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Brief  Self  Introduction
• Abdullah	Giray	Yaglikci
• Researcher	@	SAFARI	Research	Group	since	August	2016

• ETH	Zurich	(Feb	2018	–	ongoing)
• Intel	Labs	(Aug	2017	–	Feb	2018)
• Carnegie	Mellon	University	(Aug	2016	–	Aug	2017)

• Defended	my	PhD	thesis,	advised	by	Onur	Mutlu,	in	April	2024
• https://agyaglikci.github.io/
• agirayyaglikci@gmail.com	(Best	way	to	reach	me)
• https://safari.ethz.ch

• Research	interests:
• Computer	architecture,	hardware	security
• Memory	and	storage	systems
• Hardware	security,	safety,	reliability,	performance,	
availability,	fairness,	energy	efficiency

• Hardware/software	cooperation
• …	
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Papers in This Talk 

• Ataberk	Olgun,	Yahya	Can	Tugrul,	Nisa	Bostanci,	Ismail	Emir	Yuksel,	Haocong	Luo,	Steve	Rhyner,	
Abdullah	Giray	Yaglikci,	Geraldo	F.	Oliveira,	and Onur	Mutlu,
"ABACuS:	All-Bank	Activation	Counters	for	Scalable	and	Low	Overhead	RowHammer	
Mitigation”	Proceedings	of	the 33rd	USENIX	Security	Symposium (USENIX	Security),	Philadelphia,	PA,	
USA,	August	2024.
[arXiv	version]	[ABACuS	Source	Code	(Officially	Artifact	Evaluated	with	All	Badges)]
Officially	artifact	evaluated	as	available,	functional,	and	reproduced.

• F.	Nisa	Bostanci,	Ismail	Emir	Yuksel,	Ataberk	Olgun,	Konstantinos	Kanellopoulos,	Yahya	Can	Tugrul,	
A.	Giray	Yaglikci,	Mohammad	Sadrosadati,	and Onur	Mutlu,
"CoMeT:	Count-Min-Sketch-based	Row	Tracking	to	Mitigate	RowHammer	at	Low	Cost”	
Proceedings	of	the 30th	International	Symposium	on	High-Performance	Computer	
Architecture (HPCA),	April	2024.
[Slides	(pptx) (pdf)]	[arXiv	version]
[CoMeT	Source	Code	(Officially	Artifact	Evaluated	with	All	Badges)]
Officially	artifact	evaluated	as	available,	reviewed	and	reproducible.
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https://arxiv.org/pdf/2310.09977.pdf
https://arxiv.org/pdf/2310.09977.pdf
https://www.usenix.org/conference/usenixsecurity24/
https://arxiv.org/abs/2310.09977
https://github.com/CMU-SAFARI/ABACuS
https://arxiv.org/pdf/2402.18769
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https://safari.ethz.ch/wp-content/uploads/CoMeT_HPCA24.pptx
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https://github.com/CMU-SAFARI/CoMeT


Memory & Generative AI (I)
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Image Source: https://www.cerebras.net/blog/cerebras-architecture-deep-dive-first-look-inside-the-hw/sw-
co-design-for-deep-learning

https://www.cerebras.net/blog/cerebras-architecture-deep-dive-first-look-inside-the-hw/sw-co-design-for-deep-learning
https://www.cerebras.net/blog/cerebras-architecture-deep-dive-first-look-inside-the-hw/sw-co-design-for-deep-learning


Memory & Generative AI (II)
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Gholami A, Yao Z, Kim S, Mahoney MW, Keutzer K. AI and Memory Wall. RiseLab Medium Blog Post, 
University of Califonia Berkeley, 2021, March 29.

Increasing	gap



Memory Isolation
• A	memory	access	should	not	have	unintended	side	effects	
on	data	stored	in	other	addresses	

• A	fundamental	property	for	robustness	(safety,	security,	and	reliability)
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Memory

access

1	à	0
Leak	private	information

Take	over	a	computer

Data	loss	or	corruption

Compromise	application	correctness

Memory	isolation	is	difficult	in	modern	memory	chips



Read Disturbance in Modern Memory Chips
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• Prevalent	memory	technology:
Dynamic	Random	Access	Memory	(DRAM)

• DRAM	stores	data	in	the	form	of	
electrical	charge	on	a	capacitor

• DRAM	leaks	charge	over	time
and	needs	periodic	refresh

• DRAM	Read	Disturbance:
Accessing	a	DRAM	cell	disturbs	
other	physically	nearby	cells	
and	exacerbates	their	charge	leakage

Wordline

Bitline

Charge	
leakage	
paths



RowHammer: An Example of  DRAM Read Disturbance

Row	0

Row	1

Row	2

Row	3

Row	4

Repeatedly	opening	(activating)	and	closing	(precharging)	
a	DRAM	row	causes	RowHammer	bitflips	in	nearby	cells

and	breaks	memory	isolation

Row	2open
Row	1

Row	3

Row	2closed Row	2open
Victim	Row

Victim	Row

Aggressor	RowRow	2open Row	2closed

DRAM	Subarray
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One Can Take Over an Otherwise-Secure System

9
9

Exploiting	the	DRAM	rowhammer	bug	to	
gain	kernel	privileges	 (Seaborn,	2015)

Flipping	Bits	in	Memory	
Without	Accessing	Them:	An	
Experimental	Study	of	DRAM	
Disturbance	Errors	
(Kim	et	al.,	ISCA	2014)

Induce bit flips in page table entries (PTEs). 
Gain write access to its own page table, 

and hence gain read-write access to all of physical memory.

http://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
http://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_isca14.pdf
http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_isca14.pdf
http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_isca14.pdf
http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_isca14.pdf


More Security Implications (I)

Source: https://lab.dsst.io/32c3-slides/7197.html 

Rowhammer.js: A Remote Software-Induced Fault Attack in JavaScript (DIMVA’16)

“We can gain unrestricted access to systems of website visitors.”
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https://lab.dsst.io/32c3-slides/7197.html


More Security Implications (II)

Source: https://fossbytes.com/drammer-rowhammer-attack-android-root-devices/
Drammer: Deterministic Rowhammer Attacks on Mobile Platforms, CCS’16 

“Can gain control of a smart phone deterministically”
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More Security Implications (III)
• Using	an	integrated	GPU	in	a	mobile	system	to	remotely	
escalate	privilege	via	the	WebGL	interface.	IEEE	S&P	2018

12



More Security Implications (IV)
• Rowhammer	over	RDMA	(I)

13[Tatar+	USENIX	ATC,	2018]



More Security Implications (V)
• Exploiting	Correcting	Codes:	On	the	Effectiveness	of	ECC	
Memory	Against	Rowhammer	Attacks. Cojocar,	L.	.; Razavi,	
K.; Giuffrida,	C.;	and Bos,	H. In S&P,	May	2019	Best	Practical	Paper	
Award,	Pwnie Award	Nomination	for	Most	Innovative	Research
[Paper]	[Slides]

14

Thus, many believed that Rowhammer on ECC memory, even if plausible in theory, is simply 
impractical. This paper shows this to be false: while harder, Rowhammer attacks are still a 
realistic threat even to modern ECC-equipped systems.

https://download.vusec.net/papers/eccploit_sp19.pdf
https://download.vusec.net/papers/eccploit_sp19.pdf
https://download.vusec.net/papers/eccploit_sp19.pdf
https://www.ieee-security.org/TC/SP2019/SP19-Slides-pdfs/Lucian_Cojocar_Exploiting_Correcting_Codes_slides-ecc-new.pdf


