
NVMe Over CXL

How CXL Lets Us Do

Controller Memory Buffers the Right Way

Bill Gervasi, Principal Systems Architect
Wolley Inc.
bilge@wolleytech.com

1

1. NVMe Over CXL: How CXL Lets Us Do Controller Memory
Buffers the Right Way

NVMe has supported controller memory buffers since
version 1.2 of the specification, however CMB
performance advantages were limited by the PCIe bus
itself which does not support a lightweight memory
protocol. CXL fixes this fundamental limitation of CMBs by
allowing efficient memory accesses with the CXL.mem
protocol over that same PCIe physical interface while the
CXL.io protocol supports all the legacy functionality of
NVMe without requiring applications to be rewritten.
Race conditions in resource allocation are resolved by
having storage and memory on the same device.
Advantages of SSDs using NVMe Over CXL are detailed and
compared to memory semantic SSDs. The merging of
storage and memory has another side benefit: DRAM
persistence ala NVDIMM-N.

2

What m illenn ium a re we in?

Memory I/O

We have no way of nailing this down

This has been our basic system architecture for thousands of years

3

Along comes CXL as a new fabric-based model for considering
connecting processing, memory, storage, and communications

One way to consider CXL
expansion is the concept of
racks with specific functions

3

CXL

Resource A

Resource B

PCIe PHY

PCIe PHY

CXL Trans

CXL Trans

CXL.io CXL.mem

CXL is more than just another I/O bus

CXL allows the blending of processing, memory,
storage, and I/O over a consistent protocol

This enables virtualizing resources in interesting new
ways

Yes, note that I drop CXL.cache from this diagram…
CXL type 2 devices may disappear in an
NVLink/UALink world…

This also implies that I believe CXL is complementary
with xxLink

3

Data centers are facing a crisis
in power consumption

increases that threatens all
electronics

While data centers
are good at moving

data around

They are terrible at
actually performing
work on that data

Efficiency < 0.00004%

3

NVMe Over CXL
(NVMe-oC)

is a method for leaving data where it is and
minimizing the traffic:

• Over the fabric

• In and out of multiple memories

• Letting the Host decide where dat should be

Leave the data where it is!

Don’t chug-a-lug: Sip only what you need

Save the planet

3

DRAM

Processor NVMe SSD

Main Memory
DRAM

PCIe/CXL.io

DDR

CMM
DRAM on CXLCXL.mem

PCIe/CXL

Flash

Current systems separate storage
and memory

Data is copied between storage and
memory as needed in 4KB blocks

Each NAND read may result in many
DRAM writes
• SSD cache
• Remote memory
• Processor-local DRAM

NVMe SSD operation today uses legacy PCIe bus operations

Why 4KB? Largely to compensate for PCIe overhead

3

DRAM

NVMe SSD
Flash

PCIe

Controller Memory Buffer (CMB)
4KBMain Memory

DRAM

CPU

DDR

Copy of Controller Memory Buffer (CMB)
4KB

Wait, didn’t NVMe V1.2 add
the controller memory
buffer (CMB) to solve this?

DMA between NAND and
DRAM did not require the
fabric

No, NVMe CMB does not
solve the problem… the
PCIe overhead still forces
large data transfers

3

CPU NVMe-oC SSD
PCIe/CXL.io

CXL.mem

Flash

DRAM

4KB

64 bytes

The NVMe Over CXL Solution: Only grab the FLITs you need

NVMe commands over PCIe (CXL.io) just as before to move 4KB between NAND
and device local DRAM

The CMB is allocated in CXL host-directed memory (HDM) address space

Processor grabs only the FLITs needed using CXL.mem

The rest of the BMC data remains where it is

3

Cao, Zhichao, et al. "Characterizing, Modeling, and Benchmarking RocksDB Key-Value Workloads
at Facebook" 18th USENIX Conference on File and Storage Technologies (FAST 20). 2020.

The average key size (AVG-K), the standard deviation of key size (SD-
K), the average value size (AVG-V), and the standard deviation of
value size (SD-V) of UDB, ZippyDB, and UP2X (in bytes)

Yang, Juncheng, Yao Yue, and K. V. Rashmi. "A Large-scale Analysis of Hundreds of In-memory Key-value
Cache Clusters at Twitter" ACM Transactions on Storage (TOS) 17.3 (2021): 1-35.

