLOW FDI,
AUCIE ERROR NO RESERVED SDID FDI,
AUCIE ERROR RSVD BE REQ,
AUCIE ERROR RSVD_BE_CPL,
QUCIE ERROR NOP NAK WAIT,
AUCIE ERROR INVALID LATENCY AVG.
AUCIE ERROR INVALID LATENCY MED,
AUCIE ERROR INVALID LATENCY HIGH,
AUCIE ERROR INVALID LATENCY LOW,
AUCIE ERROR INVALID PERFORMANCE TX AVG,
AUCIE ERROR INVALID PERFORMANCE TX MED,
AUCIE_ERROR_INVALID_PERFORMANCE_TX_HIGH,
AUCIE ERROR INVALID PERFORMANCE TX LOW,
AUCIE_ERROR_INVALID_PERFORMANCE_TX_CALCULATED,
AUCIE_ERROR_INVALID_PERFORMANCE_RX_AVG,
AUCIE ERROR INVALID PERFORMANCE RX MED, AUCIE ERROR INVALID PERFORMANCE RX HIGH,
AUCIE ERROR INVALID PERFORMANCE RX LOW,
AUCIE_ERROR_INVALID_PERFORMANCE_RX_CALCULATED,
AUCIE ERROR STACK ROUND ROBIN,
AUCIE RETIMER STALL TIMEOUT,
AUCIE PARAM EXCHANGE FAIL,
AUCIE FDI RETRAIN ERROR.
AUCIE_ERROR_RUNTIME_RECALIBRATION,
AUCIE ERROR PCIE CAP EN,
```

Debug Tools

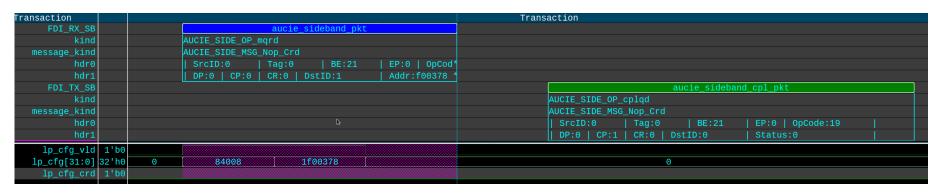
- ☐ Debug Messages
- ☐ Trackers and transcript
- ☐ Protocol Aware Debug

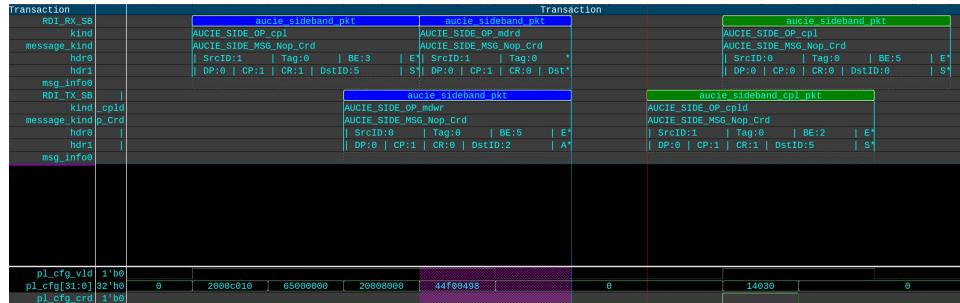
Debug messages

```
uvm test top.env0.bfm1.bfm1 log [AUCIE INF] aucie module::exit cold reset()
uvm test top.env0.bfm1.bfm1 log [AUCIE INF] Starting logphy
uvm test top.env0.bfm1.bfm1 log [AUCIE INF] Starting module : 3
uvm test top.env0.bfm1.bfm1 log [AUCIE INF] mode = AUCIE MODULE tx rx
uvm test top.env0.bfm1.bfm1 log [AUCIE INF] aucie module
uvm test top.env0.bfm1.bfm1 log [AUCIE INF] Starting sb deserializer
uvm test top.env0.bfml.bfml log [AUCIE INF] Starting module : 2
uvm test top.env0.bfm1.bfm1 log [AUCIE INF] mode = AUCIE MODULE tx rx
uvm test top.env0.bfm1.bfm1 log [AUCIE INF] aucie module
uvm test top.env0.bfm1.bfm1 log [AUCIE INF] Starting sb deserializer
uvm test top.env0.bfml.bfml log [AUCIE INF] Starting module : 1
uvm test top.env0.bfml.bfml log [AUCIE INF] mode = AUCIE MODULE tx rx
uvm test top.env0.bfm1.bfm1 log [AUCIE INF] aucie module
uvm test top.env0.bfm1.bfm1 log [AUCIE INF] Starting sb deserializer
uvm test top.env0.bfm1.bfm1 log [AUCIE INF] Starting module : 0
uvm test top.env0.bfm1.bfm1 log [AUCIE INF] mode = AUCIE MODULE tx rx
uvm test top.env0.bfm1.bfm1 log [AUCIE INF] aucie module
uvm test top.env0.bfm1.bfm1 log [AUCIE INF] Starting sb deserializer
```

```
uvm test top.env0.bfm2.bfm2 log [AUCIE INF] AVERY: ECN1: Advertising additional bits in {FinCap.Adapter}
uvm test top.env0.bfm2.bfm2 log [AUCIE INF]
                                                            cfg info.streaming 68B sup:
uvm test top.env0.bfm2.bfm2 log [AUCIE INF]
                                                            cfg info.streaming 256B end sup:
uvm test top.env0.bfm2.bfm2 log [AUCIE INF]
                                                            cfg info.streaming 256B start sup:
uvm test top.env0.bfm2.bfm2 log [AUCIE INF]
                                                            cfg info.streaming 256B lom w ob sup:
uvm test top.env0.bfm2.bfm2 log [AUCIE INF]
                                                            cfg info.streaming 256B lom no ob sup:
uvm test top.env0.bfm1.bfm1 log [AUCIE INF] AVERY: ECN1: Advertising additional bits in {FinCap.Adapter}