More Security Implications (VI)

15x Vendor A
DDR4 modules

U-TRR
New RowHammer 

access patterns

15x Vendor B
DDR4 modules
15x Vendor C

DDR4 modules

All 45 modules we test are vulnerable

99.9% of rows in a DRAM bank 
experience at least one RowHammer bit flip

Up to 7 RowHammer bitflips in 
an 8-byte dataword, making ECC ineffective

TRR	does	not	provide	security	against	RowHammer

U-TRR	can	facilitate	the	development	of	new	RowHammer	attacks	
and	more	secure	RowHammer	protection	mechanisms

Hasan	Hassan,	Yahya	Can	Tugrul,	Jeremie	S.	Kim,	Victor	van	der	Veen,	Kaveh	Razavi,	and Onur	Mutlu,	
"Uncovering	In-DRAM	RowHammer	Protection	Mechanisms:	A	New	Methodology,	Custom	
RowHammer	Patterns,	and	Implications,”	MICRO,	2021.	[Slides	(pptx) (pdf)]	[Short	Talk	Slides	
(pptx) (pdf)]	[Lightning	Talk	Slides	(pptx) (pdf)]	[Full	Talk	 (25	mins)]	[Lightning	Talk	 (1.5	mins)]

https://people.inf.ethz.ch/omutlu/pub/U-TRR-uncovering-RowHammer-protection-mechanisms_micro21.pdf
https://people.inf.ethz.ch/omutlu/pub/U-TRR-uncovering-RowHammer-protection-mechanisms_micro21.pdf
https://people.inf.ethz.ch/omutlu/pub/U-TRR-uncovering-RowHammer-protection-mechanisms_micro21-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/U-TRR-uncovering-RowHammer-protection-mechanisms_micro21-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/U-TRR-uncovering-RowHammer-protection-mechanisms_micro21-short-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/U-TRR-uncovering-RowHammer-protection-mechanisms_micro21-short-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/U-TRR-uncovering-RowHammer-protection-mechanisms_micro21-short-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/U-TRR-uncovering-RowHammer-protection-mechanisms_micro21-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/U-TRR-uncovering-RowHammer-protection-mechanisms_micro21-lightning-talk.pdf
https://www.youtube.com/watch?v=YkBR9yeLHRs&list=PL5Q2soXY2Zi--0LrXSQ9sST3N0k0bXp51&index=11
https://www.youtube.com/watch?v=HHxeuWVqq8w&list=PL5Q2soXY2Zi--0LrXSQ9sST3N0k0bXp51&index=5


More Security Implications (VII)
• Rowhammer	over	RDMA	(II)

16[Lipp+	EuroS&PW,	2020]



More Security Implications (VIII)

An	FPGA-based	RowHammer	attack	
recovering	private	keys	twice	as	fast	
compared	to	CPU-based	attacks

17[Weissman+	CHES	2020]



More Security Implications (IX)

18[Kwong+	IEEE	S&P	2020]



More Security Implications (X)

19[Hong+	USENIX	Security	2019]



More Security Implications (XI)

20[Yao+	USENIX	Security	2020]



More Security Implications (XII)

HammerScope	is	a	software-based	
power	analysis	method	using	
RowHammer	as	a	side	channel

21[Cohen+	CCS	2022]



A RowHammer Survey:
Onur	Mutlu,	Ataberk	Olgun,	and	A.	Giray	Yaglikci,	"Fundamentally	
Understanding	and	Solving	RowHammer”	Invited	Special	
Session	Paper	at	the 28th	Asia	and	South	Pacific	Design	Automation	
Conference	(ASP-DAC),	Tokyo,	Japan,	January	2023.
[arXiv	version]
[Slides	(pptx) (pdf)]
[Talk	Video (26	minutes)]

https://arxiv.org/pdf/2211.07613.pdf 

22

https://arxiv.org/pdf/2211.07613.pdf
https://arxiv.org/pdf/2211.07613.pdf
http://www.aspdac.com/aspdac2023/
http://www.aspdac.com/aspdac2023/
https://arxiv.org/abs/2211.07613
https://people.inf.ethz.ch/omutlu/pub/rowhammer_aspdac23-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/rowhammer_aspdac23-talk.pdf
https://www.youtube.com/watch?v=1kpDJkh_I8s
https://arxiv.org/pdf/2211.07613.pdf


Breaking Samsung’s Best Practice
• Salman	Qazi	and	Daniel	Moghimi,	“SoothSayer:	Bypassing	DSAC	
Mitigation	by	Predicting	Counter	Replacement,”	DRAMSec,	2024
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https://dramsec.ethz.ch/papers/soothsayer-final.pdf
https://dramsec.ethz.ch/papers/soothsayer-final.pdf


RowHammer in DDR5
Patrick	Jattke;	Max	Wipfli;	Flavien	Solt;	Michele	Marazzi;	Matej	
Bölcskei;	and	Kaveh	Razavi,	“ZenHammer:	Rowhammer	Attacks	
on	AMD	Zen-based	Platforms,”	in USENIX	Security,	2024.
[Paper]	[URL]
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We	found	bit	flips	on	only	1	of	10	tested	devices	(S1),	suggesting	that	the	changes	
in	DDR5	such	as	improved	Rowhammer	mitigations,	on-die	error	correction	code	(ECC),	

and	a	higher	refresh	rate	(32	ms)	make	it	harder	to	trigger	bit	flips.

https://comsec.ethz.ch/wp-content/files/zenhammer_sec24.pdf
https://comsec.ethz.ch/wp-content/files/zenhammer_sec24.pdf
https://comsec.ethz.ch/wp-content/files/zenhammer_sec24.pdf
https://comsec.ethz.ch/zenhammer


DRAM	Read	Disturbance:	A	Critical	Challenge

25

DRAM	cells	become	increasingly	
more	vulnerable	to	read	disturbance

Technology	node	scaling

0K 20K 40K 60K 80K 100K 120K 140K

More	than	10X	reduction

Minimum	hammer	count	needed	to	induce	the	first	read	disturbance	bitflip

More	than	100X	reduction
[Luo+,	ISCA’23]

[Kim+,	ISCA’20]

[Kim+,	ISCA’14]



How to Solve DRAM Read Disturbance?
• Build	better	chips
• Increased	refresh	rate	

• Physical	isolation

• Reactive	refresh

• Proactive	throttling

DRAM Bank

Aggressor Row

Victim Rows

Isolation Rows Large-enough	distance

DRAM BankAggressor Row

Victim rows

RefreshVictim Rows

Refresh

Rapidly	activated	(hammered)

REF-to-REF	time	reduces
Fewer	activations	can	fit

Fewer	activations	can	be	performed 26



Existing RowHammer Mitigations (I):
Overview of  Preventive Refresh-Based Mitigation Techniques
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Existing RowHammer Mitigations (II):
Overhead Trade-Off  of  State-of-the-Art Mitigation Techniques

28



Existing RowHammer Mitigations (III):
Overhead Trade-Off  of  State-of-the-Art Mitigation Techniques

29

No existing mitigation technique prevents RowHammer bitflips 
at low area, performance and energy costs



