

FTL on the Host

Doug Dumitru
CTO WildFire Storage

doug@wildfire-storage.com

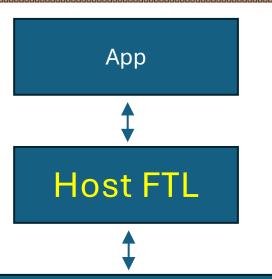
SSDs and Local Arrays

- This talk is about how you can optimize SSDs in local arrays.
- Specifically, you might want to ...
 - Have drive level redundancy.
 - Optimize the lifespan of your SSDs.
 - Optimize the performance of your Array.
 - Store more data.
- The best solution if you want all of these at the same time is to ...

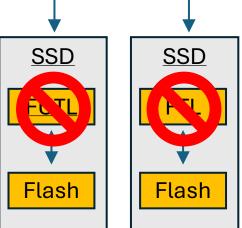
Use a Host FTL

What is a "Host FTL"

- A transparent software layer that creates a block device that your application uses.
 - No special coding.
 - File System, LVM, Virtuals, all just work.
- Sits below the application.
- Sits above RAID
- Linearizes writes, so RAID, and the SSDs get a linear write workload.
 - Linear write workloads are "better" for both parity RAID and for the SSDs.


A Host FTL is Better than the FTL in the SSD

- A pretty bold claim, but the host has more.
 - Resources
 - Time
- Most SSD FTLs are compromises
 - Insufficient RAM
 - Insufficient processor capabilities
 - Requirements for fast mount




FTL on the Host

RAID 6

Stock RAID with FTL in the SSDs

	Reads	Writes	
from App:	70	30	
after RAID 6:	+30x5 = 220	x 3 = 90	
to NAND Flash:	+90 = 310	x 2 = 180	

FTL on the Host

	Reads	Writes	
from App:	70	30	
after Host FTL:	+30x1 = 100	x 2 = 60	
after RAID 6:	100	x(8/6) = 80	
to NAND Flash:	100	80	

Flash

<u>Flash</u>

Flash

How can the overhead be so different

- Parity RAID hates random writes
 - RAID becomes an "IO Amplifier"
 - Writes are 2X 3X
 - Reads are 2X 10X or more
 - ... and this is before the SSD FTL
 - 2X writes
 - Each write needs a read (for GC)
- Trying to maintain high write IOPS is impossible
 - 1M IOPS can become 8M+ total OPs across the bus.
 - ... for an 8 drive array

Host FTLs are just getting started

- A host FTL can compress blocks
 - Compressed blocks use less space.
 - Less space is lower "write amp"
 - Less space is less space.
 - Many workloads end up with under 1:1 write amp even after parity RAID

Where the FTL is Located Matters: --- A LOT

	Stock RAID-6	Host FTL			
	Stock hald-6	0% Comp	25% Comp	60% Comp	
From App	70/30				
After Comp			52/22	28/12	
FTL Write Amp		2:1	1.5:1	1.2:1	
From FTL		100/60	63/33	30/14	
From RAID	220/90	100/80	63/44	30/19	
SSD FTL WA	2:1	1:1			
NAND IOs	310/180	100/80	63/44	30/19	
Array Writes Per Day	0.4	1.0	1.9	3.8	

Where the FTL is Located Matters: --- Even RAID-5 gets a huge boost

	Stock	Stock	Host FTL			
RAID-5 (fast)	RAID-5 (safe)	0%	25%	60%		
	(1431)	(3a16)	Comp	Comp	Comp	
From App	70/30					
After Comp				52/22	28/12	
FTL Write Amp			2:1	1.5:1	1.2:1	
From FTL			100/60	63/33	30/14	
From RAID	130/60	250/60	100/69	63/38	30/16	
SSD FTL WA	2:1	2:1	1:1			
NAND IOs	190/120	310/120	100/69	63/38	30/16	
Array Writes Per Day	0.6	0.6	1.0	1.9	4.5	

So can a host FTL be fast

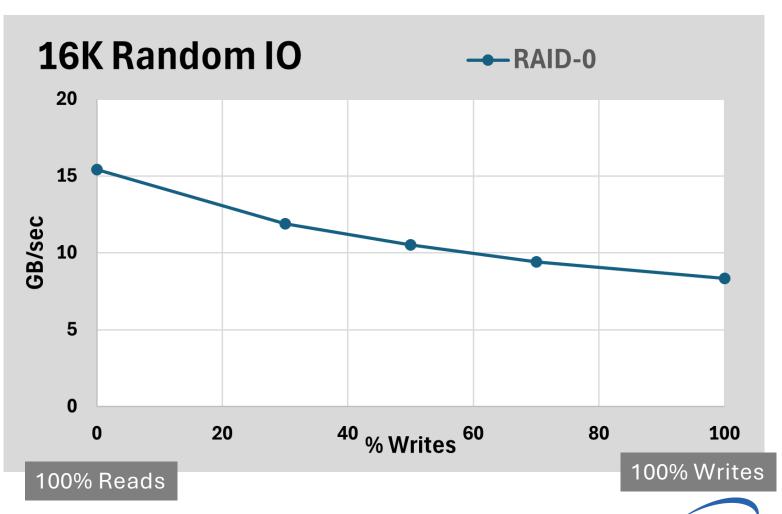
- It turns out, "blindingly so".
 - Lower write amp and less data is less traffic to and from the SSDs.
- Write transfers are longer
 - This is less bus chatter which means fewer system interrupts and their associated overhead.
- To see how fast, follow along ...

So on to some Benchmarks

- All of these benchmarks are run on an AWS i4i.metal instance
 - "Bare Metal" rentable server in AWS
 - No hypervisor
 - Direct, actual NVMe SSDs
 - CPU
 - Dual Intel 8357C (Ice Lake) Scalable Xeon Platinum
 - 32 cores x 2 (HT) x 2 (dual socket)
 - Memory
 - 1 TB
 - SSD
 - 8 x 3750 GB NVMe (presumably gen-3) + EBS boot volume
 - Cost
 - < \$1.20/hour spot if you shop regions

Why Benchmark on AWS

- Easy and Low Cost
- Results can be reproduced by anyone
- Less appearance of "cheating on the test" with unrealistic hardware.


... So on to the benchmarks

Host FTL joins the Performance Race

- All tests are:
 - FIO
 - 16K random blocks
 - Jobs=120
 - Queue=16
- RHEL 9.3
 - Stock Kernel
 - Rocky Linux
- 100/0, 70/30, 50/50 30/70, 0/100 RW

Host FTLs in Linux

- Nothing In-Box
- Actual Host FTL
 - Enterprise Compressed RAID WildFire Storage
- Almost Host FTL
 - XDP RAIDplus Pliops
 - ... uses co-processor board
- Not a Host FTL
 - Xinnor, GRAID, MD-raid, Megaraid
 - VDO Redhat

When to use a Host FTL

- Replace RAID-0
 - Faster, longer life, drive redundancy
- Replace RAID-10
 - Faster, larger, longer life
- Replace RAID-5/6
 - Stupidly faster, longer life.

Thank you

... questions

Enterprise Compressed RAID

Visit us in booth 1050

WildFire Storage

https://wildfire-storage.com

sales@wildfire-storage.com

+1 610 237-2000

+1 888 473-7866

