A Decade of Data Placement

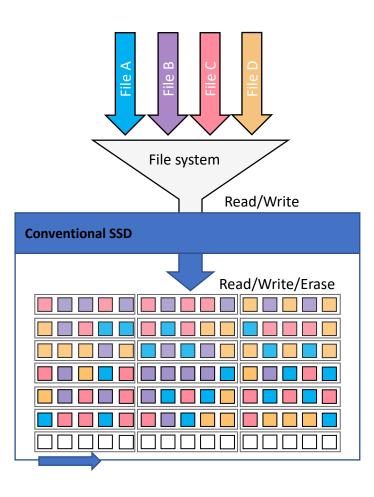
Matias Bjørling, Distinguished Engineer, Western Digital

Exponential Data Growth

- The cloud-native era has intensified demand for highperformance and low-cost storage solutions
- To reduce the \$/GB cost, data centers are actively seeking to utilize as much as their available storage capacity,
- As they increase their storage utilization, SSD-based storage increases its internal write amplification, leading to:
 - Excess write activity, primarily due to SSD garbage collection
 - Reduced endurance as more writes wear out SSD's media faster
 - Higher infrastructure cost through increased power consumption

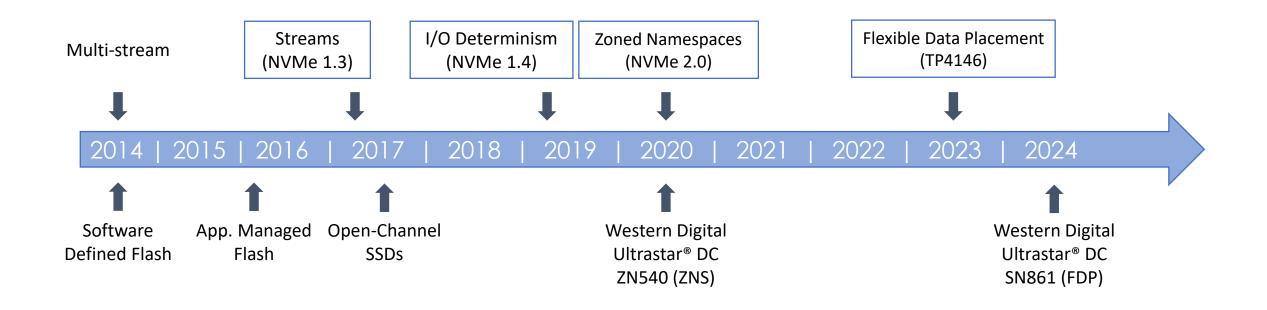
"To achieve these levels of device-level write amplification (1.1x & 1.4x), flash is typically overprovisioned by 50% (...) but reducing flash overprovisioning while maintaining the current level of performance is an open challenge at Facebook."

Source: CacheLib Caching Engine: Design and Experiences at Scale. OSDI 2020


Achieve high performance through extreme over-provisioning (e.g., 50%), but at the expense of twice the media cost.

Write Amplification?

- Write amplification results from a mismatch between the host interface and the failure to align the SSD's media interface (NAND flash)
- **Conventional** ways to reduce write amp.
 - Trim/Unmap/DSM (Dealloc.)
 - Host and device over-provisioning
- Data Placement
 - Active research topic
 - Multi-stream (2014), Software-Defined Flash (2014), Open-Channel SSDs (2014, 2017), Application Managed Flash (2016), many more
 - Standardization
 - Streams, I/O Determinism, Zoned Namespaces, Flexible Data Placement


Superblock Written Sequentially Erased/GC'ed as as single unit

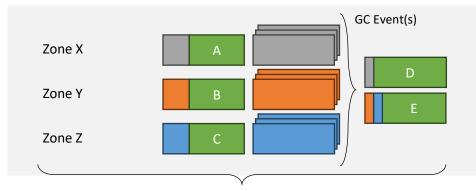
A Decade of Data Placement

Data Placement Benefits

Enhanced performance: Lower write amplification translates to faster write speeds and better Quality of Service (QoS) performance

