

Dynamic data loading from Flash to DRAM for LLM inference

Licheng Xue 2024.08.06

GPUs and HBM in the AI Era: Driving Innovation and Performance!

High-Speed Data Storage and Access

- Fast Reading of Training Data
- Storing Intermediate Results and Checkpoints

Accelerating the Inference Process

- Model Loading
- Real-Time Data Processing

GPUDirect Storage

- Avoid extra copies through a bounce buffer in the CPU's memory
- Move data on a direct path into or out of GPU memory

Traditional I/O

GPU direct I/O

Inference from Cloud to Edge

Inference at the Edge

- Improved privacy and security
- Eliminating network latency
- Improved scalability and reduced cost
- Reduced connectivity dependency
- Personalization

Challenge

Transformer-based LLMs are significantly larger in size, need too much memory

Memory vs Storage

Device	Memory			Storage		
	Size	Bandwidth	Price	Size	Bandwidth	Price
Cloud	1TB	1.2TB/s	\$15,000	4*3.84TB	56GB/s	\$1,600
Edge	64GB	200GB/s	\$1,200	4TB	14GB/s	\$400
End	16GB	10GB/s	\$50	1TB	7GB/s	\$100

Minimum memory usage of LLMs inference

Model	Parameter	Full precision	16-bit
LLaMA 3	8B	32GB	16GB
ChatGLM	6B	24GB	12GB
Qwen	7B	28GB	14GB
Mixtral	8x7B	188GB	87GB

FFN

Low Freq

Inference with limited memory

LLM inference's memory mainly comes from weight storage and KV cache.

LLM INFERENCE WEIGHT SIZE

OKV

Converting the model's weights from higher precision to lower precision.

Model Quantization

Process the model layer-bylayer to keep only the active layer in memory. Gradient Checkpointing: Save memory by not storing activations for all layers. **Memory Optimization** Techniques

Inference optimization

11

N K

Retrain the model using MQA

or GQA. or use flash attention

and page attention, which do

not require training, to speed

Model Optimization

Reducing the batch size can

Batch Size Reduction

lower memory usage

This trade-off can be

constraint.

beneficial if memory is a

up reasoning.

Pruning removes less important weights or neurons in the model.

Leveraging sparsity in model

memory footprint and speed

weights can reduce the

Representations

up inference

Sparse

•••

Model Pruning

Training a smaller model to replicate the behavior of a larger model.

Distillation

Hard language-modeling tasks often include easier subtasks that can be solved well by more efficient lightweight models

Speculative Decoding

MHA Low Freq

Inference with Computational Storage

Computational Storage Drive

High-frequency weights are saved in DRAM, and lowfrequency weights are saved in SSD. The weights in SSD are dynamically calculated by CSD to predict the weights needed for inference and loaded into the DRAM of SSD.

QKV weight

- [déjà vu] More than 80% of the attention heads become inactive. Choose the head that stands out. Where is the stands out head?
- [FlashAttention] Attention matrix is divided into small blocks and processed block by block.

FFN weight

- [déjà vu] The sparsity rate of the activation state output by the MLP layer is 95%, that is, more than 95% of the MLP parameters can be excluded from reasoning.
- [LLM in Flash] Use a two-layer MLP to predict which neurons will activate. During inference, dynamically load the parameters corresponding to the predicted activated neurons.

Inference with Computational Storage

Train a small model to predict the LLM inference weight access behavior

- Less than ~1/3 high-frequency weight resides in the DRAM of the GPU/NPU
- Other low-frequency weight exchange between GPU/NPU DRAM and SSD
- 0.1B~0.35B small model predicts the data should be pre loaded from NAND Flash to DRAM in CSD

Inference DRAM usage @16-bit

Model	Parameter	Convention inference	CSD assistant inference
LLaMA 3	8B	16GB	5GB
ChatGLM	6B	12GB	3.5GB
Qwen	7B	14GB	4GB
Mixtral	8x7B	87GB	24GB

Inference in the future

Thank you.