Flexible Data Placement (FDP) Benefits in QLC SSD: A Case Study

William Cheng

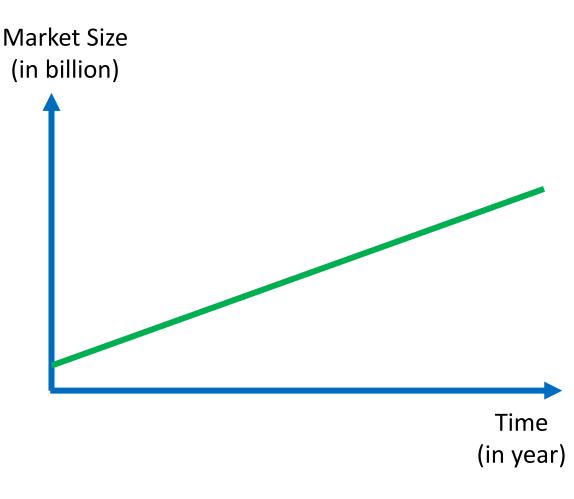
Director of Enterprise Marketing

Silicon Motion Technology Corp.

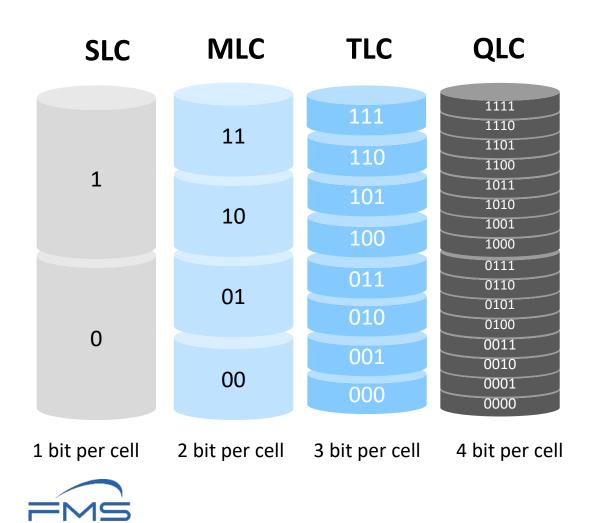
Legal Notice and Disclaimer

- The content of this document including, but not limited to, concepts, ideas, figures and architectures is furnished for informational use only, is subject to change without notice, and should not be construed as a commitment by Silicon Motion Inc. and its affiliates. Silicon Motion Inc. assumes no responsibility or liability for any errors or inaccuracies that may appear in the informational content contained in this document.
- Nothing in these materials is an offer to sell any of the components or devices referenced herein.
- Silicon Motion Inc. may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Silicon Motion, Inc., the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.
- © 2024 Silicon Motion Inc. or its affiliates. All Rights Reserved.
- Silicon Motion, the Silicon Motion logo, MonTitan[™], the MonTitan[™] logo are trademarks or registered trademarks of Silicon Motion Inc.

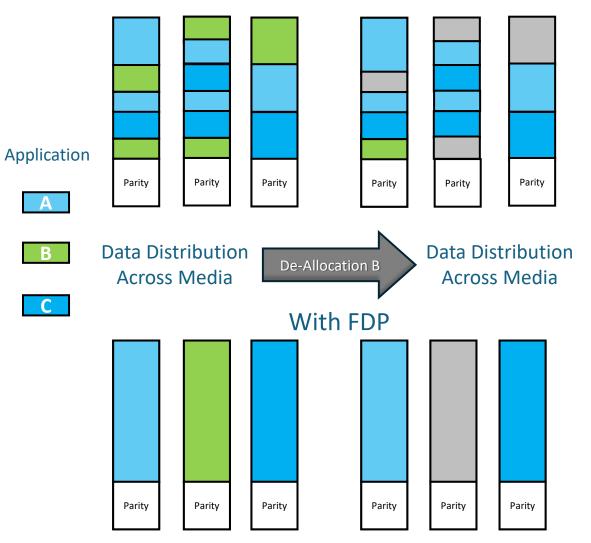
- Artificial Intelligence Fueling High-Capacity Storage Growth
- QLC NAND Enabled High-Capacity SSD
- Flexible Data Placement (FDP) Benefits QLC SSD
- QLC SSD with FDP Cast Study
- Measured Test Result Showing Benefits of FDP in QLC SSD
- Multi-Tenant Quality-of-Service (QoS) Improvement Technology
- Summary



