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Brief Self Introduction

* Abdullah Giray Yaglikci
* Researcher @ SAFARI Research Group since August 2016

e ETH Zurich (Feb 2018 - ongoing)

* Intel Labs (Aug 2017 - Feb 2018)

* Carnegie Mellon University (Aug 2016 - Aug 2017)
Defended my PhD thesis, advised by Onur Mutlu, in April 2024
https://agyaglikci.github.io/
agirayyaglikci@gmail.com (Best way to reach me)
https://safari.ethz.ch

 Research interests:
* Computer architecture, hardware security
* Memory and storage systems

* Hardware security, safety, reliability, performance,
availability, fairness, energy efficiency

* Hardware/software cooperation
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Papers in This Talk

» Ataberk Olgun, Yahya Can Tugrul, Nisa Bostanci, Ismail Emir Yuksel, Haocong Luo, Steve Rhyner,
Abdullah Giray Yaglikci, Geraldo F. Oliveira, and Onur Mutlu,
"ABACuS: All-Bank Activation Counters for Scalable and Low Overhead RowHammer
Mitigation” Proceedings of the 33rd USENIX Security Symposium (USENIX Security), Philadelphia, PA,
USA, August 2024.
[arXiv version] [ABACuS Source Code (Officially Artifact Evaluated with All Badges])]
Officially artifact evaluated as available, functional, and reproduced.

* F. Nisa Bostanci, Ismail Emir Yuksel, Ataberk Olgun, Konstantinos Kanellopoulos, Yahya Can Tugrul,
A. Giray Yaglikci, Mohammad Sadrosadati, and Onur Mutlu,
"CoMeT: Count-Min-Sketch-based Row Tracking to Mitigate RowHammer at Low Cost”
Proceedings of the 30th International Symposium on High-Performance Computer
Architecture (HPCA), April 2024,
[Slides (pptx) (pdf)] [arXiv version]
[CoMeT Source Code (Officially Artifact Evaluated with All Badges)]
Officially artifact evaluated as available, reviewed and reproducible.
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Memory and compute requirements
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co-design-for-deep-learning
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Memory & Generative Al (II)

Al and Memory Wall
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Gholami A, Yao Z, Kim S, Mahoney MW, Keutzer K. Al and Memory Wall. RiseLab Medium Blog Post,

University of Califonia Berkeley, 2021, March 29.
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Memory Isolation

* A memory access should not have unintended side effects
on data stored in other addresses

» A fundamental property for robustness (safety, security, and reliability)

g Data loss or corruption

daCcCessS

P *Q Compromise application correctness

‘ Leak private information

Take over a computer
l‘Ql.n. P

Memory
Memory isolation is difficult in modern memory chips
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Read Disturbance in Modern Memory Chips

* Prevalent memory technology:
Dynamic Random Access Memory (DRAM)

e DRAM stores data in the form of

electrical charge on a capacitor 7\, Wordline

 DRAM leaks charge over time
and needs periodic refresh

* DRAM Read Disturbance:
Accessing a DRAM cell disturbs
other physically nearby cells
and exacerbates their charge leakage

Charge
| leakage

paths
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RowHammer: An Example of DRAM Read Disturbance

& DRAM Subarray A

Row 0

Victim Row

\_ /

Repeatedly opening (activating) and closing (precharging)
a DRAM row causes RowHammaer bitflips in nearby cells
and breaks memory isolation
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One Can Take Over an Otherwise-Secure System

Flipping Bits in Memory Without Accessing Them:
An Experimental Study of DRAM Disturbance Errors

Abstract. Memory isolation is a key property of a reliable Flipping Bits in Memory
and secure computing system — an access to one memory ad- Without Accessing Them: An
dress should not have unintended side effects on data stored Experimental Study of DRAM
in other addresses. However, as DRAM process technology Disturbance Errors

(Kim et al., ISCA 2014)

P rOj e Ct Ze o Exploiting the DRAM rowhammer bug to

gain kernel privileges (Seaborn, 2015)

News and updates from the Project Zero team at Google

Induce bit flips in page table entries (PTEs).
Gain write access to its own page table,
and hence gain read-write access to all of physical memory.

Exploiting the DRAM rowhammer bug to gain kernel privileges
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http://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
http://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
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http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_isca14.pdf

More Security Implications (I)

“"We can gain unrestricted access to systems of website visitors.”

Not there yet, but ...

Y OWHAMMER)S

ROQOT privileges for web apps!

Daniel Gruss (@lavados), Clémentine Maurice (@BloodyTangerine),
December 28, 2015 — 32¢3, Hamburg, Germany

Rowhammer.js: A Remote Software-Induced Fault Attack in JavaScript (DIMVA'16)

SA FA Rl Source: https://lab.dsst.io/32c3-slides/7197.html 10



https://lab.dsst.io/32c3-slides/7197.html

More Security Implications (II)

“Can gain control of a smart phone deterministically”

!
!
4

,/Tf\'_\‘_\f\“

jy EE= ‘
—
L

Millions of Androids

Drammer: Deterministic Rowhammer Attacks on Mobile Platforms, CCS'16

S A FA R l Source: https://fossbytes.com/drammer-rowhammer-attack-android-root-devices/

a o )

Hammer And Root
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More Security Implications (111)

* Using an integrated GPU in a mobile system to remotely
escalate privilege via the WebGL interface. IEEE S&P 2018

adlr'S TECHNICA BIZ & IT SCIENCE (ARS  GAMING & CULTURE

"GRAND PWNING UNIT" —

Drive-by Rowhammer attack uses GPU to
compromise an Android phone

JavaScript based GLitch pwns browsers by flipping bits inside memory chips.

Grand Pwning Unit: Accelerating Microarchitectural
Attacks with the GPU

Pietro Frigo Cristiano Giuffrida Herbert Bos Kaveh Razavi
Vrije Universiteit Vrije Universiteit Vrije Universiteit Vrije Universiteit
Amsterdam Amsterdam Amsterdam Amsterdam
p.frigo@vu.nl giuffrida@cs.vu.nl herbertb @cs.vu.nl kaveh@cs.vu.nl
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More Security Implications (IV)

« Rowhammer over RDMA (I)
dlf'S TECHNICA BIZ&IT TECH SCIENCE POLICY CARS GAMING & CULTURE

THROWHAMMER —

Packets over a LAN are all it takes to
trigger serious Rowhammer bit flips

The bar for exploiting potentially serious DDR weakness keeps getting lower.

DAN GOODIN - 5/10/2018, 5:26 PM

Throwhammer: Rowhammer Attacks over the Network and Defenses

Andrei Tatar Radhesh Krishnan Elias Athanasopoulos Cristiano Giuffrida
VU Amsterdam VU Amsterdam University of Cyprus VU Amsterdam
Herbert Bos Kaveh Razavi
VU Amsterdam VU Amsterdam

SAFARI [Tatar+ USENIX ATC, 2018] 13



More Security Implications (V)

* Exploiting Correcting Codes: On the Effectiveness of ECC

Memory Against Rowhammer Attacks. Cojocar, L. .; Razavi,
K.; Giuffrida, C.; and Bos, H. In S&P, May 2019 Best Practical Paper

Award, Pwnie Award Nomination for Most Innovative Research
[Paper] [Slides]

Exploiting Correcting Codes: On the Effectiveness
of ECC Memory Against Rowhammer Attacks

Lucian Cojocar, Kaveh Razavi, Cristiano Giuffrida, Herbert Bos
Vrije Universiteit Amsterdam

Thus, many believed that Rowhammer on ECC memory, even if plausible in theory, is simply
impractical. This paper shows this to be false: while harder, Rowhammer attacks are still a
realistic threat even to modern ECC-equipped systems.
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More Security Implications (VI)

Hasan Hassan, Yahya Can Tugrul, Jeremie S. Kim, Victor van der Veen, Kaveh Razavi, and Onur Mutlu,
"Uncovering In-DRAM RowHammer Protection Mechanisms: A New Methodology, Custom
RowHammer Patterns, and Implications,” MICRO, 2021. [Slides (pptx) (pdf)] [Short Talk Slides
(pptx) (pdf)] [Lightning Talk Slides (pptx) (pdf)] [Full Talk (25 mins)] [Lightning Talk (1.5 mins)]

Uncovering In-DRAM RowHammer Protection Mechanisms:
A New Methodology, Custom RowHammer Patterns, and Implications

Hasan Hassan' Yahya Can Tugrul ™ Jeremie S. Kim" Victor van der Veen’

Kaveh Razavi' Onur Mutlu'
YETH Ziirich *TOBB University of Economics & Technology 7 Qualcomm Technologies Inc.

15x Vendor A All 45 modules we test are vulnerable

DDR4 modules E N\
15x Vendor B :3: __» E> E> 99.9% of rows in a DRAM bank
DDR4 modules e’ New RowHammer experience at least one RowHammer bit flip

an 8-byte dataword, making ECC ineffective

15x Vendor C  :fg: U-TRR access patterns P
DDR4 modules E ' \ Up to 7 RowHammer bitflips in

TRR does not provide security against RowHammer

U-TRR can facilitate the development of new RowHammer attacks

and more secure RowHammer protection mechanisms
SAFARI



https://people.inf.ethz.ch/omutlu/pub/U-TRR-uncovering-RowHammer-protection-mechanisms_micro21.pdf
https://people.inf.ethz.ch/omutlu/pub/U-TRR-uncovering-RowHammer-protection-mechanisms_micro21.pdf
https://people.inf.ethz.ch/omutlu/pub/U-TRR-uncovering-RowHammer-protection-mechanisms_micro21-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/U-TRR-uncovering-RowHammer-protection-mechanisms_micro21-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/U-TRR-uncovering-RowHammer-protection-mechanisms_micro21-short-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/U-TRR-uncovering-RowHammer-protection-mechanisms_micro21-short-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/U-TRR-uncovering-RowHammer-protection-mechanisms_micro21-short-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/U-TRR-uncovering-RowHammer-protection-mechanisms_micro21-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/U-TRR-uncovering-RowHammer-protection-mechanisms_micro21-lightning-talk.pdf
https://www.youtube.com/watch?v=YkBR9yeLHRs&list=PL5Q2soXY2Zi--0LrXSQ9sST3N0k0bXp51&index=11
https://www.youtube.com/watch?v=HHxeuWVqq8w&list=PL5Q2soXY2Zi--0LrXSQ9sST3N0k0bXp51&index=5

More Security Implications (VII)
* Rowhammer over RDMA (II)

(«&3The Hacker News’

Security in a serious way

Nethammer—Exploiting DRAM Rowhammer Bug Through
Network Requests

Nethammer:
Inducing Rowhammer Faults through Network Requests

Moritz Lipp Misiker Tadesse Aga Michael Schwarz
Graz University of Technology University of Michigan Graz University of Technology
Daniel Gruss Clémentine Maurice Lukas Raab
Graz University of Technology Univ Rennes, CNRS, IRISA Graz University of Technology
Lukas Lamster

Graz University of Technology

SAFARI [Lipp+ EuroS&PW, 2020] 16



More Security Implications (VIII)

JackHammer: Efficient Rowhammer on
Heterogeneous FPGA-CPU Platforms

Zane Weissman'!, Thore Tiemann?, Daniel Moghimi!, Evan Custodio?,
Thomas Eisenbarth? and Berk Sunar!