ABACuS: All-Bank Activation Counters 

• Ataberk Olgun, Yahya Can Tugrul, Nisa Bostanci, Ismail Emir Yuksel, Haocong 
Luo, Steve Rhyner, Abdullah Giray Yaglikci, Geraldo F. Oliveira, and Onur Mutlu,
"ABACuS: All-Bank Activation Counters for Scalable and Low Overhead 
RowHammer Mitigation” To appear in Proceedings of the 33rd USENIX Security 
Symposium (USENIX Security), Philadelphia, PA, USA, August 2024.
[arXiv version] [ABACuS Source Code]
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https://arxiv.org/pdf/2310.09977.pdf
https://arxiv.org/pdf/2310.09977.pdf
https://www.usenix.org/conference/usenixsecurity24/
https://www.usenix.org/conference/usenixsecurity24/
https://arxiv.org/abs/2310.09977
https://github.com/CMU-SAFARI/ABACuS


ABACuS
All-Bank Activation Counters for Scalable 

and Low Overhead RowHammer Mitigation

Ataberk Olgun Yahya Can Tuğrul F. Nisa Bostancı

İsmail Emir Yüksel Haocong Luo Steve Rhyner

A. Giray Yağlıkçı Geraldo F. Oliveira Onur Mutlu

will	be	presented	next	week	
in	USENIX	Security	2024

31



Key	Observation

Many	workloads	access	the	same	row	address	
in	different	banks	at	around	the	same	time

Bank	0 Bank	1

Bank	2 Bank	3

Row	X Row	X

Row	X Row	X

CPU

Load	request	targeting	
bank	0	row	X

LD	(0,X)

Time

LD	(1,X) LD	(3,Y) LD	(3,X) LD	(2,X)

LD	(2,X)LD	(3,X)LD	(3,Y)LD	(1,X)LD	(0,X)

Sibling	rows

32



Explanation	for	the	Key	Observation

2 Address	mappings	distribute	consecutive	cache	blocks	
to	different	banks	to	leverage	bank-level	parallelism
(using	the	same	row	ID)

1 Programs	exhibit	spatial	locality:
access	cache	blocks	around	each	other	
at	around	the	same	time

33



Motivational Analysis

Workloads	access	the	same	row	address	
in	different	DRAM	banks	at	around	the	same	time

34

Gathered	from	128	row	activation	windows	in	a	32-bank	system	



Problem

35

No	mitigation	mechanism	leverages	
the	spatial	locality	across	banks

Area	overhead	linearly	increases	
with	the	number	of	banks



Key Idea

36

Sibling	rows:	Rows	with	the	same	ID	across	all	banks

Sibling	rows	can	share	one	activation	counter
to	reduce	the	number	of	counters	
by	a	factor	of	the	bank	count

Bank 0

Counter X

Bank 1

Counter X

Bank 15

Counter X…
…
… Bank 0-15

Counter X

Existing Row Activation Tracker ABACuS-Based Tracker

16x reduction in number of counters



ABACuS: High-level Overview

Key	Mechanism:	Track	the	maximum	(worst)	
activation	count	of	sibling	rows	using	one	counter

37



ABACuS’s Integration with Misra-Gries Algorithm (I)

38



ABACuS’s Integration with Misra-Gries Algorithm (II)
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ABACuS’s Integration with Misra-Gries Algorithm (III)

40



Evaluation

System	Configuration

•Workloads:	62	1-	&	8-core	workloads
• Four	different	very	low	nRH	values:	1000,	500,	250,	125
• Four	state-of-the-art	mitigation	mechanisms

41



Performance Comparison

Lower	overhead	than	all	evaluated	state-of-the-art	
mechanisms	(except	Graphene)

42



More in the Paper

•More	motivational	analysis
•Multi-core	performance	&	energy	results
• Performance	under	adversarial	workloads
• Alternative	ABACuS	design

• Performance	&	energy	sensitivity	to:
• Blast	radius
• Number	of	ABACuS	counters	
• Number	of	banks

• Circuit	area,	latency,	energy,	and	power
• Security	proof

43



ABACuS	Summary
Goal:	Prevent	RowHammer	bitflips	at	low	performance,	energy,	
and	area	cost	especially	at	very	low	RowHammer	thresholds	
(e.g.,	125	aggressor	row	activations	induce	a	bitflip)

Key	Observation:	Many	workloads	access	the	same	row	address	
	 	 				in	different	DRAM	banks	at	around	the	same	time

Key	Idea:	Use	one	counter	to	track	the	activation	count	of	many	rows	
	 				with	the	same	address	across	all	DRAM	banks

Key	Results:	At	very	low	RowHammer	thresholds,	ABACuS:
• Induces	small	system	performance	and	DRAM	energy	overhead
• Outperforms	the	state-of-the-art	mitigation	(Hydra)
• Takes	up	22.7X	smaller	chip	area	than	state-of-the-art	(Graphene)

https://github.com/CMU-SAFARI/ABACuS 44

https://github.com/CMU-SAFARI/ABACuS


Extended Version on arXiv

https://arxiv.org/pdf/2310.09977.pdf

45



ABACuS is Open Source

https://github.com/CMU-SAFARI/ABACuS

46



Count-Min-Sketch-based Row Tracking
to Mitigate RowHammer at Low Cost

F. Nisa Bostancı
I. E. Yüksel   A. Olgun   K. Kanellopoulos    Y. C. Tuğrul 

A. G. Yağlıkçı   M. Sadrosadati   O. Mutlu

https://github.com/CMU-SAFARI/CoMeT

HPCA	2024

https://github.com/CMU-SAFARI/CoMeT


Our Goal

50

Prevent	RowHammer	bitflips	
with	low	area,	performance,	and	energy	overheads	

in	highly	vulnerable	DRAM-based	systems
(e.g.,	a	RowHammer	threshold	of	125)



Tag-based	counters	are	highly	accurate:
Each	one	tracks	one	row's	activation	count

HIGH	
ACCURACY

Row	0
…

Row	0
Tag Counter

Key Observation

51

Mapping	without	tags

1

H(ID)	=	ID	%	4

Hash	Function
(Example)

DRAM

Row	0
Row	1
Row	2
Row	3
Row	4

Fixed	number	of	counters

2
0 1 2 3

Counters

Hash-based	counters	are	low-cost:	
1. can	be	implemented	with	low-cost	structures	and	
2. can	aggregate	many	rows'	activation	counts	together

Row	0

Row	4

LOW	COST



Key Idea

52

1
Use	low-cost	and	scalable	hash-based	
counters	to	track	most	DRAM	rows'	
activations	with	low	area	overhead

2
Use	highly	accurate	tag-based	counters	
to	track	only	a	small	set	of	DRAM	rows
to	achieve	low	performance	overhead



CoMeT Overview

53

Counter	Table	(CT):	
- Maps	each	DRAM	row	to	a	group	of	low-cost	hash-based	counters	
as	uniquely	as	possible	by	employing	the	Count-Min	Sketch	technique

- Triggers	a	preventive	refresh	to	an	aggressor	row's	victim	rows
when	the	aggressor's	counter	group	reaches	an	activation	threshold

Recent	Aggressor	Table	(RAT):	
- Allocates	highly	accurate	per-DRAM-row	counters	
for	only	a	small	set	of	DRAM	rows	that	are	activated	many	times

Tracks	DRAM	row	activations	at	low	area	cost

Reduces	performance	penalties	by	increasing	tracking	accuracy



More Operational Details for CoMeT

54

CoMeT  

Counter Table

Hash-based Counters

Recent Aggressor Table

ACT A

Counter Table-Based 
Estimation

Recent Aggressor Table-Based
Estimation

1 2

used when there is a row ID match

ACT_Count(A) == NPR

ESTIMATION

Preventively Refresh
A's victim rows

preventive refresh 
threshold

3

Tag-based Counters

https://arxiv.org/abs/2402.18769

https://github.com/CMU-SAFARI/CoMeT

https://arxiv.org/abs/2402.18769
https://github.com/CMU-SAFARI/CoMeT


Hardware Complexity
• Storage	and	area	overhead	analysis:	CACTI
• Dual-rank	area	overhead	comparison:

55
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CoMeT	incurs	a	significantly	less	area	overhead	than	Graphene
and	a	similar	area	overhead	to	Hydra

Similar	area	overheads

Significantly	
less	area	overhead



Evaluation Methodology
• Performance	and	energy	consumption	evaluation:	cycle-level	
simulations	using	Ramulator	[Kim+,	CAL	2015]	
and	DRAMPower	[Chandrasekar+,	DATE	2013]

• System	Configuration:
Processor	 	 1	or	8	cores,	3.6GHz	clock	frequency,
	 	 	 4-wide	issue,	128-entry	instruction	window
DRAM	 	 DDR4,	1	channel,	2	rank/channel,	4	bank	groups,
	 	 	 4	banks/bank	group,	128K	rows/bank
Memory	Ctrl.		 64-entry	read	and	write	requests	queues,
	 	 	 Scheduling	policy:	FR-FCFS	with	a	column	cap	of	16	
	 	 	 Last-Level	Cache	8	MiB	(single-core),	16	MiB	(8-core)
CoMeT	 	 Counter	Table:	4	hash	functions	512	counters	per	hash
	 	 	 Recent	Aggressor	Table:	128	entries

• Comparison Points:	4	state-of-the-art	RowHammer	mitigations
• Graphene	(best	performing),	Hydra	(area-optimized	best	performing),	
Low	Processor	Chip	Area	Cost:	REGA,	PARA

• Workloads:	61	single-core	applications	and	56	8-core	workload	mixes
• SPEC	CPU2006,	SPEC	CPU2017,	TPC,	MediaBench,	YCSB

56https://github.com/CMU-SAFARI/CoMeT

https://github.com/CMU-SAFARI/CoMeT


Performance and DRAM Energy
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4.01% 2.07%

CoMeT	prevents	bitflips	with	very	small	average	performance	and	DRAM	energy	
overheads	compared	to	a	baseline	system	with	no	RowHammer	mitigation

• Average	performance	and	DRAM	energy	overheads	of	CoMeT	
across	single-core	applications



Performance Comparison:
Single-Core Applications

58

1.75%

1.75%

(average)CoMeT outperforms all low-area-cost mitigations 
starting from the RowHammer threshold of 500

CoMeT	incurs	a	small	performance	overhead	(≤	1.75%)	over	Graphene	
and	outperforms	Hydra	(by	up	to	39.1%)	

at	all	RowHammer	thresholds



Performance Comparison:
8-Core Workloads

59

Trends	are	similar	to	single-core	application	evaluation	trends



DRAM Energy Comparison:
Single-Core Applications

60

0.96%0.04%

CoMeT	incurs	a	small	DRAM	energy	overhead	(<1%)	over	Graphene	
and	consumes	less	DRAM	energy	than	Hydra

CoMeT consumes less DRAM energy than all low-
area-cost mitigations for all RowHammer thresholds 1.88%
0.39%



DRAM Energy Comparison:
8-Core Workloads

61

Multicore	energy	trends	are	similar	to	single	core	energy	trends



More in the Paper

• Security	Analysis	of	CoMeT

• Sensitivity	Analysis

• Counter	Table	Configurations

• Recent	Aggressor	Table	Configurations

• Counter	Reset	Period	and	Preventive	Refresh	Threshold	Values

• CoMeT's	Performance	under	Adversarial	Workloads

• Comparison	against	Throttling-Based	Mitigation	Techniques

• CoMeT's	Performance	at	High	RowHammer	Thresholds

62



More in the Paper

• Security	Analysis	of	CoMeT

• Sensitivity	Analysis
• Counter	Table	Configurations

• Recent	Aggressor	Table	Configurations

• Counter	Reset	Period	and	Preventive	Refresh	Threshold	values

• Performance	Evaluation	under	Adversarial	Workloads

• Performance	Evaluation	Comparison	against	
Throttling-Based	Mitigation	Techniques

• Performance	Evaluation	at	High	RowHammer	Thresholds

63

https://arxiv.org/abs/2402.18769

https://arxiv.org/abs/2402.18769


CoMeT is Open Source and Artifact Evaluated

64

https://github.com/CMU-SAFARI/CoMeT

https://github.com/CMU-SAFARI/CoMeT


Conclusion

65

https://github.com/CMU-SAFARI/CoMeT

Evaluation:	CoMeT	achieves	a	good	trade-off	between	area,	performance	and	energy	costs
- incurs	significantly	less	area	overhead	(74.2×)	compared	to	the	state-of-the-art	technique
- outperforms	the	state-of-the-art	technique	(by	up	to	39.1%)

CoMeT:
- tracks	most	DRAM	rows	with	scalable	hash-based	counters	by	employing	
the	Count-Min-Sketch	technique	to	achieve	a	low	area	cost

- tracks	only	a	small	set	of	DRAM	rows	that	are	activated	many	times	with	highly	
accurate	per-DRAM-row	activation	counters	to	reduce	performance	penalties

Key	Idea:		Use	low-cost	and	scalable	hash-based	counters	to	accurately	track	DRAM	rows

Goal:	Prevent	RowHammer	bitflips	with	low	area,	performance,	and	energy	overheads	
in	highly	RowHammer-vulnerable	DRAM-based	systems

https://github.com/CMU-SAFARI/CoMeT
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ABACuS
All-Bank Activation Counters for Scalable 

and Low Overhead RowHammer Mitigation

Ataberk Olgun Yahya Can Tuğrul F. Nisa Bostancı

İsmail Emir Yüksel Haocong Luo Steve Rhyner

A. Giray Yağlıkçı Geraldo F. Oliveira Onur Mutlu



ABACuS Summary
Problem:	As	DRAM	becomes	more	vulnerable	to	read	disturbance,	existing	
RowHammer	mitigation	techniques	either	prevent	bitflips	
• at	high	area	overheads	or	
• with	prohibitively	large	performance	and	energy	overheads

Goal:	Prevent	RowHammer	bitflips	at	low	performance,	energy,	
and	area	cost	especially	at	very	low	RowHammer	thresholds	
(e.g.,	125	aggressor	row	activations	induce	a	bitflip)

Key	Observation:	Many	workloads	access	the	same	row	address	in	different	
DRAM	banks	at	around	the	same	time

Key	Idea:	Use	one	counter	to	track	the	activation	count	of	
many	rows	with	the	same	address	across	all	DRAM	banks

Key	Results:	At	very	low	RowHammer	thresholds,	ABACuS:
• Induces	small	system	performance	and	DRAM	energy	overhead
• Outperforms	the	state-of-the-art	mitigation	(Hydra)
• Takes	up	22.7X	smaller	chip	area	than	state-of-the-art	(Graphene)

https://github.com/CMU-SAFARI/ABACuS

https://github.com/CMU-SAFARI/ABACuS
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DRAM Read Disturbance (I)

CPU DRAM Module

DRAM Chip



DRAM Read Disturbance (II)
• Read	disturbance	in	DRAM	breaks	memory	isolation
• Prominent	example:	RowHammer

Row	1

Row	2

Row	3

Row	2open
Row	1

Row	3

Row	2closed Row	2open
Row	1

Row	3

Row	2open Row	2closed

DRAM	Chip
Victim	Row

Victim	Row

Aggressor	Row

Repeatedly opening (activating) and closing a DRAM row 
many times causes RowHammer bitflips in adjacent rows