Artificial Intelligence Fueling High-Capacity Storage Growth


- Al-powered storage market expected to reach \$200+ billion by 2033 with a 20+% CAGR
- Enterprise sector and Solid-state drive (SSD) expected to dominate Alpowered storage market
- → Demand for high-capacity SSD grows rapidly

QLC NAND Enabled High-Capacity SSD



the Future of Memory and Storage

- QLC is the latest NAND technology
- QLC advantages
 - Higher NAND die density
 - Higher SSD capacity
 - Lower cost per GB
- QLC disadvantages
 - More difficult programming
 - Lower endurance (DWPD)
 - Lower P/E cycle
- QLC is perfect for high-capacity SSD applications in AI era
- To extend life of QLC NAND, advanced data placement technologies like FDP and ZNS can be used

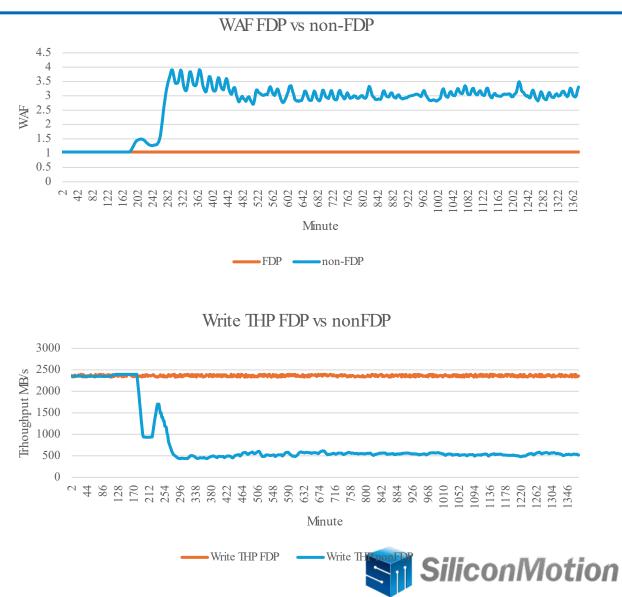
Flexible Data Placement (FDP) Benefits QLC SSD

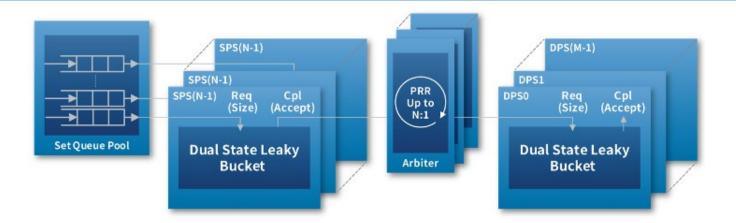
Without FDP

- FDP allows host to provide hint on where to place data
- With hint from host, data can be placed in separate regions for isolation
- Advantages of FDP
 - Reduce write amplification (WAF)
 - Reduce garbage collection (GC)
 - Improve write performance
 - Improve endurance
- FDP benefits all NAND type and is perfect for QLC NAND SSD

QLC SSD with FDP Cast Study

- Test configuration:
 - SSD hardware : Silicon Motion 16TB Enterprise SSD with Micron N48R QLC NAND in U.2 Form factor
 - SSD firmware : FDP enabled with 8 RUHs and 8 Namespaces vs FDP disabled with 8 Namespaces
 - Test platform : ASUS PRIME Z690-P (I5-12500 16GB)
 - Test program : FIO
 - Test workload : 8 FDP sequential write jobs comparing with 8 non-FDP sequential write jobs