! Worcester Polytechnic Institute, MA, USA
zweissmanQwpi.edu, amoghimi@wpi.edu, sunar@wpi.edu
2 University of Liibeck, Liibeck, Germany
thore.tiemann@student.uni-luebeck.de, thomas.eisenbarth@Quni-luebeck.de
3 Intel Corporation, Hudson, MA, USA

evan.custodio@intel.com

@ The victim CPU FPGA --------- -~ @ The AFU hammers
application initializes --{--------.. 4 the memory shared
the RSA Key. coreo || taret Rowhammer with the malicious app,
— | % sl e viim s An FPGA-based RowHammer attack
Malicious WolfCrypt . = .
@ memacowan L 8 )| recovering private keys twice as fast
prepares the shared __J
O hammang. compared to CPU-based attacks
GF F vendemon -~ @)me rsa sonre
TMenI-nory for' | |Rsa Key to the induced bit flips
Hammering ®<-|---------" : in the key.

SAFARI [Weissman+ CHES 2020]
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More Security Implications (IX)

RAMBIleed
RAMBIeed: Reading Bits in Memory Without
Accessing Them

Andrew Kwong Daniel Genkin Daniel Gruss Yuval Yarom
University of Michigan  University of Michigan  Graz University of Technology  University of Adelaide and Data61
ankwong @umich.edu genkin@umich.edu daniel.gruss @iaik.tugraz.at yval@cs.adelaide.edu.au

SAFARI [Kwong+ IEEE S&P 2020] 18



More Security Implications (X)

Terminal Brain Damage: Exposing the Graceless Degradation
in Deep Neural Networks Under Hardware Fault Attacks

Sanghyun Hong, Pietro Frigo®, Yigitcan Kaya, Cristiano Giuffrida', Tudor Dumitras

University of Maryland, College Park
"Vrije Universiteit Amsterdam

A Single Bit-flip Can Cause Terminal Brain Damage to DNNs
One specific bit-flip in a DNN'’s representation leads to accuracy drop over 90%
L]

Our research found that a specific bit-flip in a DNN’s bitwise representation can
cause the accuracy loss up to 90%, and the DNN has 40-50% parameters, on
average, that can lead to the accuracy drop over 10% when individually
subjected to such single bitwise corruptions...

.

\\

"

1!

Read More

SAFARI] [Hong+ USENIX Security 2019] 19



More Security Implications (XI)

DeepHammer: Depleting the Intelligence of Deep Neural Networks
through Targeted Chain of Bit Flips

Fan Yao Adnan Siraj Rakin Deliang Fan
University of Central Florida Arizona State University
fan.yao@ucf.edu asrakin@asu.edu dfan@asu.edu

Degrade the inference accuracy to the level of Random Guess

Example: ResNet-20 for CIFAR-10, 10 output classes
Before attack, Accuracy: 90.2% After attack, Accuracy: ~10% (1/10)

"

SAFARI] [Yao+ USENIX Security 2020] 20



More Security Implications (XII)

HAMMERScoPE: Observing DRAM Power Consumption Using

Rowhammer
Yaakov Cohen" Kevin Sam Tharayil* Arie Haenel
Ben-Gurion University of the Negev Georgia Institute of Technology Jerusalem College of Technology
and Intel Atlanta, Georgia, USA and Intel
Beer-Sheva, Israel kevinsam@gatech.edu Jerusalem, Israel
yaakoc@post.bgu.ac.il arie.haenel@jct.ac.il
Daniel Genkin Angelos D. Keromytis Yossi Oren
Georgia Institute of Technology Georgia Institute of Technology Ben-Gurion University of the Negev
Atlanta, Georgia, USA Atlanta, Georgia, USA and Intel
genkin@gatech.edu angelos@gatech.edu Beer-Sheva, Israel
yos@bgu.ac.il
Yuval Yarom
University of Adelaide
Adelaide, Australia
yval@cs.adelaide.edu.au
& 106 106
.S‘ 10 10 15
= ——— HAMMERSCOPE — .
g AR | DRAM RAPL < HammerScope is a software-based
U . | - -
< S power analysis method using
A .
S 1 = RowHammer as a side channel
i =
=)
S A
0.5
0 200 400 600 800 1,000

Time (s)
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A RowHammer Survey:

Onur Mutlu, Ataberk Olgun, and A. Giray Yaglikci, "Fundamentally
Understanding and Solving RowHammer” Invited Special

Session Paper at the 28th Asia and South Pacific Design Automation
Conference (ASP-DAC), Tokyo, Japan, January 2023.

[arXiv version]

Slides (pptx) (pdf)]

Talk Video (26 minutes)]

Fundamentally Understanding and Solving RowHammer

Onur Mutlu Ataberk Olgun A. Giray Yaglikci
onur.mutlu@safari.ethz.ch ataberk.olgun@safari.ethz.ch giray.yaglikci@safari.ethz.ch
ETH Ziirich ETH Ziirich ETH Zirich
Zurich, Switzerland Zurich, Switzerland Zurich, Switzerland

https://arxiv.org/pdf/2211.07613.pdf
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https://arxiv.org/pdf/2211.07613.pdf
https://arxiv.org/pdf/2211.07613.pdf
http://www.aspdac.com/aspdac2023/
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https://arxiv.org/abs/2211.07613
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https://people.inf.ethz.ch/omutlu/pub/rowhammer_aspdac23-talk.pdf
https://www.youtube.com/watch?v=1kpDJkh_I8s
https://arxiv.org/pdf/2211.07613.pdf

Breaking Samsung’s Best Practice

* Salman Qazi and Daniel Moghimi, “SoothSayer: Bypassing DSAC
Mitigation by Predicting Counter Replacement,” DRAMSec, 2024

SoothSayer: Bypassing DSAC Mitigation by
Predicting Counter Replacement

Salman Qazi
Google

Abstract—In-DRAM Stochastic and Approximate Counting
(DSAC) is a recently published algorithm that aims to miti-
gate Rowhammer at low cost. Existing in-DRAM counter-based
schemes keep track of row activations and issue Targeted Row
Refresh (TRR) upon detecting a concerning pattern. However,
due to insufficiency of the tracking ability they are vulnerable
to attacks utilizing decoy rows. DSAC claims to improve upon
existing TRR mitigation by filtering out decoy-row accesses, so
they cannot saturate the limited number of counters available for
detecting Rowhammer, promising a reliable mitigation without
the area cost of deterministic and provable schemes such as per-
row activation counting (PRAC).

In this paper, we analyze DSAC and discover some gaps that
make it vulnerable to Rowhammer and Rowpress attacks.

The main focus of this work is a novel attack named Sooth-
Sayer that targets the counter replacement policy in DSAC by
cloning the random number generator. We describe and simulate

SAFARI

Daniel Moghimi
Google

literature such as Graphene [18] (implemented in the memory
controller) and ProTRR [17] (implemented in DRAM) that
utilize frequent item counting schemes. These can account
for all Rowhammer activity if the threshold is sufficiently
large and enough counters are provided. As the Rowhammer
threshold decreases, the number of counters required for a
correct implementation increases. According to the authors of
DSAC, who are affiliated with a memory vendor, the number
of counters used in these implementations are unacceptably
large for a memory vendor to implement within their designs.
To avoid this cost, deployed counter-based mitigations employ
fewer counters than necessary and are often probabilistic.
Due to this limitation, recent Rowhammer techniques [2],
[8], [13] have managed to bypass TRR with decoy DRA

NUSIVPURINIINT. NGV . NS, | SN . | NUSRUNT SN . [, W, VORISR Sun—
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https://dramsec.ethz.ch/papers/soothsayer-final.pdf
https://dramsec.ethz.ch/papers/soothsayer-final.pdf

RowHammer in DDR5

Patrick Jattke; Max Wipfli; Flavien Solt; Michele Marazzi; Matej
Bolcskei; and Kaveh Razavi, “ZenHammer: Rowhammer Attacks
on AMD Zen-based Platforms,” in USENIX Security, 2024.
|Paper] [URL]

ZENHAMMER: Rowhammer Attacks on AMD Zen-based Platforms

Patrick Jattke” Max Wipfli' Flavien Solt  Michele Marazzi Matej Bolcskei ~ Kaveh Razavi
ETH Zurich

TEqual contribution first authors

We found bit flips on only 1 of 10 tested devices (5§1), suggesting that the changes
in DDR5 such as improved Rowhammer mitigations, on-die error correction code (ECC),

and a higher refresh rate (32 ms) make it harder to trigger bit flips.

SAFARI 24


https://comsec.ethz.ch/wp-content/files/zenhammer_sec24.pdf
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DRAM Read Disturbance: A Critical Challenge

000
000
o0V

[Kim+, [SCA'14]

Technology node scaling Qﬁé Q
CCCOO

[Kim+, ISCA'20] More than 10X reduction

More than 100X reduction

[Luo+, ISCA'23]

0K 20K 40K 60K 80K 100K 120K 140K
Minimum hammer count needed to induce the first read disturbance bitflip

DRAM cells become increasingly

more vulnerable to read disturbance

SAFARI 25




How to Solve DRAM Read Disturbance?

