
Decoupling Services from
Storage Engines Through
Data Abstractions at Netflix

Vidhya Arvind & Rajasekhar Ummadisetty
August 6th, 2024

Rajasekhar Ummadisetty
Senior Software Engineer
Data Platform @ Netflix

Vidhya Arvind
Staff Software Engineer
Data Platform @ Netflix

Netflix Online
Stateful Scale

Client Application

…

Clients connecting to Storage
engines directly

❏ Advanced knowledge to avoid antipatterns

Challenges!

❏ Advanced knowledge to avoid antipatterns

❏ Coordinated database migrations

Challenges!

❏ Advanced knowledge to avoid antipatterns

❏ Coordinated database migrations

❏ Frequent Reimplementation of Patterns

Challenges!

❏ Advanced knowledge to avoid antipatterns

❏ Coordinated database migrations

❏ Frequent Reimplementation of Patterns

❏ Integrating with Internal core services

Challenges!

Client
Application

…

Solution

Data Abstraction

Data Abstraction Layers

Data Abstraction Layers

❏ Simplifies Data Access

❏ Enhances Security

❏ Improves Reliability

❏ Increases Scalability

❏ Centralized Management

❏ Boosts Developer Productivity

Data Abstraction Server Instance

Sharding

Self service

Self Service to Capacity Planning
Self Service

Deployment Desire
deploy_desires:
 # What are the access pattern and capacity
 capacity:
 model_name: org.netflix.key-value
 query_pattern:
 access_pattern: latency
 estimated_read_per_second: {low: 2000, mid: 20000, high: 200000}
 estimated_write_per_second: {low: 2000, mid: 20000, high: 200000}
 data_shape:
 estimated_state_size_gib: {low: 20, mid: 200, high: 2000}
 reserved_instance_app_mem_gib: 20
 # How critical is this deployment to Netflix
 service_tier: 0
 # What version set of software should be deployed
 version_set:
 artifacts:
 dals/dgw-kv: {kind: branch, value: main}
 # Runtime configuration is a container as well!
 configs/main: {kind: branch, sha: ${DGW_CONFIG_VERSION}}

Deployment Desire

 # Where should we deploy to, including multiple clusters
 locations:
 - account: prod
 regions: [us-east-2, us-east-1, eu-west-1, us-west-2]
 - account: prod
 regions: [us-east-1]
 stack: leader
 # Who owns (is responsible for) this deployment
 owners:
 - {type: google-group, value: our-cool-team@netflix.com}
 - {type: pager, value: our-cool-pagerduty-service}
 # Who consumes (uses) this deployment, and what role?
 consumers:
 - {type: account-app, value: prod-api, group: read-write}
 - {type: account-app, value: studio_prod-ui, group: read-only}

Deployment Configuration

Data Gateway Configuration
Configure the proxy to accept protocols
proxy_config:
 public_listeners:
 secure_grpc: {mode: grpc, tls_creds: metatron,

 authz: gandalf, path: 8980}
Configure the DAL containers, implementing protocols
container_dals:
 cql:
 container_listeners: {secure_grpc: 8980}
 image: "dgw-kv"
 thrift:
 container_listeners: {secure_grpc: 8980}
 image: "dgw-kv"
 env:
 predicate.expression: scope.value.contains('dal=thrift')

Configure advanced wiring of protocols
wiring:
 thrift: {mode: shadow, target: cql}

Runtime Configuration

Capacity Planner

Capacity Planner

https://github.com/Netflix-Skunkworks/service-capacity-modeling

https://github.com/Netflix-Skunkworks/service-capacity-modeling

Namespace

Namespace

Logical View of
Physical Storages & Configuration

Unit of data isolation and scaling
Think "table", "database", "module", etc ...

Namespace Watch Namespace via Control Plane

Each Request contains Namespace Namespace

Namespace
{
 "namespaceName":"ngevents",
 "persistenceConfigurations":{
 "persistenceConfiguration":[
 {
 "id":"PRIMARY_STORAGE",
 "version":1,
 "level":4,
 "scope":"dal=thrift",
 "physicalStorage":{...},
 "config":{...},
 {
 "id":"PRIMARY_STORAGE",
 "version":4,
 "level":4,
 "scope":"dal=cql",
 "physicalStorage":{...},
 "config":{...}
 },
 {
 "id":"CACHE",
 "version":1,
 "level":2,
 "scope":"dal=cql",
 "physicalStorage":{...},
 "config":{...}
 }
],
 "provenance":""
 },
 "capabilities":[...],
 "owners":[...],
 "lifecycleEvents":[...],
 "status":"ACTIVE",
 "createTs":"2023-07-07T20:39:06Z",
 "shardIdentity":[...]
}