Measured Test Result Showing Benefits of FDP in QLC SSD

	Workloads	BS	data temp.			NS	FDP RUHs
TestB FDP default Handle	fio0 seqwrite	16K	1/4 BW	\implies	NS0	LBA All	NS0.plid0 RUH0
	fio1 seqwrite	32K	1/16 BW		NS1	LBA All	NS1.plid0 RUH1
	fio2 seqwrite	64K	1/16 BW		NS2	LBA All	NS2.plid0 RUH2
	fio3 seqwrite	256K	1/8 BW		NS3	LBA All	NS3.plid0 RUH3
	fio4 seqwrite	16K	1/4 BW		NS4	LBA All	NS4.plid0 RUH4
	fio5 seqwrite	32K	1/16 BW		NS5	LBA All	NS5.plid0 RUH5
	fio6 seqwrite	64K	1/16 BW		NS6	LBA All	NS6.plid0 RUH6
	fio7 seqwrite	256K	1/8 BW	\implies	NS7	LBA All	NS7.plid0 RUH7
	fio0 seqwrite	16K	1/4 BW	\implies	NS0	LBA All	
	fio1 seqwrite	32K	1/16 BW	\implies	NS1	LBA All	
	fio2 seqwrite	64K	1/16 BW	\implies	NS2	LBA All	
TestB	fio3 seqwrite	256K	1/8 BW	\implies	NS3	LBA All	
non-FDP	fio4 seqwrite	16K	1/4 BW	\implies	NS4	LBA All	
	fio5 seqwrite	32K	1/16 BW	\implies	NS5	LBA All	
	fio6 seqwrite	64K	1/16 BW	\implies	NS6	LBA All	
	fio7 seqwrite	256K	1/8 BW		NS7	LBA All	

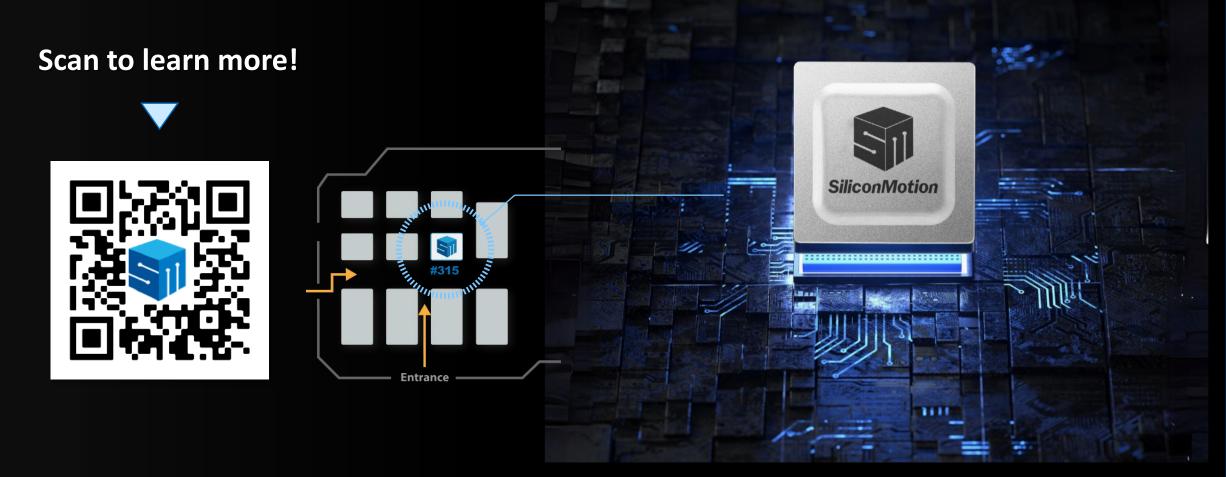
the Future of Memory and Storage

Multi-Tenant Quality-of-Service (QoS) Improvement Technology

- To further enhance QLC SSD QoS in multi-tenant environment, QoS management techniques can be deployed together with FDP
- PerformaShape[™], as an example for QoS management, is developed based on "Dual State Leaky Bucket" algorithm where each QoS set is assigned with two token buckets and IO traffic flows when token is available
- PerformaShape[™] benefits
 - Smooth out fluctuations
 - Isolate noisy neighbors
 - Fully utilize the SSD bandwidth

the Future of Memory and Storage

- Al revolution changes storage industry by demanding high-capacity SSD
- QLC SSD is best for high-capacity applications but has limitations
- FDP helps QLC SSD adoption
 - Extends QLC NAND life by reducing WAF and GC
 - Improves write performance
- PerformaShape[™] technology further improves QoS in multi-tenant applications
- High Capacity QLC AI SSDs enabled by FDP and PerformaShape[™] technologies is the perfect solution for AI storage applications



Meet us at booth #315

Driving AI Innovation in Flash Storage