* Build better chips

* Increased refresh rate
100%

Vmin

REF-to-REF time reduces

Fewer activations can fit

* Physical isolation Aggressor Row

I Large-enough distance

Victim Rows

* Reactive refresh Victim Rows

<4+ Refresh

Aggressor Row

<€ Rapidly activated (hammered)

Victim rows

<4+ Refresh

* Proactive throttling w

S A FA R l Fewer activations can be performed 26



Existing RowHammer Mitigations (1):

Overview of Preventive Refresh-Based Mitigation Techniques

per DRAM row

Row A Counter A Tag A | Counter A
Row B § Counter B Tag B | Counter B
Row C Counter C Tag C | Counter C
Row D Counter D ( CAM-based |
Processor | implementation |
DRAM Chip R i
One ACT counter One ACT counter

per aggressor row

Shared Counters
Tag A

Tag B

Processor Chip

Counter A

Counter B

<1 counter
per DRAM row

VERY LOW

Performance
& Energy Costs

(e.g., 128K per bank)
VERY HIGH

Area
Cost

———————— N
rA Many DRAM rows

G - - e S S e . -

f High DRAM
I A bandwidth
\ consumption J

SAFARI
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Existing RowHammer Mitigations (11):
Overhead Trade-Off of State-of-the-Art Mitigation Techniques

Low Processor Chip
Area Overhead

=== Graphene S
= Hydra

y / \
m—— REGA
== = PARA

Low Energy Low Performance
Overhead

Overhead

Low DRAM
Area Overhead

28
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Existing RowHammer Mitigations (111):
Overhead Trade-Off of State-of-the-Art Mitigation Techniques

Low Processor Chip
Area Overhead

=== Graphene
m— Hydra \
e REGA 74
== = PARA

Low Energy Low Performance
Overhead

Overhead

Low
Area Overhead

No existing mitigation technique prevents RowHammer bitflips
at low area, performance and energy costs

SAFARI
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ABACuS: All-Bank Activation Counters

» Ataberk Olgun, Yahya Can Tugrul, Nisa Bostanci, Ismail Emir Yuksel, Haocong
Luo, Steve Rhyner, Abdullah Giray Yaglikci, Geraldo F. Oliveira, and Onur Mutlu,
"ABACuS: All-Bank Activation Counters for Scalable and L.ow Overhead
RowHammer Mitigation” 7o appear in Proceedings of the 33rd USENIX Security
Symposium (USENIX Security), Philadelphia, PA, USA, August 2024.

[arXiv version] [ABACuS Source Code]

ABACuS: All-Bank Activation Counters
for Scalable and Low Overhead RowHammer Mitigation

Ataberk Olgun Yahya Can Tugrul Nisa Bostanci Ismail Emir Yuksel
Haocong Luo Steve Rhyner Abdullah Giray Yaglikci Geraldo F. Oliveira Onur Mutlu

ETH Zurich
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https://arxiv.org/abs/2310.09977
https://github.com/CMU-SAFARI/ABACuS

ARTIFACT ARTIFACT ARTIFACT
will be presented next week EVALUATED EVALUATED EVALUATED

in USENIX Security 2024 Ep 5wotiion [l € 5ictiion [l Ep ot

AVAILABLE FUNCTIONAL REPRODUCED

ABACuUS

All-Bank Activation Counters for Scalable
and Low Overhead RowHammer Mitigation

Ataberk Olgun Yahya Can Tugrul F. Nisa Bostanci
Ismail Emir YUksel Haocong Luo Steve Rhyner

A. Giray Yaglikgl Geraldo F. Oliveira Onur Mutlu

SAFARI ETH:zurich



Key Observation

Many workloads access the same row address
in different banks at around the same time

C PU Bank 0 Bank 1

: i | 1 1 |

| K | Row X | | Row X |
§ | 3 1 | ) ]
. Bank 2 Bapk 3

— -

Load request targeting
bank 0 row X Sibling rows

Time

| tbox | [ tbax | | ey | | ey | [ bex |
SAFARI 32




Explanation for the Key Observation

o Programs exhibit spatial locality:

access cache blocks around each other
at around the same time

a Address mappings distribute consecutive cache blocks
to different banks to leverage bank-level parallelism
(using the same row ID)
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Problem

No mitigation mechanism leverages
the spatial locality across banks

Area overhead linearly increases
with the number of banks

SAFARI
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Key Idea

Sibling rows can share one activation counter
to reduce the number of counters
by a factor of the bank count

Bank O

Bank 1

Bank 15

Counter X

Counter X

Counter X

Existing Row Activation Tracker

Bank 0-15

Counter X

ABACuS-Based Tracker

SAFARI
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16X reduction in number of counters

Sibling rows: Rows with the same ID across all banks
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ABACuS: High-level Overview

Key Mechanism: Track the maximum (worst)
activation count of sibling rows using one counter

Row ID | Activation Count
. X 72 - X 123 X 31 ................ X 42
Bank 0 Bank 1 Bank 2 Bank N
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ABACuS’s Integration with Misra-Gries Algorithm (I)

Memory Controller

ABACuUS Controller

@ ABACUuS Counter Table

©

9 ABACuS Counter
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ABACuS’s Integration with Misra-Gries Algorithm (IT)

Row ID *RAC *SAV ACT Row ID RAC SAV
13 Row ID: 13 13 27 0011
Bank ID: 1 | |
9 010 9 0101
—>
1 00 @update | |

*RAC: Row Activation Counter, SAV: Sibling Activation Vector

RowID RAC SAV Row ID RAC SAV
ACT ACT
Row ID:13 | 13 28 0010 | rowiD-20 13
Bank ID: 1 .
9 )10 Bank ID: 2
20 13 0100
@ update 00 | @) Replace |
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ABACuS’s Integration with Misra-Gries Algorithm (I11)

RowID RAC
13 28 00

SAV

20 13 01

y 14 10

12 (Spillover Counter
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Evaluation

System Configuration

1 or 8 cores, 3.6GHz clock frequency,

rrocessor 4-wide issue, 128-entry instruction window

DRAM DDR4, 1 channel, 2 rank/channel, 4 bank groups,
4 banks/bank group, 128K rows/bank, 3200 MT/s
64-entry read and write requests queues,
Scheduling policy: FR-FCFS [181, 182]

Memory Ctrl. with a column cap of 16 [183],

Address mapping: MOP [166, 168]

45ns tRC,79us tREFI, 64ms tREFW
64 ms ABACuS reset period

Last-Level Cache 2 MiB per core

« Workloads: 62 1- & 8-core workloads
 Four different very low nRH values: 1000, 500, 250, 125
* Four state-of-the-art mitigation mechanisms

SAFARI 2



Performance Comparison

[ ABACUS [ Graphene [ Hydra [ REGA [ PARA]
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=2 __Baseline IPC

Lower overhead than all evaluated state-of-the-art

mechanisms (except Graphene)
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More 1n the Paper

* More motivational analysis
* Multi-core performance & energy results

* Performance under adversarial workloads
 Alternative ABACuS design

* Performance & energy sensitivity to:

* Blast radius
* Number of ABACuS counters
e Number of banks

e Circuit area, latency, energy, and power
e Security proof

SAFARI
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ABACuUS Summary

Goal: Prevent RowHammer bitflips at low performance, energy,
and area cost especially at very low RowHammer thresholds
(e.g., 125 aggressor row activations induce a bitflip)

Key Observation: Many workloads access the same row address
in different DRAM banks at around the same time

Key Idea: Use one counter to track the activation count of many rows
with the same address across all DRAM banks

Key Results: At very low RowHammer thresholds, ABACuS:
* Induces small system performance and DRAM energy overhead
* Outperforms the state-of-the-art mitigation (Hydra)
* Takes up 22.7X smaller chip area than state-of-the-art (Graphene)

SAFARI] https://github.com/CMU-SAFARI/ABACuS

44


https://github.com/CMU-SAFARI/ABACuS

Extended Version on arXiv

https://arxiv.org/pdf/2310.09977.pdf

All fields A Search
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e Download PDF
ABACuS: All-Bank Activation Counters for Scalable and Low Overhead RowHammer ° PostScript
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[Submitted on 15 Oct 2023]

Ataberk Olgun, Yahya Can Tugrul, Nisa Bostanci, Ismail Emir Yuksel, Haocong Luo, Steve Rhyner, Abdullah Giray Yaglikci, Geraldo F. E:’Cr;"‘ browse context:
Oliveira, Onur Mutlu <prev | next>

new | recent | 2310
We introduce ABACuS, a new low-cost hardware-counter-based RowHammer mitigation technique that performance-, energy-, and area- Change to browse by:

efficiently scales with worsening RowHammer vulnerability. We observe that both benign workloads and RowHammer attacks tend to access DRAM cs
rows with the same row address in multiple DRAM banks at around the same time. Based on this observation, ABACuS's key idea is to use a single ¢s.AR

shared row activation counter to track activations to the rows with the same row address in all DRAM banks. Unlike state-of-the-art RowHammer References & Citations

mitigation mechanisms that implement a separate row activation counter for each DRAM bank, ABACuS implements fewer counters (e.g., only
one) to track an equal number of aggressor rows.

Our evaluations show that ABACuS securely prevents RowHammer bitflips at low performance/energy overhead and low area cost. We compare
ABACUS to four state-of-the-art mitigation mechanisms. At a near-future RowHammer threshold of 1000, ABACuS incurs only 0.58% (0.77%)
performance and 1.66% (2.12%) DRAM energy overheads, averaged across 62 single-core (8-core) workloads, requiring only 9.47 KiB of storage
per DRAM rank. At the RowHammer threshold of 1000, the best prior low-area-cost mitigation mechanism incurs 1.80% higher average
performance overhead than ABACuS, while ABACUS requires 2.50X smaller chip area to implement. At a future RowHammer threshold of 125,
ABACuUS performs very similarly to (within 0.38% of the performance of) the best prior performance- and energy-efficient RowHammer mitigation
mechanism while requiring 22.72X smaller chip area. ABACuS is freely and openly available at this https URL.
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ABACuS 1s Open Source

https://github.com/CMU-SAFARI/ABACuS
>)1RmEIO

@ O CMU-SAFARI | ABACuS

[Q Type (/) to search

<> Code (® lIssues 19 Pullrequests () Actions [ Projects @ Security |~ Insights 3 Settings

ABACuUS

[9 Edit Pins + ] [ ®Unwatch@v ] [ % Fork@ | - ][

Starred@ ‘ v]

¥ 1branch  0tags

[ Go to file ][ Add file ¥ ] <> Code ~

~

~

SAFARI

olgunataberk add verilog sources and update readme eflc89c yesterday @ 8 commits
BB abacus_cacti add abacus cacti sources yesterday
BB abacus_verilog add verilog sources and update readme yesterday
BB configs/ABACUS Initial commit 3 days ago
B ext Initial commit 3 days ago
B scripts Initial commit 3 days ago
B src Initial commit 3 days ago
D .gitignore Initial commit 3 days ago
[ CMakeLists.txt Initial commit 3 days ago
D Doxyfile Initial commit 3 days ago

About

New RowHammer mitigation mechanism
that is area-, performance-, and energy-
efficient especially at very low (e.g., 125)
RowHammer thresholds, as described in
the USENIX Security'24 paper
https://arxiv.org/pdf/2310.09977.pdf

Readme
MIT license
Activity

3 stars

4 watching

< O % < 2 B

0 forks

Report repository

iox
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Our Goal

Prevent RowHammer bitflips
with low area, performance, and energy overheads

in highly vulnerable DRAM-based systems

(e.g.,, a RowHammer threshold of 125)