[Kim+, ISCA’14]



Read Disturbance Worsens

• Read disturbance bitflips occur 
at much smaller activation counts
• More than 100x decrease in less than a decade

139K
[Kim+, 

ISCA’14]

9.6K
[Kim+, 

ISCA’20]

<1K
[Luo+, 

ISCA’23]

Mitigation techniques against read disturbance attacks 
need to be effective and efficient for highly vulnerable systems

[Bostanci+, HPCA’24]



Read Disturbance Mitigation Approaches

There	are	many	ways	to	mitigate	RowHammer	bitflips

• More	robust	DRAM	chips	and/or	error-correcting	codes

• Increased	refresh	rate	

• Physical	isolation

• Preventive	refresh

• Proactive	throttling



Preventive Refresh

Row 1

Row 2

Row 3

Row 2close
d

Row 2open
Row 1

Row 3

Row 2open
Row 1

Row 3

Row 0

Row 2

Victim Row

Victim Row

Aggressor RowRow 2open Row 1

DRAM Chip

Refreshing potential victim rows 
mitigates read disturbance bitflips

Aggressor Row

[Kim+, ISCA’20]

Requires aggressor row activation count 
estimation or tracking



Preventive-Refresh-Based Mitigations
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Counter A
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Tag A
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Many DRAM rows
(e.g., >1M)

# of aggressor rows
increases significantly

High DRAM 
bandwidth 
consumption

CAM-based 
implementation

[Bostanci+, HPCA’24]



Problem & Goal

Prevent RowHammer bitflips 
at low performance, energy, and area cost 

especially at very low RowHammer thresholds 
(e.g., 125 aggressor row activations induce a bitflip)

No existing mitigation technique prevents RowHammer bitflips 
at low area, performance and energy costs

Problem

Goal
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Key Observation

Many	workloads	access	the	same	row	address	
in	different	banks	at	around	the	same	time

Bank 0 Bank 1

Bank 2 Bank 3

Row X Row X

Row X Row X

CPU

Load request targeting 
bank 0 row X

LD (0,X)

Time

LD (1,X) LD (3,Y) LD (3,X) LD (2,X)

LD (2,X)LD (3,X)LD (3,Y)LD (1,X)LD (0,X)

Sibling rows



Explanation for the Key Observation

1
• A program tends to access neighboring

cache blocks at around the same time
• e.g., a streaming access to an array

2

Spatial locality in memory accesses

Modern physical à DRAM address mappings
• Place neighboring cache blocks 

into different banks, but into the same row
• Leverage DRAM bank-level parallelism

for higher-throughput DRAM access



Sibling Row Activation Count

If a row is activated RowHammer threshold (NRH) times
its siblings are likely activated more than NRH/2 times

S
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Workloads



Key Idea
• There	are	many	(e.g.,	16)	banks	in	a	DRAM	chip
• Newer	DRAM	standards	(DDR5)	have	more	(32)	banks
• #	of	activation	counters	linearly	increases	with	#	of	banks

• Sibling	rows	have	similar	activation	counts

• Have	one	counter	for	all	siblings
• Reduce	the	number	of	counters	by	a	factor	of	the	number	of	banks

Bank 0

Counter X

Bank 1

Counter X

Bank 15

Counter X…
…
… Bank 0-15

Counter X

Existing Row Activation Tracker ABACuS-Based Tracker

16x reduction in number of counters



ABACuS: Overview

Track	the	maximum	(worst)	activation	count	
across	all	sibling	rows	using	one	counter



• Adopt	a	frequent	item	counting	algorithm	
• Area-efficient,	fewer	counters	to	track	more	DRAM	rows
• ABACuS	is	compatible	with	other	counting	methods

ABACuS Counter Table

Key Components

ABACuS Counter
Row Activation Counter (RAC)

Sibling Activation Vector (SAV)

ABACuS Counter

ABACuS Counter
… … … ……

Spillover Counter

RowID

RowID

RowID

… …

Nentries



Operation

• The	RAC	always	stores	the	maximum	activation	count
• Store	small	additional	information	in	SAV

ABACuS Counter
Row Activation Counter (RAC) Sibling Activation Vector (SAV)

“Which siblings were activated
since RAC was last incremented?”

One bit per bank

Increment only when a sibling is activated “again”
(i.e., activate targets a set SAV bit)



Outline

1. Background & Motivation

3. Evaluation

4. Conclusion

2. ABACuS: Key Idea and Mechanism



Evaluation Methodology
• Performance	and	energy	consumption	evaluation:	
Cycle-level	simulations	using	Ramulator	[Kim+,	CAL	2015]	
and	DRAMPower	[Chandrasekar+,	DATE	2013]

• System	Configuration:
Processor	 	 1	or	8	cores,	3.6GHz	clock	frequency,
	 	 	 4-wide	issue,	128-entry	instruction	window
DRAM	 	 DDR4,	1	channel,	2	rank/channel,	4	bank	groups,
	 	 	 4	banks/bank	group,	128K	rows/bank,	3200	MT/s
Memory	Ctrl.	 64-entry	read	and	write	requests	queues,
	 	 	 Scheduling	policy:	FR-FCFS	with	a	column	cap	of	16	 	
	 	 Last-Level	Cache	2	MiB	(single-core),	16	MiB	(8-core)

• Comparison	Points:	4	state-of-the-art	RowHammer	mitigations
• Graphene	(best	performing),	Hydra	(area-optimized	best	performing),	
Low	Processor	Chip	Area	Cost:	REGA,	PARA

• Workloads:	62	1-	&	8-core	workloads
• SPEC	CPU2006,	SPEC	CPU2017,	TPC,	MediaBench,	YCSB



Single-Core Performance and Energy

Small 0.6% average performance overhead at nRH = 1000
1.5% at nRH = 125

ENERGY



Multi-Core Performance



Storage and Area Overhead
ABACuS	takes	up	18.93	KiB	at	1K	and	151.41	KiB	at	125
RowHammer	threshold

Area	overhead	analysis:	CACTI
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ABACuS Graphene Hydra
Area overhead for a dual-rank system



More in the Paper

•More	motivational	analysis
•Multi-core	performance	&	energy	results
• Performance	under	adversarial	workloads
• Alternative	ABACuS	design

• Performance	&	energy	sensitivity	to:
• Blast	radius
• Number	of	ABACuS	counters	
• Number	of	banks

• Circuit	area,	latency,	energy,	and	power
• Security	proof
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ABACuS Summary
Goal:	Prevent	RowHammer	bitflips	at	low	performance,	energy,	
and	area	cost	especially	at	very	low	RowHammer	thresholds	
(e.g.,	125	aggressor	row	activations	induce	a	bitflip)

Key	Observation:	Many	workloads	access	the	same	row	address	in	different	
DRAM	banks	at	around	the	same	time

Key	Idea:	Use	one	counter	to	track	the	activation	count	of	
many	rows	with	the	same	address	across	all	DRAM	banks

Key	Results:	At	very	low	RowHammer	thresholds,	ABACuS:
• Induces	small	system	performance	and	DRAM	energy	overhead
• Outperforms	the	state-of-the-art	mitigation	(Hydra)
• Takes	up	22.7X	smaller	chip	area	than	state-of-the-art	(Graphene)

https://github.com/CMU-SAFARI/ABACuS

https://github.com/CMU-SAFARI/ABACuS


Extended Version on arXiv

https://arxiv.org/pdf/2310.09977.pdf



ABACuS is Open Source

https://github.com/CMU-SAFARI/ABACuS
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Count-Min-Sketch-based Row Tracking
to Mitigate RowHammer at Low Cost

