

Dynamic Read Retry Method

—Achieving Near-Zero Read Retry for 3D NAND Flash Memory

Vic Ye

3D NAND Flash Memory

- Everywhere today: from mobile to data centers
 - By 2025, 3D NAND will consume over 95% of all NAND flash memory.
- 3D NAND Structure: high-density, large-capacity
 - Stacked layers increase
 - Multiple bits per cell technique, such as TLC (triple-level-cell)

Page Reading of TLC flash

- During page reading, a set of read voltages is added.
- Voltage levels are overlapped when flash ages or are subject to retention time and disturbance.

Read Retry Issue:

overlapped voltage levels require read retries for error correction.

Traditional Read Retry

- Read Retry Table (RRT)
 - Providing several sets of retry offsets
 - Each Set represents a normalized value of the read voltage.

CASE	R1	R2	R3	R4	R5	R6	R7
Set 1	0	0	0	0	0	0	0
Set 2	-3	6	8	10	9	4	8
Set 3	-16	-6	-5	-6	-6	1	8
Set 4	5	13	12	16	14	14	14
Set 5	-22	-11	-8	-9	-8	-2	-2
Set 6	6	2	4	0	3	-4	-8
Set 7	-12	-12	-11	-19	-16	-12	-10
Sat 8	10	1	2	2	5	Q	12

Each read retry requires a new page read operation.

More read retries cause poor read performance.

Traditional Read Retry under Latest Flash Chips 💳 MS

Green dotted circle: reliable read retry area

TRRM vs DRRM: The Number of Read Retry

Rigid, sequential retry method

How to decide the offset distance?

• 50% valid window overlap between two neighboring offset points

A Tailored RRT

How to eliminate layer variations of a 3D block?

- Read offset varies among layers of a 3D block, making a set of read offsets can only cover a few layers.
- Optimal read offset variations are relatively consistent.

Retry(Ri) = MRRT(Ri) + OVD(Ri)

Optimal Voltage Difference (OVD) table

- Recording the *deviation* of each layer's optimal read offset
- Making a set of read offsets covers all layers of the same block

Technique #3: A Proximity-Search

How to apply the read retry table?

- Syndrome value of LDPC (Low-Density Parity-Check code) is nearly linear with bit errors.
- Proximity-Search covers corner cases by using the syndrome value.

Retry(Ri) = MRRT(Ri) + OVD(Ri) + PSO(Ri)

Performance Evaluation: Synthetic Workloads

10

Reliability Analysis

The failure rate of read retry based on LDPC hard decoding, observed after retention of 10 days at 85°C

- Compared methods show poor reliability, certain retry techniques reach the failure rate over 40%.
- DRRM ensures a *zero failure rate* for *up to 8K P/E cycles*.

ASPLOS 2024

Thanks Q&A

Achieving Near-Zero Read Retry for 3D NAND Flash Memory

- Min Ye, Qiao Li, Yina Lv, Jie Zhang, Tianyu Ren,
- Daniel Wen, Tei-Wei Kuo, Chun Jason Xue