SAFARI 50



Key Observation

Hash-based counters are low-cost:

1. can be implemented with low-cost structures and
2. can aggregate many rows' activation counts together LOW COST
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Row 1 ! (Example) I 0 1 2 3 :
RowZ ™11 5] H(D) = ID % 4 ] !
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: I, S . S S
Row 4 e I !
DRAM Mapping without tags Fixed number of counters

Tag-based counters are highly accurate:
Each one tracks one row's activation count
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Key Idea

Use low-cost and scalable hash-based
1 counters to track most DRAM rows'
activations with low area overhead

Use highly accurate tag-based counters
2 to track only a small set of DRAM rows
to achieve low performance overhead

SAFARI 52



CoMeT Overview

Counter Table (CT):
-  Maps each DRAM row to a group of low-cost hash-based counters

as uniquely as possible by employing the Count-Min Sketch technique
- Triggers a preventive refresh to an aggressor row's victim rows

when the aggressor's counter group reaches an activation threshold

DRAM row activations at low area co

Recent Aggressor Table (RAT):
- Allocates highly accurate per-DRAM-row counters
for only a small set of DRAM rows that are activated many times

Reduces performance penalties by increasing tracking accuracy

SAFARI 53



More Operational Details for CoMeT

@[V

CoMeT: Count-Min-Sketch-based Row Tracking
to Mitigate RowHammer at Low Cost

Ismail Emir Yiiksel
A. Giray Yaglike1

F. Nisa Bostanci
Yahya Can Tugrul

Ataberk Olgun
Mohammad Sadrosadati

Konstantinos Kanellopoulos
Onur Mutlu

ETH Ziirich

DRAM chips are increasingly more vulnerable to read-
disturbance phenomena (e.g., RowHammer and RowPress),
where repeatedly accessing DRAM rows causes bitflips in
nearby rows due to DRAM density scaling. Under low RowHam-
mer thresholds, existing RowHammer mitigations either incur
high area overheads or degrade performance significantly.

We propose a new RowHammer mitigation mechanism,
CoMeT, that prevents RowHammer bitflips with low area, per-
formance, and energy costs in DRAM-based systems at very

1. Introduction

DRAM chips are susceptible to read-disturbance where repeat-
edly accessing a DRAM row (i.e., an aggressor row) can cause
bitflips in physically nearby rows (i.e., victim rows) [1-13].
RowHammer is a type of read-disturbance phenomenon that
is caused by repeatedly opening and closing (i.e., hammering)
DRAM rows. Modern DRAM chips become more vulnera-
ble to RowHammer as DRAM technology node size becomes
smaller [1, 2,4, 14—-19]: the minimum number of row activa-
tions needed to cause a bitflip (i.e., RowHammer threshold

https://arxiv.org/abs/2402.18769

https://qithub.com/CMU-SAFARI/CoMeT

SAFARI
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Hardware Complexity

 Storage and area overhead analysis: CACTI

* Dual-rank area overhead comparison:
B CoMeT @Graphene MHydra

0.3

=

£, |54 - 74.2x

T Ue T Significantly

2 less area overhead

© 0.1

o il _.n

© n

&) ™

< 4 | .
CoMeT stores fewer bits 1K 125 Similar area overheads

as the RowHammer RowHammer Threshold

threshold decreases

CoMeT incurs a significantly less area overhead than Graphene
and a similar area overhead to Hydra

SAFARI 55



Evaluation Methodology

* Performance and energy consumption evaluation: cycle-level
simulations using Ramulator [Kim+, CAL 2015]
and DRAMPower [Chandrasekar+, DATE 2013]

* System Configuration:

Processor 1 or 8 cores, 3.6GHz clock frequency,
4-wide issue, 128-entry instruction window
DRAM DDR4, 1 channel, 2 rank/channel, 4 bank groups,
4 banks/bank group, 128K rows/bank
Memory Ctrl. 64-entry read and write requests queues,

Scheduling policy: FR-FCFS with a column cap of 16
Last-Level Cache 8 MiB (single-core), 16 MiB (8-core)

CoMeT Counter Table: 4 hash functions 512 counters per hash
Recent Aggressor Table: 128 entries

* Comparison Points: 4 state-of-the-art RowHammer mitigations

* Graphene (best performing), Hydra (area-optimized best performing),
Low Processor Chip Area Cost: REGA, PARA

* Workloads: 61 single-core applications and 56 8-core workload mixes
 SPEC CPU2006, SPEC CPU2017, TPC, MediaBench, YCSB

SAFARI https://github.com/CMU-SAFARI/CoMeT
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Performance and DRAM Energy

* Average performance and DRAM energy overheads of CoMeT
across single-core applications

1.1 1.1
O 1.05 = 105
A, 4.01% é ' 2.07%
T Ty =1 s L
0,95 - ©20.95
o N =
g 0.9 - T‘Ecm 0.9
2 0.85 - £ 085 -
0.8 | | | % 08 - i

1000 500 250 125
RowHammer Threshold

1000 500 250 125
RowHammer Thresho

CoMeT prevents bitflips with very small average performance and DRAM energy
overheads compared to a baseline system with no RowHammer mitigation
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Performance Comparison:
Single-Core Applications

B Graphene B CoMeT B Hydra

B REGA

Normalized
IPC Distribution
(@] o o =
A O o O
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1000 500 250
RowHammer Threshold
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ik EE*T : :
X
¥ [ x - X
x < X
XX

125

CoMeT incurs a small performance overhead (< 1.75%) over Graphene

and outperforms Hydra (by up to 39.1%)

at all RowHammer thresholds

'SAFARI
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Performance Comparison:
8-Core Workloads

I Graphene B CoMeT B Hydra B REGA [ PARA

T TR O

X
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o
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Trends are similar to single-core application evaluation trends
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DRAM Energy Comparison:
Single-Core Applications

I Graphene I CoMeT | Hydra I REGA [ PARA

1000 500 250 125
RowHammer Threshold (Ngy)

Normalized Energy Distribution

CoMeT incurs a small DRAM energy overhead (<1%) over Graphene
and consumes less DRAM energy than Hydra

"SAFARI 50



DRAM Energy Comparison:
8-Core Workloads

I Graphene I CoMeT | Hydra I REGA [ PARA

MAALJ

1000 500 250
RowHammer Threshold

N w ~

Normalized
Energy Distribution

=

Multicore energy trends are similar to single core energy trends
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More in the Paper

 Security Analysis of CoMeT

* Sensitivity Analysis
* Counter Table Configurations
* Recent Aggressor Table Configurations

* Counter Reset Period and Preventive Refresh Threshold Values

e CoMeT's Performance under Adversarial Workloads

* Comparison against Throttling-Based Mitigation Techniques

* CoMeT's Performance at High RowHammer Thresholds

SAFARI
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More in the Paper

@[V

CoMeT': Count-Min-Sketch-based Row Tracking
to Mitigate RowHammer at Low Cost

Ismail Emir Yiiksel
A. Giray Yaglik¢1

F. Nisa Bostanci
Yahya Can Tugrul

Ataberk Olgun
Mohammad Sadrosadati

Konstantinos Kanellopoulos
Onur Mutlu

ETH Ziirich

DRAM chips are increasingly more vulnerable to read-
disturbance phenomena (e.g., RowHammer and RowPress),
where repeatedly accessing DRAM rows causes bitflips in
nearby rows due to DRAM density scaling. Under low RowHam-
mer thresholds, existing RowHammer mitigations either incur
high area overheads or degrade performance significantly.

We propose a new RowHammer mitigation mechanism,
CoMeT, that prevents RowHammer bitflips with low area, per-
formance, and energy costs in DRAM-based systems at very

1. Introduction

DRAM chips are susceptible to read-disturbance where repeat-
edly accessing a DRAM row (i.e., an aggressor row) can cause
bitflips in physically nearby rows (i.e., victim rows) [1-13].
RowHammer is a type of read-disturbance phenomenon that
is caused by repeatedly opening and closing (i.e., hammering)
DRAM rows. Modern DRAM chips become more vulnera-
ble to RowHammer as DRAM technology node size becomes
smaller [1, 2,4, 14-19]: the minimum number of row activa-
tions needed to cause a bitflip (i.e., RowHammer threshold

https://arxiv.org/abs/2402.18769

SAFARI
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CoMeT is Open Source and Artifact Evaluated

> © [V

H CMU-SAFARI / CoMeT ' Public O Notifications % Fork 0 W oStar 6 |~

<> Code ( lIssues 11 Pullrequests () Actions [ Projects @ Security | Insights

¥ master + P 1Branch © 0 Tags Q Go to file <> Code ~ About

CoMeT is a new low-cost RowHammer

olgunataberk Update READMEmd @B ff03%d - 3 months ago 1) 28 Commits mitigation that uses Count-Min Sketch-
based aggressor row tracking
I8 configs/ArtifactEvaluation initial commit 3 months ago
0 Readme
B ex add ext files 3 months ago s MIT license
B scripts/artifact clean stale results 3 months ago A Activity
(= Custom properties
B s remove unnecessary files 3 months ago
Y 6 stars
(I} .gitignore add scripts for fetching CPU traces and generating Slurm jobs 3 months ago ® 7 watching
0 forks
[ CMakeLists.txt initial commit 3 months ago ¥
Report repository
0O Doxyfile initial commit 3 months ago
[ LICENSE update README.md and LICENSE 3 months ago Releases
No releases published
[ READMEmd Update README.md 3 months ago

https://github.com/CMU-SAFARI/CoMeT
SAFARI 64
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Conclusion

Goal: Prevent RowHammer bitflips with low area, performance, and energy overheads
in highly RowHammer-vulnerable DRAM-based systems

Key Idea: Use low-cost and scalable hash-based counters to accurately track DRAM rows

CoMeT:

- tracks most DRAM rows with scalable hash-based counters by employing
the Count-Min-Sketch technique to achieve a low area cost

- tracks only a small set of DRAM rows that are activated many times with highly
accurate per-DRAM-row activation counters to reduce performance penalties

Evaluation: CoMeT achieves a good trade-off between area, performance and energy costs
- incurs significantly less area overhead (74.2X) compared to the state-of-the-art technique
- outperforms the state-of-the-art technique (by up to 39.1%)

https://github.com/CMU-SAFARI/CoMeT
SAFARI 65
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ABACuS Summary

Problem: As DRAM becomes more vulnerable to read disturbance, existing
RowHammer mitigation techniques either prevent bitflips

 at high area overheads or
* with prohibitively large performance and energy overheads

Goal: Prevent RowHammer bitflips at low performance, energy,
and area cost especially at very low RowHammer thresholds
(e.g., 125 aggressor row activations induce a bitflip)