Majority of data accesses are between 50 and 300
bytes with median ~100 bytes (key values, objects)

With NVMe-oC, PCIe traffic reduction > 97%

Facebook RocksDB X (Twitter) Twemcache

Why HDM HMB in the DMZ, PDQ?*

* Translation: why
use the DRAM on the
device as CXL
memory?

3

NVMe over
CXL

Application

NVMe Over CXL
Module

xRAM + NAND

DAX over
CXL

HDM over
CXL

BAEBI over
CXL

Optional
Energy
Source

CXL Pooling &
Sharing

User/Kernel Space

Use existing software APIs where possible
Release drivers open source on GitHub

3

NVMe commands are issued like
always
Controller memory buffer (CMB) and
command/completion queue
addresses directed to CXL device HDM
NVMe-oC controller

Accepts NVMe commands over CXL.io
Uses local HDM for operation queues
Uses local HDM for block data transfers
to and from local NAND
Issues completion interrupts over CXL.io

Host CPU access HDM over CXL.mem
CMB data buffers
Command and completion queues

DRAM NAND

NVMe-oC
Controller

NVMe-oC
Block I/O
Wrapper

SPDK

Application

User Space

Kernel SpaceCXL.ioCXL.mem

Device

NVMe Block Mode with Direct CMB

3

Host-Managed Memory Mode

Memory allocation and freeing
performed on Host, commands sent to
NVMe-oC controller over CXL.io

Load/store operations from application
access device HDM over CXL.mem

Traps allow swapping of blocks between
device HDM and NAND

DRAM NAND

NVMe-oC
Controller

NVMe-oC Cache Manager

Application

User Space

Kernel SpaceCXL.io CXL.mem

Load/Store

NVMe-oC Memory Driver

Device

Malloc/Free

3

DAX File Mode

DAX filesystems provide
programmer interface to HDM
address space

NVMe-oC DAX driver manipulates
hit and misses, directing transfers
between device HDM and NAND
over CXL.io

Host accesses device HDM using
CXL.memDRAM NAND

NVMe-oC
Controller

Application

User Space

Kernel SpaceCXL.io CXL.mem

Standard File API

NVMe-oC DAX Driver

Device

DAX Filesystem

3

Volatile Host Directed Memory Mode

NAND not used in Volatile HDM
mode

Device DRAM appears as standard
HDM to the Host

NVMe-oC Allocator controls
sharing and pooling over CXL.io to
the NVMe-oC controller

Data lost on power failure
DRAM NAND

NVMe-oC
Controller

Application

User Space

Kernel SpaceCXL.mem

Load/Store

DeviceX

CXL.io

NVMe-oC
Allocator

Malloc/
Free

3

Non-Volatile Host Directed Memory Mode
Operates as persistent memory in
HDM or DAX modes

BAEBI driver controls
Backup on power fail
Restore when power back on
Validation of memory image
Security

Data not lost on power failure

Can also be implemented with non-
volatile DRAM replacement without
energy source

DRAM NAND

NVMe-oC
Controller

Application

User Space

Kernel SpaceCXL.mem

Load/Store

Device

CXL.io

NVMe-oC
Allocator

Malloc/Free

Energy Source

BAEBI

3

CMB

Volatile HDM

NVMe-oC
Media

Controller

CMB

Virtual

Virtual HDM
Virtual

NVMe-oC operates in all access modes
simultaneously

xRAM always accessed as HDM

CMB, DAX, HDM all allowed

NAND to xRAM transfer schemes driven by
host using NVMe commands

Persistence regions can be partial

Virtual HDM

Persistent
HDM

Volatile HDM

xRAM

NAND

Persistent
HDM

Virtual address space Virtual address space

Physical space

3

CXL allows
blending

memory and
storage

NVMe is highly
inefficient

today
NVMe Over CXL
is a virtualizing
NAND+DRAM

subsystem

Uses multiple
standard APIs

Open source
drivers users

can tweak

Multiple APIs,
modes

available
simultaneously

Non-volatile
memory or
energy for

persistence

LEAVE DATA
WHERE IT IS!!!

LEAVE DATA
WHERE IT IS

Summary

2

Bill Gervasi, Principal Systems Architect
Wolley Inc.

bilge@wolleytech.com

Thank you for your time

Any more questions?

	NVMe Over CXL�How CXL Lets Us Do�Controller Memory Buffers the Right Way
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	NVMe Block Mode with Direct CMB
	Host-Managed Memory Mode
	DAX File Mode
	Volatile Host Directed Memory Mode
	Non-Volatile Host Directed Memory Mode
	Slide Number 18
	Slide Number 19
	Slide Number 20