F. Nisa Bostancı
I. E. Yüksel   A. Olgun   K. Kanellopoulos    Y. C. Tuğrul 

A. G. Yağlıkçı   M. Sadrosadati   O. Mutlu

https://github.com/CMU-SAFARI/CoMeT

https://github.com/CMU-SAFARI/CoMeT


Evaluation: CoMeT achieves a good trade-off between area, performance and energy costs
- incurs significantly less area overhead (74.2×) compared to the state-of-the-art technique
- outperforms the state-of-the-art technique (by up to 39.1%)

CoMeT:
- tracks most DRAM rows with scalable hash-based counters by employing 

the Count-Min-Sketch technique to achieve a low area cost
- tracks only a small set of DRAM rows that are activated many times with highly accurate 

per-DRAM-row activation counters to reduce performance penalties

Key Idea:  Use low-cost and scalable hash-based counters to accurately track DRAM rows

Goal: Prevent RowHammer bitflips with low area, performance, and energy overheads 
in highly RowHammer-vulnerable DRAM-based systems

Problem: As DRAM becomes more vulnerable to read disturbance, existing RowHammer 
mitigation techniques either prevent bitflips 
(1) at low performance cost but with high area overheads or 
(2) at low area cost but with prohibitively large performance and energy overheads

Executive Summary

99

https://github.com/CMU-SAFARI/CoMeT

https://github.com/CMU-SAFARI/CoMeT
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Read Disturbance Vulnerabilities (I)  

[Kim+ ISCA’20]
10

1

Row	0

Row	1

Row	2

Row	3

Row	4

Row	2open
Row	1

Row	3

Row	2closed Row	2open
Row	1

Row	3

Row	0

Row	4

Victim	Row

Victim	Row

Victim	Row

Victim	Row

Aggressor	RowRow	2open Row	2closed

DRAM	Subarray

Repeatedly	opening	(activating)	and	closing	(precharging)	
a	DRAM	row	causes	RowHammer	bitflips	in	nearby	cells



Read Disturbance Vulnerabilities (I)  

[Kim+ ISCA’20]
10
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Row	0

Row	1

Row	2

Row	3

Row	4

Row	2open
Row	1

Row	3

Row	2closed Row	2open
Row	1

Row	3

Row	0

Row	4

Victim	Row

Victim	Row

Victim	Row

Victim	Row

Aggressor	RowRow	2open

DRAM	Subarray

The	minimum	number	of	activations	that	causes	a	bitflip	
is	called	the	RowHammer	threshold



Read Disturbance Vulnerabilities (II)

• DRAM chips are more vulnerable to read disturbance today

• Read disturbance bitflips occur at much lower activation counts
			(more than two orders of magnitude decrease in less than a decade):

10
3

Mitigation techniques against read disturbance attacks 
need to be effective and efficient for highly vulnerable systems

139K
[Kim+, ISCA’14]

9.6K
[Kim+, ISCA’20]

<1K
[Luo+, ISCA’23]



Existing RowHammer Mitigations (I):
Preventive Refresh

[Kim+ ISCA’20]
10
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Aggressor	RowRow	2open Row	2

DRAM	Subarray

Refreshing	potential	victim	rows	
mitigates	read disturbance bitflips

Aggressor	Row



Existing RowHammer Mitigations (II):
DRAM Row Activation Tracking

[Kim+ ISCA’20]
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Mitigation	techniques	track	DRAM	row	activation	counts	
(of	aggressor	rows)	to	preventively	refresh	potential	victim	rows

Aggressor	Row



Existing RowHammer Mitigations (III):
Overview of  Preventive Refresh-Based Mitigation Techniques
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Existing RowHammer Mitigations (IV):
Overhead Trade-Off  of  State-of-the-Art Mitigation Techniques
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Existing RowHammer Mitigations (IV):
Overhead Trade-Off  of  State-of-the-Art Mitigation Techniques

10
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No existing mitigation technique prevents RowHammer bitflips 
at low area, performance and energy costs
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Our Goal

11
0

Prevent RowHammer bitflips 
with low area, performance, and energy overheads 

in highly RowHammer-vulnerable DRAM-based systems
(e.g., a RowHammer threshold of 125)



Tag-based counters are highly accurate:
Each one tracks one row's activation count

HIGH 
ACCURACY

Row 0

…

Row 0
Tag Counter

Key Observation
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Mapping without tags

1

H(ID) = ID % 4

Hash Function
(Example)

DRAM

Row 0
Row 1
Row 2
Row 3
Row 4

Fixed number of counters

2
0 1 2 3

Counters

Hash-based counters are low-cost: 
1. can be implemented with low-cost structures and 
2. can aggregate many rows' activation counts together

Row 0

Row 4

LOW COST



Key Idea

11
2

1
Use low-cost and scalable hash-based 

counters to track most DRAM rows' 
activations with low area overhead

2
Use highly accurate tag-based counters 
to track only a small set of DRAM rows
to achieve low performance overhead
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CoMeT Overview

11
4

Counter Table (CT): 
- Maps each DRAM row to a group of low-cost hash-based counters 

as uniquely as possible by employing the Count-Min Sketch technique
- Triggers a preventive refresh to an aggressor row's victim rows

when the aggressor's counter group reaches an activation threshold

Recent Aggressor Table (RAT): 
- Allocates highly accurate per-DRAM-row counters 

for only a small set of DRAM rows that are activated many times

Tracks DRAM row activations at low area cost

Reduces performance penalties by increasing tracking accuracy



Operation of  CoMeT
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CoMeT  

Counter Table

Hash-based Counters

Recent Aggressor Table

ACT A

Counter Table-Based 
Estimation

Recent Aggressor Table-Based
Estimation

1 2

used when there is a tag match

Row A's ACT Count to NPR

COMPARE

Preventively Refresh
A's victim rows

preventive refresh 
threshold

3

Tag-based Counters



• Count-Min Sketch: A hash-based frequent item counting technique

Counter Table (CT):
Count-Min-Sketch-based Row Tracking
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Counter Table

Hash Functions

0 0 0 0 0
0 1 2 3 4

ACT A

Counters

H1
H1(A) → 0
H1(B) → 4
H1(C) → 0

1ACT A 2
ACT B

1

ACT C

3

Action Timeline

COUNTER 
COLLISION

causes overestimationACT_Count(A) = 3 
ESTIMATION

Actual ACT_Count(A) = 2



• To	avoid	overestimations,	Counter	Table	implements	
multiple hash functions

Counter Table (CT):
Count-Min-Sketch-based Row Tracking

11
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Counter Table

Hash Functions

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

2
2
1

1
1

1

0 1 2 3 4
ACT A

Counters

H1
H1(A) → 0
H1(B) → 4
H1(C) → 0

ACT A
ACT B

1

ACT C

3H2

H3

CounterGroupA

Action Timeline

ACT_Count(A) 
= 

MIN(CounterGroupA)

ESTIMATION

ACT_Count(A) = 3 
ESTIMATION

Actual ACT_Count(A) = 2

The minimum counter value is an upper bound 
for the actual activation count

ACT_Count(A) = 2 
ESTIMATION

CounterGroupCCounterGroupB



Counter Table (CT):
Identifying Aggressor Rows

• CoMeT sets a preventive refresh threshold (NPR ) to timely refresh
an aggressor row's victim rows to prevent bitflips
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Counter Table

Hash
0 1 2 3 4

Counters

H1

H2

H3

Functions
ACT A

Action Timeline

* NPR: Preventive Refresh Threshold

NPR

NPR

NPR

ACT_Count(A) = NPR

ESTIMATION

Identify A as an 
aggressor row

1

Preventively refresh
A's victim rows

2

NPR

NPR

0

ACT_Count(C) = 0
ESTIMATION

Reset counters?