Key Observation: Many workloads access the same row address in different
DRAM banks at around the same time

Key Idea: Use one counter to track the activation count of
many rows with the same address across all DRAM banks

Key Results: At very low RowHammer thresholds, ABACuS:
* Induces small system performance and DRAM energy overhead
* Outperforms the state-of-the-art mitigation (Hydra)
* Takes up 22.7X smaller chip area than state-of-the-art (Graphene)

SAFAR/| nhttps://github.com/CMU-SAFARI/ABACuUS
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2. ABACuUS: Key Idea and Mechanism
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DRAM Read Disturbance (I)

DRAM Chip

DKAM Module

SAFARI



DRAM Read Disturbance (11)

* Read disturbance in DRAM breaks memory isolation

* Prominent example: RowHammer

4 DRAM Chip )

x Row 3 x Victim Row

Repeatedly opening (activating) and closing a DRAM row
many times causes RowHammer bitflips in adjacent rows

SAFARI [Kim+, ISCA’14]




Read Disturbance Worsens

« Read disturbance bitflips occur
at much smaller activation counts

« More than 100x decrease in less than a decade

 ——s

139K 9.6K <1K
[Kim+, [Kim+, [Luo+,
ISCA'14] ISCA20] ISCA23]

Mitigation techniques against read disturbance attacks
need to be effective and efficient for highly vulnerable systems

SA FAR' [Bostanci+, HPCA'24]




Read Disturbance Mitigation Approaches

There are many ways to mitigate RowHammer bitflips

* More robust DRAM chips and/or error-correcting codes
* Increased refresh rate
* Physical isolation

Preventive refresh

* Proactive throttling

SAFARI



Preventive Refresh

g DRAM Chip

} A Row 1 Aggressor Row

Row 2 Victim Row

Refreshing potential victim rows
mitigates read disturbance bitflips

ﬁ Requires aggressor row activation count
estimation or tracking

SAFARI [Kim+, ISCA’20]



Preventive-Refresh-Based Mitigations

Shared Counters

Tag A | Counter A

Tag B | Counter B

Processor Chip

Performance
& Energy Costs

(s M [ rintnintotn y |

Row A Counter A Tag A | Counter A
Row B Counter B Tag B | Counter B
(-
Row C Counter C Tag C | Counter C
Row D Counter D s T T
ow ‘ CAM-based l
I implementation I
Processor R _
DRAM Chip Chip T
One ACT counter One ACT counter
per DRAM row per aggressor row
VERY LOW LOW

Many DRAM rows # of aggressor rows
!A (e.g., >1M) A increases significantly :_J
R \
o+ T .
gé’ VERY HIGH HIGH

<1 counter
per DRAM row

High DRAM
bandwidth
consumption

W
D
o
2

[Bostanci+, HPCA'24]
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Problem & Goal

Problem

No existing mitigation technique prevents RowHammer bitflips
at low area, performance and energy costs

Goal

Prevent RowHammer bitflips
at low performance, energy, and area cost
especially at very low RowHammer thresholds
(e.g., 125 aggressor row activations induce a bitflip)

SAFARI




Outline

2. ABACuUS: Key Idea and Mechanism

3. Evaluation

4. Conclusion
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Key Observation

Many workloads access the same row address
in different banks at around the same time

. Bank O Bank 1

3 | 1 |
| RowX | | RowX
: 3 1 | )
Bank 2 Bank 3
LD (0,X) |_Row owX ]
Load request targeting
bank 0 row X Sibling rows

Time
: : : : : >

lbx) | [tbbax ]| [b@EY | [tbEXx]| [Lb@ex ]
SAFARI




Explanation for the Key Observation

o Spatial locality in memory accesses

« A program tends to access neighboring
cache blocks at around the same time

- e.g., a streaming access to an array

e Modern physical > DRAM address mappings

« Place neighboring cache blocks
into different banks, but into the same row

 Leverage DRAM bank-level parallelism
for higher-throughput DRAM access

SAFARI



Sibling Row Activation Count

e RowHammer Threshold (Ngy) = 500
2 3 500 ‘
o VI . . == T T
O TR T

c : !
29 756 = el ol
2 3 128

Workloads

If a row is activated RowHammer threshold (Ngy) times
its siblings are likely activated more than Ngy/2 times

SAFARI




Key Idea

* There are many (e.g., 16) banks in a DRAM chip
 Newer DRAM standards (DDR5) have more (32) banks
* # of activation counters linearly increases with # of banks

* Sibling rows have similar activation counts

* Have one counter for all siblings

* Reduce the number of counters by a factor of the number of banks

Bank O Bank 1 Bank 15 Bank 0-15
I 11 1 I 1 I 1
| Counter X || Counter X| " | Counter X | | Counter X |
1 11 | | ] 1 ]
Existing Row Activation Tracker ABACuS-Based Tracker
\/"

16X reduction in number of counters

SAFARI



ABACuS: Overview

Track the maximum (worst) activation count
across all sibling rows using one counter

Row ID | Activation Count

ut
st
e
e
e
a®
""""
s
wne®
a®
av
.

| X 72 X 123 X| 31 | e X 42
Bank 0 Bank 1 Bank 2 Bank N
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Key Components

* Adopt a frequent item counting algorithm
o Area-efficient, fewer counters to track more DRAM rows

* ABACuS is compatible with other counting methods

SAFARI

ABACuUS Counter Table

Row Activation Counter (RAC)

\J

s ABACUS Counter R

Sibling Activation Vector (SAV) )

ABACuUS Counter

]

ABACuUS Counter

]

> I\Ientries

Spillover Counter



Operation

-
e
s
.
.t
.t
-----
.
e
.t
.s
e
.

- X 72 X 1 23 X 31 ................ X 42
Bank 0 Bank 1 Bank 2 Bank N

* The RAC always stores the maximum activation count
e Store small additional information in SAV

“"Which siblings were activated
since RAC was last incremented?”

ABACuS Counter One bit per bank

[ D | ) |

Increment only when a sibling is activated “again”
(i.e., activate targets a set SAV bit)

SAFARI




Outline

3. Evaluation
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Evaluation Methodology

* Performance and energy consumption evaluation:
Cycle-level simulations using Ramulator [Kim+, CAL 2015]
and DRAMPower [Chandrasekar+, DATE 2013]

* System Configuration:

Processor 1 or 8 cores, 3.6GHz clock frequency,
4-wide issue, 128-entry instruction window
DRAM DDR4, 1 channel, 2 rank/channel, 4 bank groups,

4 banks/bank group, 128K rows/bank, 3200 MT/s

Memory Ctrl. 64-entry read and write requests queues,

Scheduling policy: FR-FCFS with a column cap of 16
Last-Level Cache 2 MiB (single-core), 16 MiB (8-core)

* Comparison Points: 4 state-of-the-art RowHammer mitigations
* Graphene (best performing), Hydra (area-optimized best performing),
Low Processor Chip Area Cost: REGA, PARA

* Workloads: 62 1- & 8-core workloads
« SPEC CPU2006, SPEC CPU2017, TPC, MediaBench, YCSB

SAFARI



Single-Core Performance and Energy

Small 0.6% average performance overhead at nRH = 1000
1.5% at nRH = 125

ENERGY
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Multi-Core Performance

S [0 ABACUS [ Graphene [ Hydra [0 REGA [0 PARA|

©

¥ Baseline weighted speedup

Q_ 1.0 - -T S - T > T I | -

n ? E | % O o | o

D0.8 - ; T l - ©

< ¢ ¢ ¢ ¢ 1 \ o}

©0.6 ’ - - : 1 o

2 ' L
0.4 ¢ g ¢ T

o : g

N 0.2 :

©

€ 0.0

g 1000 500 250 125

RowHammer Threshold (Ngy)
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Storage and Area Overhead

ABACuS takesup 18.93 KiBat 1Kand 151.41 KiB at 125
RowHammer threshold

Area overhead analysis: CACTI

Area overhead for a dual-rank system
B ABACuUS BGraphene BHydra

o
w

o
N
l
]

o
|
|
1

Area Overhead (mm?2)

1K 125
RowHammer Threshold

o
I
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More 1n the Paper

* More motivational analysis
* Multi-core performance & energy results

* Performance under adversarial workloads
 Alternative ABACuS design

* Performance & energy sensitivity to:

* Blast radius
* Number of ABACuS counters
e Number of banks

* Circuit area, latency, energy, and power
e Security proof

SAFARI
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4. Conclusion
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ABACuS Summary

Goal: Prevent RowHammer bitflips at low performance, energy,
and area cost especially at very low RowHammer thresholds
(e.g., 125 aggressor row activations induce a bitflip)

Key Observation: Many workloads access the same row address in different
DRAM banks at around the same time

Key Idea: Use one counter to track the activation count of
many rows with the same address across all DRAM banks

Key Results: At very low RowHammer thresholds, ABACuS:
* Induces small system performance and DRAM energy overhead
* Outperforms the state-of-the-art mitigation (Hydra)
* Takes up 22.7X smaller chip area than state-of-the-art (Graphene)

SAFAR/| nhttps://github.com/CMU-SAFARI/ABACuUS
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Extended Version on arXiv

https://arxiv.org/pdf/2310.09977.pdf
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Mitigation
Ataberk Olgun, Yahya Can Tugrul, Nisa Bostanci, Ismail Emir Yuksel, Haocong Luo, Steve Rhyner, Abdullah Giray Yaglikci, Geraldo F. E:’Cr;"‘ browse context:
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We introduce ABACuS, a new low-cost hardware-counter-based RowHammer mitigation technique that performance-, energy-, and area- Change to browse by:

efficiently scales with worsening RowHammer vulnerability. We observe that both benign workloads and RowHammer attacks tend to access DRAM cs

rows with the same row address in multiple DRAM banks at around the same time. Based on this observation, ABACuS's key idea is to use a single ¢s.AR
shared row activation counter to track activations to the rows with the same row address in all DRAM banks. Unlike state-of-the-art RowHammer
mitigation mechanisms that implement a separate row activation counter for each DRAM bank, ABACuS implements fewer counters (e.g., only
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ABACuS 1s Open Source

https://github.com/CMU-SAFARI/ABACuS
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Count-Min-Sketch-based Row Tracking
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Executive Summary

Problem: As DRAM becomes more vulnerable to read disturbance, existing RowHammer
mitigation techniques either prevent bitflips

(1) at low performance cost but with high area overheads or

(2) at low area cost but with prohibitively large performance and energy overheads

Goal: Prevent RowHammer bitflips with low area, performance, and energy overheads
in highly RowHammer-vulnerable DRAM-based systems

Key Idea: Use low-cost and scalable hash-based counters to accurately track DRAM rows