Namespace

{
 "id":"PRIMARY_STORAGE",
 "version":4,
 "level":4,
 "scope":"dal=cql",
 "physicalStorage":{
 "type":"CASSANDRA",
 "cluster":"cass_dgw_kv_ngevents",
 "dataset":"ngevents",
 "table":"ngevents",
 "schemaId":"kv:cassandra",
 "regions":[
 "us-east-1"
]
 },

"config":{
 "chunked":{
 "chunk-after":128
 },
 "consistency_scope":"LOCAL",
 "consistency_target":"READ_YOUR_WRITES",
 "context":"Push notification events",
 "disable_adaptive_page_limit":false,
 "enable_slo_stop_predicate":true,
 "kv_scan_checkpointing_disabled":false,
 "slos":{
 "access":{
 "latency":{
 "max":"0.5s",
 "target":"0.03s"
 }
 },
 "mutate":{
 "latency":{
 "max":"0.5s",
 "target":"0.03s"
 }
 },
 "read":{
 "latency":{
 "max":"0.5s",
 "target":"0.03s"
 }
 }
 }
 }
}

Signals

Signals to client

❏ Signals are a medium for exchanging
capabilities and configurations
between the client and server

❏ Facilitate dynamic configuration

$
grpc -a dgwkv.napa -e prod -r us-east-1 com.netflix.dgw.kv.v2.KeyValueServiceV2/Handshake |
jq .signals

Signals to client

{
 "ngevents":{
 "payload":{
 "chunked":{...},
 "client-cache-control":{...},
 "client-route-to-dal":"cql",
 "system_utilization":{...}
 },
 "compression":[...],
 "slo_by_endpoint":{...}
 }
}

Signal

Signals to server SLO Signals

Signals to server Client capabilities

{
 "signals":{
 "accept-encoding":{
 "payload":{
 "chunked":true
 },
 "compression":[
 {
 "algorithm":"LZ4"
 },
 {
 "algorithm":"CUSTOM"
 }
]
 }
 }
}

Reliable Abstractions

Idempotency

● APIs are designed to be idempotent, ensuring safety during retries.

● Clients provide an idempotency token to achieve idempotency.

● Ensures operations can be retried without unintended side effects.

def put_with_retry(data):
 Idempotency_token =
 get_idempotency_token()
 result = put(idempotency_token, data)
 // safely retry
 if result.status != SUCCESS:
 result = put(idempotency_token, data)

message IdempotencyToken {
 google.protobuf.Timestamp
 generation_time = 1;

 string token = 2;
}

Idempotency

❏ Client-Generated Tokens:

❏ Guaranteed to monotonically increase within a single client
❏ Suitable for most operations

❏ Server-Generated Tokens:

❏ Guaranteed to monotonically increase within a given region
❏ Generated on the server
❏ Client requests the server for a token before performing the

operation
❏ Suitable for performing isolated operations

Chunking

Small Payloads:

❏ Clients can send small payloads directly in a single request.
❏ Simple and efficient for small data sizes.

Large Payloads:

❏ For large payloads, clients can break them into smaller chunks.
❏ Helps avoid resending large payloads over the network in case of

request failures.

Chunking Chunked Payload Transmission

chunk-after-bytes = 1 Mib
chunk-size-bytes = 64 Kib

Chunking Received Chunked Payload

Chunking Received Chunked Payload

Compression

Compression

Compression

Compression

Compression

Same when decompressing the data. But instead if you compress in the abstraction layer

Compression
Or in the client

Storage still compresses, but saves:

● Commit Log
● Allocations
● Disk IO
● Network IO
● Overall ratio

Pagination

Pagination

Accumulate pages of fixed size work
(MiB), clients must ask for more

Storage engines almost always
paginate by row count

Robust APIs paginate by size not
count. Translation required.

Why Paginate?

Pagination

Responses are paginated

Clients can specify the page size in bytes

Server sends back a response with:
○ Payload size <= page size bytes
○ Page token if more data is present

Pagination

What should be the value for count, the server uses to retrieve data from
db?

Large count value, will result in wasted resources if only part of the data is
used to fill a page

Small count will result in read amplification and additional network round
trips to the db

Pagination

Count is dynamically adjusted to an optimum value

Adaptive Pagination

Pagination Adaptive Pagination

Pagination Adaptive Pagination

❏ In Addition to dynamic count we also have implemented SLO
based pagination.

❏ If server is taking time to fill up a page and can potential violate
SLO, server will stop and return early with pagination token.

