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Building High Performance Storage Solutions
• Building scalable, 

disaggregated, 
secure, scaled-out 
datacenter storage 
infrastructure with 
reliability is 
extremely 
challenging

• Current accelerator 
offload techniques 
may not be 
sufficient to meet 
the increasing 
demand on high 
performance secure 
storage solutions

Network Services
N/W compression
N/W encryption

N/W de-compression
N/W de-encryption

200GbE – 400GbE – 800GbE

Disaggregated Scaled Out Storage Architecture
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DPU

Rise of the DPU (aka IPU)
• DPU becomes the 

focal point for all 
infrastructure 
processing  which 
includes networking 
and storage 

• Storage target node 
requires 
significantly more  
storage specific 
computation (Focus 
of today’s talk)
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DPU 
Memory

CPU 
Memory

Challenges : CPU+DPU Co-Processing (PCIe)
• Storage  pipeline 

control + dataplane 
processing requiring 
multistep compute 
intensive operations 
requires CPU+DPU co-
processing

• CPU+DPU 
coprocessing using 
PCIe requires multiple 
data movements 
between CPU and DPU 
memory domains, 
resulting in significant 
loss in performance
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Accelerator Init

Get IO Channel: PCIe

Assign Memory Domain: PCIe private mem

App Buffer: Allocate & align

Accelerator operation sequence(s)

App Buffer: Free

Accelerator Finish

Storage Node: 
CPU+DPU Co-Processing (PCIe) using SPDK software stack / services

• initialize
• get_io_channel

• memory_domain
• get_buf; get_buf_align

• operation_exec_ctx; sequence_finish / reverse / abort
• submit_dif_verify / encrypt / compress / xor
• submit_dif_generate / decrypt / decompress
• submit_crc32c / crc32cv
• submit_compare / copy / dualcast

• put_buf

• finish

Application usage: Operations Workflow & Data Structures: spdk_accel_*
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Memory
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Multiple 
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CPU+DPU Co-Processing (CXL)
Key paradigm shift
• Create single shared 

memory domain 
between CPU and DPU

• Use CXL-attached 
device memory (i.e., 
CXL.mem) as CPU+DPU 
shared memory

• Avoids explicit data 
movement between 
CPU and DPU

• Preserve, leverage 
existing software stack 
workflows & 
datastructure’s 
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Accelerator Init

Get IO Channel: PCIe

Assign Use Memory Domain: PCIe private mem

App Buffer: Allocate & align

Accelerator operation sequence(s)

App Buffer: Free

Accelerator Finish

Storage Node: 
CPU+DPU Co-Processing (CXL) using SPDK software stack / services

• initialize
• get_io_channel

• memory_domain
• get_buf; get_buf_align

• operation_exec_ctx; sequence_finish / reverse / abort
• submit_dif_verify / encrypt / compress / xor
• submit_dif_generate / decrypt / decompress
• submit_crc32c / crc32cv
• submit_compare / copy / dualcast

• put_buf

• finish

Application usage: Operations Workflow & Data Structures: spdk_accel_*

Shared CPU & 
DPU  Memory

(CXL.mem)

Memory Domains

*https :/ / s pdk.io/ doc/ accel_8h.html#details

https://spdk.io/doc/accel_8h.html#details


DPUCPU
Shared CPU & DPU  Memory (CXL.mem)
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Storage Node: 
CPU+DPU Co-Processing (CXL) using SPDK software stack

 Higher IOPS due to simplified Storage data accesses & operations, e.g.,
• bdev_write: sequence_encrypt + sequence_compress + Storage_write
• bdev_read: Storage_read + sequence_decompress + sequence_decrypt

 Preserves Software stack / workflow investments
• Existing CPU accelerators, newer DPU accelerators can both be leveraged
• Accelerator operations vs [data segmentation & reassembly and storage transport]

STORAGE NODE using CXL 



Thank you
• Q&A
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Reference / Back up
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Storage INITIATOR

Deployment Scenarios (e.g., 25TB)
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Storage TARGET: JBoD

Storage TARGET: JBoF

Storage TARGET: Tape

N/W compression
N/W encryption

N/W de-compression
N/W de-encryption

Application VM Config 
8 vCPUs, 128GB, 100Gbps, 25TB Storage Functions

 Erasure Coding
 Replication
 Deduplication
 Storage Compression
 Storage Encryption

FABRIC SERVICES

 Connectivity (Authentication)
 Policy (Partition, Failover, KPIs)
 Scalability (Load Balance, 

Data growth, Determinism)

AWS: Global Accelerator, S3TA
Google: ???
Microsoft: Azure Front Door



Implementation Scenario (e.g., SPDK)
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Compute & Storage processing: SPDK
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