CoMetT:
- tracks most DRAM rows with scalable hash-based counters by employing

the Count-Min-Sketch technique to achieve a low area cost
- tracks only a small set of DRAM rows that are activated many times with highly accurate
per-DRAM-row activation counters to reduce performance penalties

Evaluation: CoMeT achieves a good trade-off between area, performance and energy costs
- incurs significantly less area overhead (74.2X) compared to the state-of-the-art technique
- outperforms the state-of-the-art technique (by up to 39.1%)

https://qgithub.com/CMU-SAFARI/CoMeT
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Read Disturbance Vulnerabilities (I)

- DRAM Subarray
x Row 0O Victim Row
¥ row1  Puicim row
closed Row 2
x Row 3 x Victim Row
) 4 Row 4 Victim Row
\-

v

Repeatedly opening (activating) and closing (precharging)

a DRAM row causes RowHammer bitflips in nearby cells

SAFARI
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Read Disturbance Vulnerabilities (I)

- DRAM Subarray A
x Row 0 Victim Row
¥ row1  Puicim row
Row 2
x Row 3 x Victim Row
) 4 Row 4 Victim Row
\- /

The minimum number of activations that causes a bitflip
is called the RowHammer threshold

S A FA R l [Kim+ ISCA’20] 5



Read Disturbance Vulnerabilities (I1I)

* DRAM chips are more vulnerable to read disturbance today

* Read disturbance bitflips occur at much lower activation counts

(more than two orders of magnitude decrease in less than a decade):

I e

139K 9.6K <1K
[Kim+, ISCA’14] [Kim+, ISCA"20] [Luo+, ISCA'23]

Mitigation techniques against read disturbance attacks
need to be effective and efficient for highly vulnerable systems

'SAFARI :



Existing RowHammer Mitigations (I):
Preventive Refresh

- DRAM Subarray A

Row 0O Victim Row

Row 1 Victim Row

Row 2  Aggressor Row
Row 3 Victim Row

Row 4 Victim Row

\_

Refreshing potential victim rows
mitigates read disturbance bitflips

S A FA R l [Kim+ ISCA’20] A



Existing RowHammer Mitigations (11I):
DRAM Row Activation Tracking

- DRAM Subarray A

Row 0O Victim Row

Row 1 Victim Row

Row 2  Aggressor Row
Row 3 Victim Row

Row 4 Victim Row

Mitigation techniques track DRAM row activation counts
(of aggressor rows) to preventively refresh potential victim rows

10
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Existing RowHammer Mitigations (III):

Overview of Preventive Refresh-Based Mitigation Techniques

per DRAM row

Row A Counter A Tag A | Counter A
Row B § Counter B Tag B | Counter B
Row C Counter C Tag C | Counter C
Row D Counter D ( CAM-based |
Processor | implementation |
DRAM Chip R i
One ACT counter One ACT counter

per aggressor row

Shared Counters
Tag A

Tag B

Processor Chip

Counter A

Counter B

<1 counter
per DRAM row

VERY LOW

Performance
& Energy Costs

(e.g., 128K per bank)
VERY HIGH

Area
Cost

———————— N
rA Many DRAM rows

G - - e S S e . -

f High DRAM
I A bandwidth
\ consumption
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Existing RowHammer Mitigations (I1V):
Overhead Trade-Off of State-of-the-Art Mitigation Techniques

Low Processor Chip
Area Overhead

=== Graphene
= Hydra \
m—— REGA /
== = PARA

Low Energy Low Performance
Overhead

Overhead

Low DRAM
Area Overhead
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Existing RowHammer Mitigations (I1V):
Overhead Trade-Off of State-of-the-Art Mitigation Techniques

Low Processor Chip
Area Overhead

=== Graphene S
m— Hydra

y Y \
m— REGA
== = PARA

Low Energy Low Performance
Overhead

Overhead

Low
Area Overhead

No existing mitigation technique prevents RowHammer bitflips
at low area, performance and energy costs
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Our Goal

Prevent RowHammer bitflips
with low area, performance, and energy overheads
in highly RowHammer-vulnerable DRAM-based systems

(e.g., a RowHammer threshold of 125)

SAFARI !



Key Observation

Hash-based counters are low-cost:
1. can be implemented with low-cost structures and

2. can aggregate many rows' activation counts together LOW COST

flgy =~~~ ~—TTTTTEEEEEEE | Fggr——""Tmmmmmmmemmemem— I
Row 0 ! Hash Function ! :o Counters !
Row 1 : (Example) 11 o 1 2 3 :
Row 2 L5  H(ID)=1D %4 I !
Row 3

: T, . S, S, S
Row 4 T 5 B |
DRAM Mapping without tags Fixed number of counters

Tag-based counters are highly accurate:
Each one tracks one row's activation count

4
)
(@)
=
o

I
|
Row O I
I
I
I
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Key Idea

Use low-cost and scalable hash-based
1 counters to track most DRAM rows'
activations with low area overhead

Use highly accurate tag-based counters
2 to track only a small set of DRAM rows
to achieve low performance overhead

SAFARI :
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CoMeT Overview

Counter Table (CT):
-  Maps each DRAM row to a group of low-cost hash-based counters

as uniquely as possible by employing the Count-Min Sketch technique
- Triggers a preventive refresh to an aggressor row's victim rows
when the aggressor's counter group reaches an activation threshold

ACKS DRA OW activations at low area co

Recent Aggressor Table (RAT):
- Allocates highly accurate per-DRAM-row counters
for only a small set of DRAM rows that are activated many times

Reduces performance penalties by increasing tracking accuracy

SAFARI 4



Operation of CoMeT

CoMeT \
Hash-based Counters > Tag-based Counters
Counter Table  Recent Aggressor Table |

Recent Aggressor Table-Based
Estimation

used when there is a tag match

9 Row A's ACT Count to Ny, \;reventive refresh

\ ’L threshold /

Preventively Refresh
A's victim rows

SAFARI !




Counter Table (CT):
Count-Min-Sketch-based Row Tracking

* Count-Min Sketch: A hash-based frequent item counting technique

Action Timeline Hash Functions | Counters
: 1 2 3 4
ACT A : |;|19 1
Hi(A) > 0
ACT A Hy(7) = 4
ACT B H.(C) > 0
( , COUNTER 4
I COLLISION 1
_ T T e T T e T
ACT_Count(A) = 3 causes overestimatio:
(" Actual ACT_Count(A)=2 ! Counter Table

o . . S S B B B B B B . -
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Counter Table (CT):
Count-Min-Sketch-based Row Tracking

* To avoid overestimations, Counter Table implements
multiple hash functions

Action Timeline Hash Functions | Counters
ACT A H,
ACT A H,

ACT B

ACT C

ACT Count(A) = 2

CounterGroupg Co

[ Actual ACT_Count(A) =2 | Counter Table

o . . S S B B B B B B . -

ACT_Count(A)

MIN(CounterGroup,)

The minimum counter value is an upper bound
for the actual activation count

SAFARI o



Counter Table (CT):
Identifying Aggressor Rows

* CoMeT sets a preventive refresh threshold (Npg ) to timely refresh
an aggressor row's victim rows to prevent bitflips

Action Timeline Hash Counters
Functions ,-6. 1 2 3 4
ACT A . 1 1 1
H i
! \
ACT_COU nt(A) = NPR Hz
. \
a Identify A as an H; !
aggressor row ’ N
Counter Table CourterGroup,

Preventively refresh
A's victim rows

* Npg: Preventive Refresh Threshold
I : CounterGroup,

ACT Count(C)=0

SAFARI g



Counter Table (CT):

Counter Saturation

 CoMeT does not reset any counter in CT after preventive refresh
* CT counters saturate at Npp,

Action Timeline Hash Counters
Functions 0 1 2 3 4
ACT A |
Ho
| ‘O] | Preventively refresh

o’ A's victim rows H,
G

: ACT A H,

.
.
*

S ACT Count(h)= Npx e Counter Table

* Npg: Preventive Refresh Threshold

Preventively refresh Il : CounterGroup,
A's victim rows D \
o Ll Actual ACT_Count(A) I
can potentially incur v after preventive refresh is 0 ;
performance and energy = = eSS S S S S ESsssssss————
overheads
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Recent Aggressor Table

» Allocates per-DRAM-row counters for aggressor rows to accurately
estimate their activation counts after preventive refreshes
* Implemented for only a small set of DRAM rows to maintain a low area cost

Hash Counters

Functions 0 1 2 3 4 RowTag  Counter

, Al 0
H,
H;
f TAG MATCH
Counter Table kRecent Aggressor Table Y
* Npg: Preventive Refresh Threshold
Il : CounterGroup, ACT_Count(A) = 0

If a DRAM row has a Recent Aggressor Table entry,
CoMeT estimates its activation count 100% accurately

SAFARI ’



Operation of CoMeT

CoMeT \
Hash-based Counters > Tag-based Counters
Counter Table  Recent Aggressor Table |

Recent Aggressor Table-Based
Estimation

used when there is a tag match

9 Row A's ACT Count to Ny, \;reventive refresh

\ ’L threshold /

Preventively Refresh
A's victim rows
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More Operational Details for CoMeT

* Counter update policy

* Periodic counter reset mechanism

* Recent Aggressor Table eviction policy

* Early preventive refresh at coarse granularity

* Determining the preventive refresh threshold

SAFARI



More Operational Details for CoMeT

@[V

CoMeT: Count-Min-Sketch-based Row Tracking
to Mitigate RowHammer at Low Cost

Ismail Emir Yiiksel
A. Giray Yaglike1

F. Nisa Bostanci
Yahya Can Tugrul

Ataberk Olgun
Mohammad Sadrosadati

Konstantinos Kanellopoulos
Onur Mutlu

ETH Ziirich

DRAM chips are increasingly more vulnerable to read-
disturbance phenomena (e.g., RowHammer and RowPress),
where repeatedly accessing DRAM rows causes bitflips in
nearby rows due to DRAM density scaling. Under low RowHam-
mer thresholds, existing RowHammer mitigations either incur
high area overheads or degrade performance significantly.