0

0

CounterGroupA:

CounterGroupC



Counter Table (CT):
Counter Saturation
• CoMeT does not reset any counter in CT after preventive refresh
• CT counters saturate at NPR
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Counter Table

Hash
0 1 2 3 4

Counters

H0

H1

H2

Functions
ACT A

Action Timeline

* NPR: Preventive Refresh Threshold

NPR

NPR

NPR

CounterGroupA:

Preventively refresh
A's victim rows

Actual ACT_Count(A) 
after preventive refresh is 0

ACT A

ACT_Count(A) = NPR

ESTIMATION

Preventively refresh
A's victim rows

can potentially incur 
performance and energy 

overheads



Recent Aggressor Table
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• Allocates per-DRAM-row counters for aggressor rows to accurately 
estimate their activation counts after preventive refreshes
• Implemented for only a small set of DRAM rows to maintain a low area cost

Counter Table

Hash
0 1 2 3 4

Counters

H1

H2

H3

Functions

* NPR: Preventive Refresh Threshold

NPR

NPR

NPR

Identify A as an 
aggressor row

1 Preventively refresh
A's victim rows

2 Allocate a Recent 
Aggressor Table entry3

CounterGroupA:

Recent Aggressor Table

Row Tag Counter

A 0

TAG MATCH

If a DRAM row has a Recent Aggressor Table entry, 
CoMeT estimates its activation count 100% accurately 

ACT_Count(A) = 0
ESTIMATION



Operation of  CoMeT
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CoMeT  

Counter Table

Hash-based Counters

Recent Aggressor Table

ACT A

Counter Table-Based 
Estimation

Recent Aggressor Table-Based
Estimation

1 2

used when there is a tag match

Tag-based Counters

Row A's ACT Count to NPR

COMPARE
preventive refresh 

threshold
3

Preventively Refresh
A's victim rows



More Operational Details for CoMeT

• Counter	update	policy

• Periodic	counter	reset	mechanism

• Recent	Aggressor	Table	eviction	policy

• Early	preventive	refresh	at	coarse	granularity

• Determining	the	preventive	refresh	threshold

12
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More Operational Details for CoMeT
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CoMeT  

Counter Table

Hash-based Counters

Recent Aggressor Table

ACT A

Counter Table-Based 
Estimation

Recent Aggressor Table-Based
Estimation

1 2

used when there is a row ID match

ACT_Count(A) == NPR

ESTIMATION

Preventively Refresh
A's victim rows

preventive refresh 
threshold

3

Tag-based Counters

https://arxiv.org/abs/2402.18769

https://github.com/CMU-SAFARI/CoMeT

https://arxiv.org/abs/2402.18769
https://github.com/CMU-SAFARI/CoMeT
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Evaluation Methodology

• Performance and energy consumption evaluation: cycle-level simulations 
using Ramulator [Kim+, CAL 2015] 
and DRAMPower [Chandrasekar+, DATE 2013]

• System Configuration:
Processor  1 or 8 cores, 3.6GHz clock frequency,
   4-wide issue, 128-entry instruction window
DRAM  DDR4, 1 channel, 2 rank/channel, 4 bank groups,
   4 banks/bank group, 128K rows/bank
Memory Ctrl.  64-entry read and write requests queues,
   Scheduling policy: FR-FCFS with a column cap of 16 
   Last-Level Cache 8 MiB (single-core), 16 MiB (8-core)
CoMeT  Counter Table: 4 hash functions 512 counters per hash
   Recent Aggressor Table: 128 entries

• Comparison Points: 4 state-of-the-art RowHammer mitigations
• Graphene (best performing), Hydra (area-optimized best performing), 

Low Processor Chip Area Cost: REGA, PARA

• Workloads: 61 single-core applications and 56 8-core workload mixes
• SPEC CPU2006, SPEC CPU2017, TPC, MediaBench, YCSB

12
5https://github.com/CMU-SAFARI/CoMeT

https://github.com/CMU-SAFARI/CoMeT


Hardware Implementation
• Storage	and	area	overhead	analysis:	CACTI
• Dual-rank	area	overhead	comparison:

12
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CoMeT stores fewer bits 
as the RowHammer 
threshold decreases

74.2×5.4×

CoMeT incurs a significantly less area overhead than Graphene
and a similar area overhead to Hydra

Similar area overheads

Significantly 
less area overhead



Performance and DRAM Energy
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4.01%
2.07%

CoMeT prevents bitflips with very small average performance and DRAM energy 
overheads compared to a baseline system with no RowHammer mitigation

• Average performance and DRAM energy overheads of CoMeT 
across single-core applications



Performance Comparison:
Single-Core Applications

12
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1.75%

1.75%

(average)CoMeT outperforms all low-area-cost mitigations 
starting from the RowHammer threshold of 500

CoMeT incurs a small performance overhead (≤ 1.75%) over Graphene 
and outperforms Hydra (by up to 39.1%) 

at all RowHammer thresholds



Performance Comparison:
8-Core Workloads
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Trends are similar to single-core application evaluation trends



DRAM Energy Comparison:
Single-Core Applications

13
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0.96%0.04%

CoMeT incurs a small DRAM energy overhead (<1%) over Graphene and 
consumes less DRAM energy than Hydra

CoMeT consumes less DRAM energy than all low-
area-cost mitigations for all RowHammer thresholds 1.88%
0.39%



DRAM Energy Comparison:
8-Core Workloads
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Multicore energy trends are similar to single core energy trends



More in the Paper

• Security	Analysis	of	CoMeT

• Sensitivity	Analysis

• Counter	Table	Configurations

• Recent	Aggressor	Table	Configurations

• Counter	Reset	Period	and	Preventive	Refresh	Threshold	Values

• CoMeT's	Performance	under	Adversarial	Workloads

• Comparison	against	Throttling-Based	Mitigation	Techniques

• CoMeT's	Performance	at	High	RowHammer	Thresholds
13
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More in the Paper

• Security	Analysis	of	CoMeT

• Sensitivity	Analysis
• Counter	Table	Configurations

• Recent	Aggressor	Table	Configurations

• Counter	Reset	Period	and	Preventive	Refresh	Threshold	values

• Performance	Evaluation	under	Adversarial	Workloads

• Performance	Evaluation	Comparison	against	
Throttling-Based	Mitigation	Techniques

• Performance	Evaluation	at	High	RowHammer	Thresholds
13
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https://arxiv.org/abs/2402.18769

https://arxiv.org/abs/2402.18769


CoMeT is Open Source and Artifact 
Evaluated
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https://github.com/CMU-SAFARI/CoMeT

https://github.com/CMU-SAFARI/CoMeT
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Conclusion

13
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https://github.com/CMU-SAFARI/CoMeT

Evaluation: CoMeT achieves a good trade-off between area, performance and energy costs
- incurs significantly less area overhead (74.2×) compared to the state-of-the-art technique
- outperforms the state-of-the-art technique (by up to 39.1%)

CoMeT:
- tracks most DRAM rows with scalable hash-based counters by employing 

the Count-Min-Sketch technique to achieve a low area cost
- tracks only a small set of DRAM rows that are activated many times with highly accurate 

per-DRAM-row activation counters to reduce performance penalties

Key Idea:  Use low-cost and scalable hash-based counters to accurately track DRAM rows

Goal: Prevent RowHammer bitflips with low area, performance, and energy overheads 
in highly RowHammer-vulnerable DRAM-based systems

https://github.com/CMU-SAFARI/CoMeT
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DRAM 
Chip

DRAM Organization
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DRAM	Chip

BankChip	I/O

DRAM	Bank

Subarray

. . .

