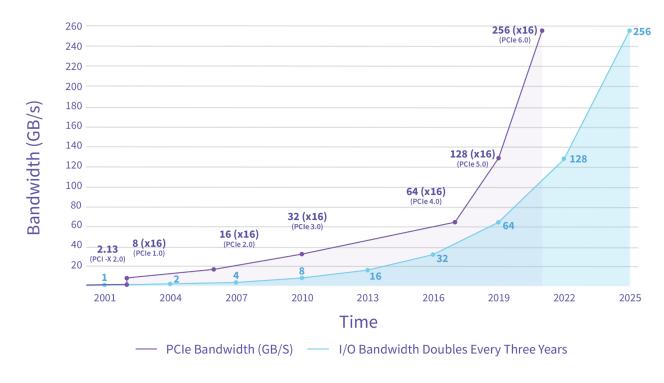
PCle® 6.0 SSDs: Powering the Future of Compute and Storage SSD Technology

Nicholas Snow, Product Manager - Enterprise KIOXIA SSDT-102-1

Table of Contents



- PCIe® Technology Background and Generational Improvements
- PCIe 6.0 Improvements and Technical Considerations
- PCIe 6.0 SSD Ramp
- Use Case: SSD Consolidation and Total Cost of Ownership (TCO) Improvement
- Conclusion

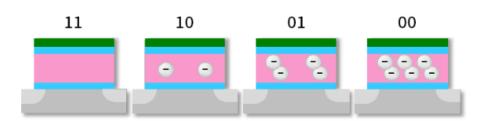
Quick PCle® Technology Background

- PCI Express®, born out of the need to move beyond parallel bus limitations, introduced in 2003
- PCIe bandwidth has grown significantly to meet the needs of modern compute hardware and applications
- NVMe® specification first ratified in 2011
- Major drive form factors: AIC, 2.5"¹, M.2
- First KIOXIA NVMe SSDs on major PCIe versions
 - PCIe 3.0: CM5 Series announced in 2017
 - PCIe 4.0: CM6 Series announced in 2020
 - PCIe 5.0: CM7 Series announced in 2022
 - PCle 6.0: Stay tuned!

Source: PCI-SIG Press Release, Jan 11, 2022

PCIe[®] Generational Improvements

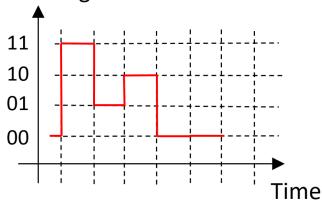
PCIe Generation	Benefits and Changes	NVMe [®] Version	Predominate Drive Form Factors	KIOXIA CD8P Bics Flash
PCIe 3.0	-Link Equalization -128b/130b Encoding for 20% Overhead Improvement	1.0 1.2	Add-in Card 2.5" ¹ M.2	Data Center NVMe"SSD
PCIe 4.0	-Reduced Latency -Lane Margining -Specs for Retimers and Redrivers	1.3 1.4	2.5" M.2 E1.L E1.S	KI ® Enterpr
PCIe 5.0	-CXL [®] Support -Various Physical Layer Improvements	1.4 2.0	E3.S/E3.L 2.5" E1.S/E1.L	KIOXIA Data Center


PCIe[®] 6.0 Technical Improvements and Device Enablement

Improvements:

- Overall Bandwidth Doubles from 32GT/s to 64GT/s
- Pulse Amplitude Modulation 4 (PAM4)
- Forward Error Correction and Cyclic Redundancy Check (CRC)
- Flow Control Unit (FLIT): Fixed Flow Control Unit Size
- L0p and Dynamic Lane Width Changes for Improved Power Efficiency

MLC NAND: Two bits of data are stored per memory cell



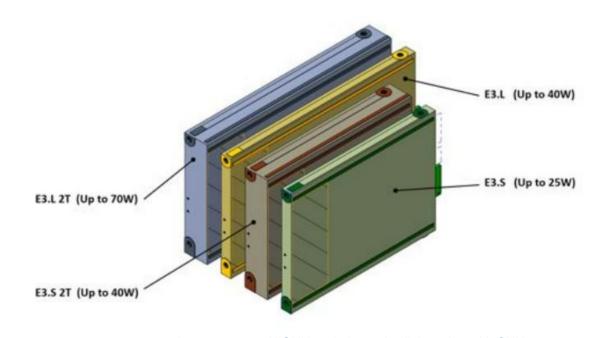
Enables:

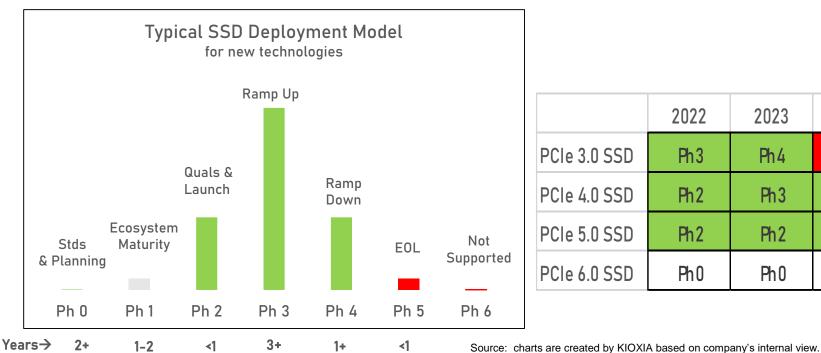
- Higher Performance NVMe[™] SSDs
- CXL® 3.0
- 800 Gigabit Ethernet Networking
- Faster Artificial Intelligence and High Performance Computing Processing

PAM4: Two bits of data are stored per clock

PCIe® 6.0 SSD Considerations

- Enterprise and Datacenter Standard Form Factor (EDSFF) E3.S or E3.L will be required for signal integrity and performance
- Increased power means increased heat dissipation requirements
 - Enhanced chassis cooling
 - Alternative drive heat sink strategies
- Potential for lane count reduction
 - L0p dynamic lane reduction
 - Gen6 x2 Link = Gen5 x4 Link
- Full Gen6 speeds realized with new system on chips (SoCs), DDR5 support, and higher NAND interface speeds
- Queue depth >512 needed for maximum performance




Image source: KIOXIA website and collaboration with SNIA

Industry consolidation around 1T thickness for NAND devices

PCIe[®] 6.0 SSD Ramp in the Market

KIOXIA's View

	2022	2023	2024	2025	2026	2027	2028
PCIe 3.0 SSD	Ph3	Ph4	Ph 5	Ph6	Ph6	Ph6	Ph6
PCIe 4.0 SSD	Ph2	Ph3	Ph3	Ph4	Ph4	Ph4	Ph4
PCIe 5.0 SSD	Ph2	Ph2	Ph3	Ph3	Ph3	Ph3	Ph3
PCIe 6.0 SSD	Ph0	Ph 0	Ph0	Ph1	Ph1	Ph1	Ph2

- Customer qualifications take anywhere from 3 months to almost 2 years depending on end use complexity
- · New major technology transitions always add to qualification times due to "growing pains"
- True ramp and volume of PCle 6.0 won't take place until 2028¹

PCle® 6.0: SSD Consolidation Enablement and Greater TCO

Consider an application that needs ~500 terabyte (TB) of compute storage

Metric (PCIe generation/capacity)	PCIe 5.0 w/ 7.68 TB Drives	PCle 5.0 w/ 15.36 TB Drives	PCIe 6.0 w/ 15.36 TB drives
# of Drives	64	32	32
# of Servers	2	1	1
Raw Drive SR	896 gigabytes per second (GB/s)	448 GB/s	896 GB/s
Raw Drive SW	640 GB/s	320 GB/s	704 GB/s
Raw Drive RR	224M IOPS ¹	112M IOPS	224M IOPS
Raw Drive RW	25.6M IOPS	12.8M IOPS	24M IOPS
Total Drive Power	1,600 watts	800 watts	1,280 watts

PCle 6.0 SSDs could reduce overall drive and server count by half without compromising performance or power consumption

Key Takeaways

- New levels of PCIe[®] 6.0 performance bring higher power consumption, thermal dissipation requirements, and form factor consideration
- Likely application optimization needed to fully utilize PCIe[®] 6.0 saturation
- PAM4 and new signal integrity challenges
- New and growing storage related component ecosystem
- Expect slower ramp for PCle® 6.0 NVMe™ SSDs vs PCle® 5.0

Thank you

Please visit our booth, #307

Demos:

- Accelerating Artificial Intelligence (AI)
 Workloads (BAM, AiSAQ)
- Optical SSD
- RAID Offload
- Live Migration
- CXL®
- BiCS FLASH[™] Generation
 8 3D Flash Memory
- Automotive Solutions