We propose a new RowHammer mitigation mechanism,
CoMeT, that prevents RowHammer bitflips with low area, per-
formance, and energy costs in DRAM-based systems at very

1. Introduction

DRAM chips are susceptible to read-disturbance where repeat-
edly accessing a DRAM row (i.e., an aggressor row) can cause
bitflips in physically nearby rows (i.e., victim rows) [1-13].
RowHammer is a type of read-disturbance phenomenon that
is caused by repeatedly opening and closing (i.e., hammering)
DRAM rows. Modern DRAM chips become more vulnera-
ble to RowHammer as DRAM technology node size becomes
smaller [1, 2,4, 14—-19]: the minimum number of row activa-
tions needed to cause a bitflip (i.e., RowHammer threshold

https://arxiv.org/abs/2402.18769

https://qithub.com/CMU-SAFARI/CoMeT

SAFARI
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Evaluation Methodology

* Performance and energy consumption evaluation: cycle-level simulations
using Ramulator [Kim+, CAL 2015]
and DRAMPower [Chandrasekar+, DATE 2013]

e System Configuration:

Processor 1 or 8 cores, 3.6GHz clock frequency,
4-wide issue, 128-entry instruction window
DRAM DDR4, 1 channel, 2 rank/channel, 4 bank groups,
4 banks/bank group, 128K rows/bank
Memory Ctrl. 64-entry read and write requests queues,

Scheduling policy: FR-FCFS with a column cap of 16
Last-Level Cache 8 MiB (single-core), 16 MiB (8-core)

CoMeT Counter Table: 4 hash functions 512 counters per hash
Recent Aggressor Table: 128 entries

* Comparison Points: 4 state-of-the-art RowHammer mitigations

* Graphene (best performing), Hydra (area-optimized best performing),
Low Processor Chip Area Cost: REGA, PARA

* Workloads: 61 single-core applications and 56 8-core workload mixes
e SPEC CPU2006, SPEC CPU2017, TPC, MediaBench, YCSB

SAFARI https://github.com/CMU-SAFARI/CoMeT L2
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Hardware Implementation

 Storage and area overhead analysis: CACTI

* Dual-rank area overhead comparison:
@ CoMeT @Graphene M@Hydra

03

=

S, | 54x 742

oYL T Significantly

j= less area overhead

€ 0.1

O ) ] j

© n

&) ™

< 4. ;]
CoMeT stores fewer bits 1K 125 Similar area overheads

as the RowHammer RowHammer Threshold

threshold decreases

CoMeT incurs a significantly less area overhead than Graphene
and a similar area overhead to Hydra
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Performance and DRAM Energy

* Average performance and DRAM energy overheads of CoMeT
across single-core applications

1.1 1.1
O o 8 2.07%
=X 4.01% N9 el
g -
N £Es
© o é
€0.9 - £509 -
o
Z
0.8 | | | | 0.8 S
1000 500 250 125 1000 500 250 125
RowHammer Threshold RowHammer Threshold

CoMeT prevents bitflips with very small average performance and DRAM energy

overheads compared to a baseline system with no RowHammer mitigation

e CEmpErEa i & BEEEnE SySE Wi P Mo Emmer Mg
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Performance Comparison:
Single-Core Applications

B REGA

ik EE*T : :
X
¥ [ x - X
x < X
XX

1000 500 250 125
RowHammer Threshold

B Graphene B CoMeT B Hydra [ PARA

Normalized
IPC Distribution
(@] o o =
A o o o
|

o
N

©
o

CoMeT incurs a small performance overhead (< 1.75%) over Graphene
and outperforms Hydra (by up to 39.1%)
at all RowHammer thresholds
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Performance Comparison:
8-Core Workloads

I Graphene B CoMeT B Hydra B REGA [ PARA

CIETE

-
o
[
|

©
o
X X XXX

©
o

X
%

o
o

Normalized
Weighted Speedup
o
NJ

©
o

1000 500 250 125
RowHammer Threshold

Trends are similar to single-core application evaluation trends
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DRAM Energy Comparison:
Single-Core Applications

I Graphene I CoMeT | Hydra I REGA [ PARA

Normalized Energy Distribution

1000 500 250 125
RowHammer Threshold (Ngy)

CoMeT incurs a small DRAM energy overhead (<1%) over Graphene and
consumes less DRAM energy than Hydra
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DRAM Energy Comparison:
8-Core Workloads

I Graphene I CoMeT | Hydra I REGA [ PARA

MAALJ

1000 500 250
RowHammer Threshold

N w ~

Normalized
Energy Distribution

=

Multicore energy trends are similar to single core energy trends
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More in the Paper

 Security Analysis of CoMeT

* Sensitivity Analysis
* Counter Table Configurations
* Recent Aggressor Table Configurations
* Counter Reset Period and Preventive Refresh Threshold Values

e CoMeT's Performance under Adversarial Workloads

* Comparison against Throttling-Based Mitigation Techniques

* CoMeT's Performance at High RowHammer Thresholds

SAFARI =



More in the Paper
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DRAM chips are increasingly more vulnerable to read-
disturbance phenomena (e.g., RowHammer and RowPress),
where repeatedly accessing DRAM rows causes bitflips in
nearby rows due to DRAM density scaling. Under low RowHam-
mer thresholds, existing RowHammer mitigations either incur
high area overheads or degrade performance significantly.

We propose a new RowHammer mitigation mechanism,
CoMeT, that prevents RowHammer bitflips with low area, per-
formance, and energy costs in DRAM-based systems at very

1. Introduction

DRAM chips are susceptible to read-disturbance where repeat-
edly accessing a DRAM row (i.e., an aggressor row) can cause
bitflips in physically nearby rows (i.e., victim rows) [1-13].
RowHammer is a type of read-disturbance phenomenon that
is caused by repeatedly opening and closing (i.e., hammering)
DRAM rows. Modern DRAM chips become more vulnera-
ble to RowHammer as DRAM technology node size becomes
smaller [1, 2,4, 14-19]: the minimum number of row activa-
tions needed to cause a bitflip (i.e., RowHammer threshold

https://arxiv.org/abs/2402.18769
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CoMeT is Open Source and Artifact
Evaluated

> © [V

' CMU-SAFARI / CoMeT ' Public

<> Code ( lIssues 11 Pullrequests () Actions [ Projects @ Security | Insights

$ master ~ ¥ 1Branch © 0Tags Q Go to file
olgunataberk Update READMEmd @B ff03%d - 3 months ago
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Conclusion

Goal: Prevent RowHammer bitflips with low area, performance, and energy overheads
in highly RowHammer-vulnerable DRAM-based systems

Key Idea: Use low-cost and scalable hash-based counters to accurately track DRAM rows

CoMeT:
- tracks most DRAM rows with scalable hash-based counters by employing
the Count-Min-Sketch technique to achieve a low area cost

- tracks only a small set of DRAM rows that are activated many times with highly accurate
per-DRAM-row activation counters to reduce performance penalties

Evaluation: CoMeT achieves a good trade-off between area, performance and energy costs

- incurs significantly less area overhead (74.2X) compared to the state-of-the-art technique
- outperforms the state-of-the-art technique (by up to 39.1%)

https://github.com/CMU-SAFARI/CoMeT
SAFARI p
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DRAM Organization

Subarray

yueq

\

DRAM Chip

SAFARI

DRAM Bank

DRAM Subarray

13
9



Read Disturbance Vulnerabilities

The minimum number of row activations needed to cause a bitflip
(i.e., RowHammer threshold (N, )) has reduced by more than an order of magnitude
in less than a decade

Row 2

RowPress is shown to lead to bitflips
with one to two orders of magnitude fewer activations
(than RowHammer) under realistic conditions

Repeatedly and

a DRAM row causes in nearby cells
14
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Existing RowHammer Mitigations (II):
Performance Optimized Mitigations

* Accurately tracking DRAM row activations can be done by
allocating per-row counters to potential aggressor rows

DRAM rows

TAG

Counter

\

| the number of potential aggressor rows

| increases significantly

the number of potential
aggressor rows

<

total number of
DRAM rows

Accurate tracking enables low performance overhead

by reducing unnecessary preventive refreshes

y
‘.\’.’A

\

A tag-based counter
has a high area cost

As DRAM becomes more vulnerable to read disturbance, tracking all potential aggressor

rows with tag-based counters results in a high area overhead

SAFARI




Existing RowHammer Mitigations (III):
Area Optimized Mitigations: Hydra

(" N\ ([ )
DRAM rows Mgmory Controller DRAM
roup Counters
and Filtering Mechanism
_é TAG Counter — Per—DRAM-rOW ]
> counters i
_____ - L - - =
Increased off-chip I
\. communication J J
i Incurs DRAM
Low chip area overhead
storage overhead
As DRAM becomes more vulnerable to read disturbance, increased off-chip
communication results in high performance and energy overheads
14
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Limitations of Existing Mitigations

Low Processor Chip
Area Overhead High area cost

- ﬁrzphe”e due to many and expensive
—— Hydra .
—— REGA per-DRAM-row activation

= = PARA counters

Low Performance
Overhead

Low Energy
Overhead

High performance and energy costs
due to occupying the memory bandwidth

with additional requests
Low DRAM
Area Overhead

No existing mitigation technique prevents RowHammer bitflips
at low area, performance and energy costs

14
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Operation of CoMeT

CoMeT \
N

Hash Counters

Functions 0 1 2 3 4 Row Tag Counter

Ho é
R = >
> H; —> | CounterGroup, |
—> H, >
TAG MATCH
Counter Table \Recent Aggressor Table y
ACT_Count(A) ACT_Count(A)
= MIN( ) = RAT_Counter(A)

used when there is a tag match

ACT_COunt(A) S= NPR _61
\ ™ Preventively Refresh /

—s

preventive refresh ¥ A's victim rows 14
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CoMeT Overview

=t ACT Row X

1 CoMeT

Counter Table

0 Ho(X)=0 = Coo,
CG(X): Hi(X)=2 - Cy5,

0 1 2 m-1

COO

a Recent Aggressor Table
DRAM Row Tag  Counter

Row ID X

N RAT Entries

5 Tag Match RAT Ctr

@

Min_Ctr

-0

Num_ACT »?« Nop

Y: Preventive Refresh

Memory Request Scheduler
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Configuring CoMeT — Sensitivity Analysis:
Counter Table and Recent Aggressor Table

Counters per Hash Function (Ncounters)

@ BN 128 NN 256 NN 512 BN 1024 W 2048
Q0 "~ S 1.00 - ?
C TS5
.= (O 05
= — N 50.75
(- © 5
[0 g £ 050
4— + c D
c C Zgoﬁ
o 35 - :
o O 0.00 |
Q 1 2 4 8 16
Number of Hash Functions (Nyash)
— Number of RAT Entries (Ngar entries)
<C W 32 BN 64 WEE 128 W 256 [ 512
s 5 .61.00
o]0 T
- N9 0.75
= =
. 4
S g.«og 0.50
(o70) 2 O
4= 5 0.25
— o
@) 0.00 —
O 1000 500 250 125

RowHammer Threshold (Ngy)
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Configuring CoMeT — Sensitivity Analysis:
Counter Table and Recent Aggressor Table

CoMeT configuration that achieves both performance and area efficiency:
Counter Table with 4 hash functions and 512 counters per hash function
Recent Aggressor Table with 128 entry

(more analyses in the paper)
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Configuring CoMeT — Sensitivity Analysis:

Counter Reset Period and Npg,

tREFW
Counter Refresh Period = . (1)
Ny
Npp = 2
PR= 111 (2)

B k=1 B k=2 Bl k=3 B k=4 B k=5
SARASAARRRS s SRRSSE s W‘%‘i‘?