DRAM	Subarray

DRAM	Cell
Wordline

… … … …

Row	Buffer

Bitline

…
…DRAM	Row

…
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Read Disturbance Vulnerabilities

[Kim+ ISCA’20]
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Row	0

Row	1

Row	2

Row	3

Row	4

Row	2open
Row	1

Row	3

Row	2closed Row	2open
Row	1

Row	3

Row	0

Row	4

Victim	Row

Victim	Row

Victim	Row

Victim	Row

Aggressor	RowRow	2open Row	2closed

DRAM	Subarray

Repeatedly	opening	(activating)	and	closing	(precharging)	
a	DRAM	row	causes	RowHammer	bitflips	in	nearby	cells

The minimum number of row activations needed to cause a bitflip 
(i.e., RowHammer threshold (NRH )) has reduced by more than an order of magnitude 

in less than a decade

[Kim+ ISCA'20]

RowPress is shown to lead to bitflips 
with one to two orders of magnitude fewer activations 

(than RowHammer) under realistic conditions

[Luo+ ISCA'23]



• Accurately	tracking	DRAM	row	activations	can	be	done	by	
allocating	per-row	counters	to	potential	aggressor	rows	

Existing RowHammer Mitigations (II):
Performance Optimized Mitigations

14
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TAG Counter
TAG Counter

the number of potential 
aggressor rows

total number of 
DRAM rows

As DRAM becomes more vulnerable to read disturbance, tracking all potential aggressor 
rows with tag-based counters results in a high area overhead

the number of potential aggressor rows 
increases significantly

A tag-based counter 
has a high area cost

Accurate tracking enables low performance overhead 
by reducing unnecessary preventive refreshes

At low NRH

DRAM rows



Existing RowHammer Mitigations (III):
Area Optimized Mitigations: Hydra
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Memory Controller DRAM

As DRAM becomes more vulnerable to read disturbance, increased off-chip 
communication results in high performance and energy overheads

Low chip area overhead

TAG Counter Per-DRAM-row 
counters

DRAM rows

Incurs DRAM 
storage overhead

Group Counters 
and Filtering Mechanism

Increased off-chip 
communication



Limitations of  Existing Mitigations

14
3

No existing mitigation technique prevents RowHammer bitflips 
at low area, performance and energy costs

High area cost
due to many and expensive 
per-DRAM-row activation 

counters

High performance and energy costs
due to occupying the memory bandwidth 

with additional requests



Operation of  CoMeT
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CoMeT  

Counter Table

Hash
0 1 2 3 4

Counters

H0

H1

H2

Functions

Recent Aggressor Table
TAG MATCH

Row Tag Counter

ACT A

CounterGroupA

ACT_Count(A) 
= MIN(CounterGroupA)

CT ESTIMATION
ACT_Count(A) 

= RAT_Counter(A)

RAT ESTIMATION

1 2

used when there is a tag match
ACT_Count(A) == NPR

ESTIMATION

Preventively Refresh
A's victim rowspreventive refresh 

threshold

3



CoMeT Overview 
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DRAM Row Tag Counter

Tag Match
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Configuring CoMeT – Sensitivity Analysis:
Counter Table and Recent Aggressor Table
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Configuring CoMeT – Sensitivity Analysis:
Counter Table and Recent Aggressor Table
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CoMeT configuration that achieves both performance and area efficiency:
Counter Table with 4 hash functions and 512 counters per hash function

Recent Aggressor Table with 128 entry

(more analyses in the paper)



Configuring CoMeT – Sensitivity Analysis:
Counter Reset Period and NPR
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𝐶𝑜𝑢𝑛𝑡𝑒𝑟	𝑅𝑒𝑓𝑟𝑒𝑠ℎ	𝑃𝑒𝑟𝑖𝑜𝑑 =
𝑡𝑅𝐸𝐹𝑊

𝑘
(1)

𝑁!" =
𝑁"#
𝑘 + 1

(2)



The effect of  EPRT and RAT Miss History Length 
on Performance and DRAM energy consumption

14
9



Hardware Implementation
• Storage	and	area	overhead	analysis:	CACTI

• Logic	circuitry	overhead:	Verilog	HDL	implementation	and	Synopsys	DC

• Dual-rank	area	overhead	comparison:

15
0

As NRH decreases, CoMeT's area and storage overheads decrease 
due to storing fewer bits for its counters



Hardware Implementation
• Storage	and	area	overhead	analysis:	CACTI

• Logic	circuitry	overhead:	Verilog	HDL	implementation	and	Synopsys	DC

• Dual-rank	area	overhead	comparison:

15
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Compared to the best performing state-of-the-art mitigation, 
CoMeT induces significantly less area overhead



Hardware Implementation
• Storage	and	area	overhead	analysis:	CACTI

• Logic	circuitry	overhead:	Verilog	HDL	implementation	and	Synopsys	DC

• Dual-rank	area	overhead	comparison:

15
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Compared to the best performing low-area-cost mitigation, 
CoMeT induces similar area overhead



Single-Core Performance
Workload Breakdown (Medium and High Intensity)
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Single-Core DRAM Energy
Workload Breakdown (Medium and High Intensity)
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Adversarial Access Patterns
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CoMeT incurs negligible additional performance overhead 
on benign workloads when a traditional RowHammer attack is running at 

the same time

0.7%
(over the baseline)

42.1%



Comparison Against BlockHammer (I)
Tracker Comparison

• CoMeT	and	BlockHammer	employs	different	algorithms
and	this	results	in	different	DRAM-row-to-counter	mappings

15
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the average number of unique rows touched at 
least once by benign workloads

Average # of unique rows that are activated at 
least 125 times by benign workloads

When tracking at most 2,500 unique rows, 
CoMeT’s tracker outperforms BlockHammer



Comparison Against BlockHammer (II)
Single-Core Performance Comparison
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9.5%

CoMeT outperforms BlockHammer due to BlockHammer's (i) high false positive rate and 
(ii) increased memory request latencies due to throttling



Performance Comparison:
8-Core Workloads
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CoMeT's performance overhead over Graphene is 0.9% and 14.9% 
at NRH = 1K and 125, respectively

0.9%

14.9%

CoMeT outperforms Hydra for all RowHammer thresholds 
(by up to 3.2× and 11.9% on average at NRH = 125)

CoMeT outperforms all low-cost RowHammer mitigations starting from NRH=250

11.9%



Performance Comparison:
8-Core Workloads
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0.9%

14.9%

CoMeT maintains a performance overhead between Graphene's 
and Hydra's performance overheads

11.9%

More preventive refreshes

CoMeT outperforms all low-area-cost mitigations 
starting from the RowHammer threshold of 250



Single-Core Comparison – Radar Chart
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Multi-Core Comparison – Radar Chart
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Evaluated Workloads and Their Characteristics
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CoMeT's Performance 
at High RowHammer Thresholds

16
3



Summary of  the Results
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Storage Overhead of  Graphene
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Performance Overhead of  Hydra
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