uvm test top.env0.bfm1.bfm1 log [AUCIE INF]
                                                            cfg info.streaming 68B sup:
uvm_test_top.env0.bfm1.bfm1_log [AUCIE_INF]
                                                            cfg_info.streaming_256B_end_sup:
uvm test top.env0.bfm1.bfm1 log [AUCIE INF]
                                                            cfg info.streaming 256B start sup:
uvm test top.env0.bfm1.bfm1 log [AUCIE INF]
                                                            cfg info.streaming 256B lom w ob sup:
uvm test top.env0.bfm1.bfm1 log [AUCIE INF]
                                                            cfg info.streaming 256B lom no ob sup: 1
uvm test top.env0.bfm1.bfm1 log [AUCIE INF] Received {AUCIE SIDE MSG AdvCap Adapter}
uvm test top.env0.bfml.bfml log [AUCIE INF] Received {AUCIE SIDE MSG AdvCap Adapter}
uvm test top.env0.bfm1.bfm1 log [AUCIE INF]
                                                             advCap.retimer en:
uvm test top.env0.bfm1.bfm1 log [AUCIE INF]
                                                             advCap.cxl lat opt fmt6 sup:
                                                             advCap.cxl lat opt fmt5 sup:
uvm test top.env0.bfm1.bfm1 log [AUCIE INF]
uvm test top.env0.bfm1.bfm1 log [AUCIE INF]
                                                             advCap.stack0 en:
uvm test top.env0.bfm1.bfm1 log [AUCIE INF]
                                                             advCap.stack1 en:
                                                             advCap.multi protocol en:
uvm test top.env0.bfm1.bfm1 log [AUCIE INF]
uvm test top.env0.bfm1.bfm1 log [AUCIE INF]
                                                             advCap.retry sup:
uvm test top.env0.bfm1.bfm1 log [AUCIE INF]
                                                             advCap.streaming mode sup:
uvm test top.env0.bfm1.bfm1 log [AUCIE INF]
                                                             advCap.pcie6 mode sup:
uvm test top.env0.bfm1.bfm1 log [AUCIE INF]
                                                             advCap.cxl3 mode sup:
uvm_test_top.env0.bfm1.bfm1_log [AUCIE INF]
                                                             advCap.cxl2 mode sup:
uvm test top.env0.bfm1.bfm1 log [AUCIE INF]
                                                             advCap.raw mode sup:
uvm test top.env0.bfm1.bfm1 log [AUCIE INF]
                                                             advCap.UP:
uvm test top.env0.bfm1.bfm1 log [AUCIE INF]
                                                             advCap.DP:
```

```
uvm_test_top.env0.bfm1.bfm1_log [AUCIE_INF] FDI BRINGUP PROCESS ENDS
uvm_test_top.env0.bfm1.bfm1_log [AUCIE_INF] STARTING FDI BRINGUP PROCESS
bfm2"(mod0): LTSSM go to AUCIE_LTSSM_RESET
uvm_test_top.env0.bfm2.bfm2_log [AUCIE_INF] FDI BRINGUP PROCESS ENDS
uvm_test_top.env0.bfm2.bfm2_log [AUCIE_INF] STARTING FDI BRINGUP PROCESS
```



Debug using trackers


- Visualize transactions in "spec" formats
 - Sideband Packets
 - FLITs, etc.