¥

Normalized
IPC Distribution

(@) o

U \1

(@) U

1000 500 250 125
RowHammer Threshold (Ngy)
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The effect of EPRT and RAT Miss History Length
on Performance and DRAM energy consumption

EPRT
BN 0% Il 25% 1l 50% B 75% B 100%

ik ol

64 128 256
RAT Miss History Length

=

Normalized
Weighted Speedup
o
(8]

O
o

S

(b)

w

X X X X
X XX X

N

=
I

——

64 128 256 512
RAT Miss History Length

Normalized
Energy Distribution
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Hardware Implementation

 Storage and area overhead analysis: CACTI
* Logic circuitry overhead: Verilog HDL implementation and Synopsys DC

* Dual-rank area overhead comparison:

Nrg=1K Nrg=500 Nry=250 Nryg=125

KB | mm* KB | mm” KB | mm* KB mm?*
CoMeT 76.5 0.09 68.0 0.08 59.5 0.07 51.0 0.07
CT (SRAM) 64.0 0.05 56.0 0.05 48.0 0.04 40.0 0.04
RAT (CAM) 12.5 0.03 12.0 0.03 11.5 0.03 11.0 0.02
Logic Circuitry - 0.005 - 0.005 : 0.005 - 0.005
Graphene [86] | 207.2 0.49 | 398.4 1.13 | 765.0 3.01 | 1466.2 4.89
Hydra [90]° 61.6 0.08 56.5 0.08 51.4 0.07 46.8 0.07

As N, decreases, CoMeT's area and storage overheads decrease
due to storing fewer bits for its counters

SAFARI ;



Hardware Implementation

 Storage and area overhead analysis: CACTI
* Logic circuitry overhead: Verilog HDL implementation and Synopsys DC

* Dual-rank area overhead comparison:

Nrg=1K Nrg=500 Nry=250 Nryg=125

KB | mm* KB | mm” KB | mm* KB mm?*
CoMeT 76.5 0.09 68.0 0.08 59.5 0.07 51.0 0.07
CT (SRAM) 64.0 0.05 56.0 0.05 48.0 0.04 40.0 0.04
RAT (CAM) 12.5 0.03 12.0 0.03 11.5 0.03 11.0 0.02
Logic Circuitry - 0.005 - 0.005 : 0.005 - 0.005
Graphene [86] | 207.2 0.49 | 3984 1.13 | 765.0 3.01 | 1466.2 4.89
Hydra [90]° 61.6 0.08 56.5 0.08 51.4 0.07 46.8 0.07

Compared to the best performing state-of-the-art mitigation,
CoMeT induces significantly less area overhead

SAFARI 1



Hardware Implementation

 Storage and area overhead analysis: CACTI
* Logic circuitry overhead: Verilog HDL implementation and Synopsys DC

* Dual-rank area overhead comparison:

Nrg=1K Nrg=500 Nry=250 Nryg=125

KB | mm* KB | mm” KB | mm* KB mm?*
CoMeT 76.5 0.09 68.0 0.08 59.5 0.07 51.0 0.07
CT (SRAM) 64.0 0.05 56.0 0.05 48.0 0.04 40.0 0.04
RAT (CAM) 12.5 0.03 12.0 0.03 11.5 0.03 11.0 0.02
Logic Circuitry - 0.005 - 0.005 : 0.005 - 0.005
Graphene [86] | 207.2 0.49 | 398.4 1.13 | 765.0 3.01 | 1466.2 4.89
Hydra [90]° 61.6 0.08 56.5 0.08 51.4 0.07 46.8 0.07

Compared to the best performing low-area-cost mitigation,
CoMeT induces similar area overhead

SAFARI .
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Adversarial Access Patterns

I Graphene B CoMeT B Hydra B REGA 0 PARA

1.0 e ——T— — —— - 10 ———————mom
- 5 - 5 X E ]
5 0.9 05 0.8 o
N NS x X
© = . © S
c 0 0.8 (over the baseline) =T 0.6 !
- 5 (- 5
©=0.7 ©=10.4
ZQ ES) 0

— 0.6 o 0.2 42.1%
0.5 0.0
(a) Traditional RowHammer Attack (b) Targeted Attack

CoMeT incurs negligible additional performance overhead
on benign workloads when a traditional RowHammer attack is running at
the same time
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Comparison Against BlockHammer (I)
Tracker Comparison

* CoMeT and BlockHammer employs different algorithms
and this results in different DRAM-row-to-counter mappings

Average # of unique rows that are activated at  the average number of unigue rows touched at
least 125 times by benign workloads least once by benign workloads

1.00
0.75

0.50

o
N
Ul

False Positive Rate

O
o
o

N pak

i i i () e () |
—— BlockHammer ¢

—— CoMeT

[~
.-——---l6-=:‘

10! 102 103 2500  10%
Number of Unigue Rows

When tracking at most 2,500 unigue rows,
CoMeT's tracker outperforms BlockHammer

—
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Comparison Against BlockHammer (II)
Single-Core Performance Comparison

B CoMeT B BlockHammer

Normalized
IPC Distribution
O O O O O =
O N DO 0O O

X XC
I

1

XX 0
- - J
I

m
! ! |
I
»«'_ﬁ
I

1000 500 250 125
RowHammer Threshold

CoMeT outperforms BlockHammer due to BlockHammer's (i) high false positive rate and
(ii) increased memory request latencies due to throttling

SAFARI "



Performance Comparison:
8-Core Workloads

[ Graphene B CoMeT B Hydra B REGA 0 PARA

=) X n u : :
5 @ 0.8 . | m i E =
Q \ Mige o & =l . . : : .
=% 06 A bon L 3o 3 : :
g_o . 0.9/):)(: : .: .gl 4 ] :_ ] ]
O EEN nE n : - : - : :
L_;_,04 [ ] P L [ ] . .
(@) . | L m_1 n
Zo read raad = s | 14.9%: ;
0 0.2 = o m L i
; S ERERERRRE] : -
0.0 11.9°¢U
1000 500 250 125

RowHammer Threshold

CoMeT's performance overhead over Graphene is 0.9% and 14.9%
at Npy, = 1K and 125, respectively

CoMeT outperforms Hydra for all RowHammer thresholds
(by up to 3.2x and 11.9% on average at N, = 125)

CoMeT outperforms all low-cost RowHammer mitigations starting from N,,=250
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Performance Comparison:
8-Core Workloads

More preventive refreshes
I Graphene B CoMeT B Hydra B REGA [ PARA

ol0 -- _—
5
©T O 0.8
QO
N
< 0.6 ”
£ 3 :
S+ 0.4 i 1
Z5 " . 14.9%
%J 0.2 CoMeT outperforms all low-area-cost mitigations —* L
0 starting from the RowHammer threshold of 250 \ f\
11.9%
1000 500 250 ° 125

RowHammer Threshold

CoMeT maintains a performance overhead between Graphene's
and Hydra's performance overheads
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Single-Core Comparison — Radar Chart

Low Processor Chip
Area Overhead
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Multi-Core Comparison — Radar Chart

Low Processor Chip
Area Overhead
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Evaluated Workloads and Their Characteristics

Table 3: Evaluated Workloads and Their Characteristics

[ RBMPKI ||

Workloads

[10+)
(High)

519.1bm (5049 MB/s), 459.GemsFDTD (4788 MB/s), 450.soplex (3212 MB/s),
h264_decode (11284 MB/s), 520.omnetpp (2567 MB/s), 433.milc (3595 MB/s),
434 .zeusmp (5115 MBY/s), bfs_dblp (12135 MB/s), 429.mcf (5588 MB/s),

549 fotonik3d (4428 MB/s), 470.1bm (6489 MB/s), bfs_ny (12146 MB/s),
bfs_cm2003 (12138 MB/s), 437 .leslie3d (3806 MB/s)

2,10)
(Medium)

510.parest (92 MB/s), 462.libquantum (6089 MB/s), tpch2 (3612 MB/s),
wc_8443 (1772 MB/s), ycsb_aserver (1080 MB/s), 473.astar (2473 MB/s),
jp2_decode (1390 MB/s), 436.cactusADM (1915 MB/s), 557.xz (1113 MB/s),
ycsb_cserver (842 MB/s), ycsb_eserver (721 MB/s), 471.omnetpp (96 MB/s),
483.xalancbmk (187 MB/s), 505.mcf (3760 MB/s), wc_map0 (1768 MB/s),
jp2_encode (1706 MB/s), tpch17 (2553 MB/s), ycsb_bserver (854 MB/s),
tpcc64 (1472 MB/s), 482.sphinx3 (968 MB/s)

[0,2)
(Low)

502.gcc (180 MB/s), 544.nab (78 MB/s), h264_encode (0.10 MB/s),
507.cactuBSSN (1325 MB/s), 525.x264 (109 MB/s), ycsb_dserver (659 MB/s),
531.deepsjeng (105 MB/s), 526.blender (56 MB/s), 435.gromacs (259 MB/s),
523.xalancbmk (180 MB/s), 447.dealll (24 MB/s), 508.namd (104 MB/s),
538.imagick (8 MB/s), 445.gobmk (97 MB/s), 444.namd (104 MB/s),
464.h264ref (17 MB/s), ycsb_abgsave (362 MB/s), 458.sjeng (131 MB/s),
541.leela (4 MB/s), tpch6 (675 MB/s), S11.povray (1 MB/s),

456.hmmer (28 MB/s), 481.wrf (7 MB/s), grep_map0 (381 MB/s),
500.perlbench (642 MB/s), 403.gcc (79 MB/s), 401.bzip2 (59 MB/s)
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CoMeT's Performance
at High RowHammer Thresholds

We evaluate the performance of 61 single-core applications at
high RowHammer thresholds of 2000 and 4000. We observe
that CoMeT incurs 0.015% and 0.0053% average performance
overheads, at Ngy= 2000 and Nry= 4000, respectively. We
conclude that CoMeT has negligible performance overhead at
high RowHammer thresholds.
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Summary of the Results

Low Energy
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Storage Overhead of Graphene

Table 1: Storage overhead of a performance-optimized state-of-
the-art RowHammer mitigation [86].

Nru 1000 500 250 125
Storage (KB) | 207.19 49844 765.00 1466.25
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Performance Overhead of Hydra
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