❏ Ensures that requests are processed within the agreed upon SLO
but the results may contain less than the page size

Pagination Adaptive Pagination

Migration

Problem

Access patterns change over time

Deprecate a db in favor of a different db

Backward incompatible DB upgrades

Migrations

Client

Proxy

DB1
Impl

DB1

Setup

Migrations

Client

Proxy

DB1
Impl

DB1

Setup

Client

Proxy

DB1
Impl

DB2
Impl

DB1 DB2

Shadow Write

Migrations

Client

Proxy

DB1
Impl

DB1

Setup

Client

Proxy

DB1
Impl

DB2
Impl

DB1 DB2

Shadow Write
Client

Proxy

DB1
Impl

DB2
Impl

DB1 DB2

Backfill Data

Backfill

Migrations

Client

Proxy

DB1
Impl

DB1

Setup

Client

Proxy

DB1
Impl

DB2
Impl

DB1 DB2

Shadow Write
Client

Proxy

DB1
Impl

DB2
Impl

DB1 DB2

Backfill Data

Backfill

Client

Proxy

DB2
Impl

DB2

DB1
Impl

DB1

Promote

Migrations

Client

Proxy

DB1
Impl

DB1

Setup

Client

Proxy

DB1
Impl

DB2
Impl

DB1 DB2

Shadow Write
Client

Proxy

DB1
Impl

DB2
Impl

DB1 DB2

Backfill Data

Backfill

Client

Proxy

DB2
Impl

DB2

Client

Proxy

DB2
Impl

DB2

DB1
Impl

DB1

Promote Decommission

Abstractions

● Key Value
● Time Series
● Control
● Counter
● Identifier
● WAL
● Tree
● Graph

The KeyValue Data Abstraction offers a robust "HashMap
as a service"

Key Value Abstraction

The KeyValue Data Abstraction offers a robust "HashMap
as a service"

Namespace (table) can contain up to hundreds of billions of
Records

Key Value Abstraction

The KeyValue Data Abstraction offers a robust "HashMap
as a service"

Namespace (table) can contain up to hundreds of billions of
Records

Each Record contains unique Items of key-value pairs.

Key Value Abstraction

The KeyValue Data Abstraction offers a robust "HashMap
as a service"

Namespace (table) can contain up to hundreds of billions of
Records

Each Record contains unique Items of key-value pairs.

Within a Record, the items are sorted either ascending
(default) or descending (optional)

Key Value Abstraction

Key Value Abstraction

HashMap<String, SortedMap<ByteString, ByteString>>

Item

message Item {
 string id = 1;

 bytes key = 2;

 bytes value = 3;

 Metadata metadata = 4;
}

APIs - PutItems

// Write one or more items into a Record.
rpc PutItems (PutItemsRequest) returns (PutItemsResponse)

message PutItemsRequest {
 IdempotencyToken
 idempotency_token = 1;
 string namespace = 2;

 string id = 3;

 repeated Item items = 4;
}

message PutItemsResponse {

 Trilean durable = 1;

 Trilean visible = 2;

 map<string, Signal> signals =
 3;
}

APIs - GetItems

// Read all keys, certain keys, or ranges of keys from a Record.
rpc GetItems (GetItemsRequest) returns (GetItemsResponse)

message GetItemsRequest {
 string namespace = 1;

 string id = 2;

 Predicate predicate = 3;

 Selection selection = 4;

 map<string, Signal> signals = 5;
}

message GetItemsResponse {

 repeated Item items = 1;

 string next_page_token = 2;
}

APIs - ScanItems

message ScanItemsRequest {
 string client_id = 1;
 string unique_scan_id = 2;
 string namespace = 3;
 Predicate predicate = 4;
 ScanPredicate scan_predicate = 5;
 Selection selection = 6;
 Duration target_scan_duration = 7;
 int32 scan_concurrency = 8;
 map<string, Signal> signals = 9;
}

APIs - ScanItems

// Retrieve all items across all Maps stored in this Namespace.
rpc ScanItems(ScanItemsRequest) returns(ScanItemsResponse) {}

message ScanItemsResponse {

 repeated ScanResult
results = 1;

 repeated string
 next_page_tokens = 2;

}

message ScanResult {

 string id = 1;

 repeated Item items = 2;

 int32 scanPercentComplete =
3;

}

Future Work

❏ Summarization

❏ Secondary Indexes

❏ Lifecycle Management

❏ Resource Limiters

❏ Back Pressure handling

❏ Nearline Caching

Vidhya Arvind
varvind@netflix.com

Thank
You.

Rajasekhar Ummadisetty
rummadisetty@netflix.com