- Multiple trackers for each layer
 - FDI, RDI, D2D
 - Logphy
 - Correlated between layers and multi-protocol stacks (PCIe-UCIe), (CXL-UCIe), (AXI-UCIe) etc.
- conditional user annotations to pin-point transactions and bugs quickly

```
DP:1 | CP:0 | DstID:5 | MsgInfo:0
Data [63:32]: 00000000
  [3] PCIe Flit Mode: 0
  [4] Streaming: 1
     Multi Protocol Enable: 0
  [9] CXL LatOpt Fmt5: 0
  [10] CXL LatOpt Fmt6: 0
  [11] Retimer: 0
  [20:12] Retimer Credits: 'd1024
  [22] UP: 1
  [23] 68B Flit Format: 0
  [24] Standard 256B End Header Flit Format: 1
  [25] Standard 256B Start Header Flit Format: 0
  [26] Latency-Optimized 256B without Optional Bytes
  [27] Latency-Optimized 256B with Optional Bytes
  [28] Enhanced Multi Protocol Enable: 0
      Stack 0 Maximum Bandwidth Limit: 0
```


Protocol Aware Debug

Protocol Aware Debug (contd..)

Transaction			Tr	ansaction						
RDI_TX_MB	nop_flit		lp_data)	lp_data			
kind	AUCIE_FLIT_KIND_FMT3_PCIE	AUCIE_FLIT_KIND_FMT3_PCIE		AUCIE_FLIT_KIND_FMT3_PCIE			AUCIE_FLIT_KIND_FMT3_PCIE			
raw	0		Θ				Θ			
f2	0		Θ				Θ			
u	1c0000000000000000000000000000000000000	6770db34eb50aa543c86ac35e4f8ca4b*			k	7d817390184efd896f2ca63ce207a951				
raw_bytes_0_	0		79				9			
raw_bytes_1_	0		6a				83			
raw_bytes_2_	0	52 38 e8			С					
raw_bytes_3_	0					83				
raw_bytes_4_	0					66				
raw_bytes_251_	0		0				Θ			
raw_bytes_252_	0		f1				6e			
raw_bytes_253_	0	89				88 36 ca AUCIE_FLIT_KIND_FMT3_PCIE				
raw_bytes_254_	49	8f 49								
raw_bytes_255_	eb									
Flit_type	AUCIE_FLIT_KIND_FMT3_PCIE	AUCIE_FLIT_KIND_FMT3_PCIE								
Flit	NOP		Payload FLi	.t			Payload FL	it		
ack_nak	ACK		ESEQ				ACK			
seq_num	c		f				d			
STACK	0		0				0			
lp_valid 1'b1										
pl_trdy 1'b1										
lp_data[63:0] 3817d	0	eb49000000)* <mark>edaa45883e</mark> *	156ca74302	*6d85497aff*	498f89f100	9* <mark>476de8e426</mark>	* <mark>65de3dc2d5</mark> *	758cc4d861	
lp_data[63] 8'h75	0	eb	ed	1	6d	49	47	65	75	
lp_data[62] 8'h8c	0	49	aa	56	85	8f	6d	de	8c	
lp_data[61] 8'hc4	0		45	ca	49	89	e8	3d	C4	
lp_data[60] 8'hd8	0		88	74	7a	f1	e4	c2	d8	
lp_data[59] 8'h61	0		3e	30	ff	0	26	d5	61	
lp data[58] 8'h24	0		91	26	65	0	8a	1f	24	

Performance Measurement

- Performance summary log on Tx and Rx bus
- Configurable for a particular simulation window

TX PERFORMANCE SUMMARY

Performance TX AVG: 64032.080201 MB/s
Performance TX MED: 59733.333333 MB/s
Performance TX HIGH: 68266.666667 MB/s
Performance TX LOW: 59733.333333 MB/s

RX PERFORMANCE SUMMARY

Performance RX AVG: 63903.759398 MB/s
Performance RX MED: 68266.666667 MB/s
Performance RX HIGH: 68266.666667 MB/s
Performance RX LOW: 51200.000000 MB/s

Summary

- ☐ Automatic UVM-TB generation
- ☐ Compliance test suites (ready to use exhaustive stimulus)
- ☐ VIP controllability to hit corner case scenarios
- ☐ Usability for ease of use
- ☐ Debug tools
- ☐ Discussed features enabled our customers to verify the designs faster and achieve lesser time to market

Questions ??

Please visit booth # 1051 (Siemens) for more information