Reduced overprovisioning: Data placement allows for greater utilization of an SSD's raw capacity

Increased endurance: Less wear and tear on the SSD's lifespan


Standardized NVMe® Interfaces

Streams (2017) & FDP (2023) Handle/Stream X A GC Event(s) Handle/Stream Y B GC Event(s) Handle/Stream Z C SSD owns initial data placement (e.g., due to GC events)

Potentially less host involvement WAF >= 1, OP Required (e.g., 7%)

Zoned Namespaces (2020)

Host "owns" all data placement Redirects user data how it fits current and future data placement

> More host involvement WAF = 1, No OP (0%)

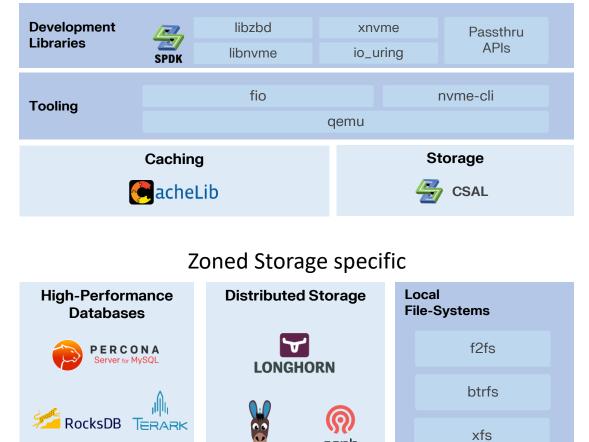
Data Placement Interfaces

	Streams	FDP (Stream)	FDP (Full host Integration)	Zoned Namespaces
WAF Expectation		WA	F >= 1	WAF = 1
Encapsulation	Stream/Reclaim Unit Handle ID		Reclaim Unit Handle	Zones (Set of LBAs)
Unit Writable Capacity	Unbounded		Approximate	Fixed
Finish Unit	N/A		Yes (Update Handle/Zone Finish)	
Reset Unit	DSM (Dealloc)		Multiple DSM (Dealloc) to invalidate data within an expected reclaim unit (if data is written non-seq)	Zone Reset
Placement Tracking	N/A		Each write LBAs tracked to allow accurate deallocs. An implementation may write sequentially to reduce tracking overhead.	Data placement is tracked through zones.
Unit State Communication	N/A		Asynchronous (Host probes state continuously from device)	Synchronous (Host and device always in sync on unit's state)
How to write	Write Cmd + Stream Id	Write Cmd + Reclaim Unit Id	 Write Cmd + Reclaim Unit Id Continuously monitor through log pages: Change in Reclaim Unit Avail. Media Writes (e.g., every 100 writes) FDP Events (RU not fully written to cap., media reallocated) 	Write Cmd
Example of open- source use-cases	RocksDB (support removed from Linux kernel in 2022)	CacheLib, xfs (In the works)	TBD	Applications: RocksDB, CacheLib, MySQL, Ceph File-Systems: f2fs, btrfs, xfs

Western Digital.

Data Placement Ecosystem

- The software ecosystem for data placement continues to move forward
- Flexible Data Placement
 - Support added to core tools (qemu, fio, SPDK, ...)


Utilized through passthru kernel APIs RocksDB & XFS write hint passthru in progress

• Zoned Storage (SMR, ZNS, Zoned UFS)

Broad enablement due earlier standardization and multiple storage device types

Utilized through native kernel APIs Native XFS support in progress

Common Data Placement Ecosystem

OneoFRS

ceph

Session Talks

- William Cheng, Silicon Motion
- FDP Benefits in QLC Applications: A Case Study
- Mariusz Barczak, Solidigm
- Cloud Storage Acceleration Layer (CSAL): Leveraging Gen5 FDP NVMe Technologies
- Rory Bolt, KIOXIA
- FDP: What Every Storage Architect Should Know!
- Jonmichael Hands, FADU
- FDP Performance in VMs with Multiple NVMe Namespaces: Case Studies
- Panel Discussion

