
Improving SW-HW processing pipeline
for storage stack / service workflows

with CXL
Presenters:
Navneet Rao, Solution Architect, DCAI / Altera, Intel
Bhushan Chitlur, Sr. Principal Engineer, DCAI / Altera, Intel

Building High Performance Storage Solutions
• Building scalable,

disaggregated,
secure, scaled-out
datacenter storage
infrastructure with
reliability is
extremely
challenging

• Current accelerator
offload techniques
may not be
sufficient to meet
the increasing
demand on high
performance secure
storage solutions

Network Services
N/W compression
N/W encryption

N/W de-compression
N/W de-encryption

200GbE – 400GbE – 800GbE

Disaggregated Scaled Out Storage Architecture

Storage INITIATOR:
GPU

Storage INITIATOR:
CPU

Storage INITIATOR:
Custom Silicon

Storage TARGET:
JBoD

Storage TARGET:
JBoF

Storage TARGET:
Tape

Fabric Services

 Connectivity
(Authentication)

 Policy (Partition,
Failover, KPIs)

 Scalability (Load
Balance, Data
growth,
Determinism)

Fabric Side
Technologies

Initiator Side
Technologies

Target Side
Technologies

He
te

ro
ge

no
us

 In
iti

at
or

s

He
te

ro
ge

no
us

 T
ar

ge
ts

Heterogenous
Requests

2

DPU

Rise of the DPU (aka IPU)
• DPU becomes the

focal point for all
infrastructure
processing which
includes networking
and storage

• Storage target node
requires
significantly more
storage specific
computation (Focus
of today’s talk)

3

CPU GPU

N/W
Accel

Storage
Accel

User
VM

User
VM

DPU

CPU

N/W
Accel

Storage
Accel

Storage
Stack/Pipeline

(E.g., SPDK)

Target Storage Acceleration Functions
 Erasure Coding
 Replication
 Deduplication
 Storage Compression
 Storage Encryption

Initiator Storage Functions
 E.g., Virtio-blk, NVMe-oF

N/W
fabric

Storage Target NodeStorage Initiator Node

HW
SW

HW
SW

DPU
Memory

CPU
Memory

Challenges : CPU+DPU Co-Processing (PCIe)
• Storage pipeline

control + dataplane
processing requiring
multistep compute
intensive operations
requires CPU+DPU co-
processing

• CPU+DPU
coprocessing using
PCIe requires multiple
data movements
between CPU and DPU
memory domains,
resulting in significant
loss in performance

4

DPU

Accel
X

Storage Stack/Pipeline (E.g. SPDK)

Target Storage Accelerator Functions
 Erasure Coding
 Replication
 Deduplication
 Storage Compression
 Storage Encryption

PCIe

HW
SW

Accel
Y

Accel
Z

Step1

CPU

Step2

N/W

CPU
Memory

DPU
Memory

Storage Initiator/Target Node
Memory
Domains

Step3

Step n

Multiple DMA
transfers between

host & device
buffers

5

Accelerator Init

Get IO Channel: PCIe

Assign Memory Domain: PCIe private mem

App Buffer: Allocate & align

Accelerator operation sequence(s)

App Buffer: Free

Accelerator Finish

Storage Node:
CPU+DPU Co-Processing (PCIe) using SPDK software stack / services

• initialize
• get_io_channel

• memory_domain
• get_buf; get_buf_align

• operation_exec_ctx; sequence_finish / reverse / abort
• submit_dif_verify / encrypt / compress / xor
• submit_dif_generate / decrypt / decompress
• submit_crc32c / crc32cv
• submit_compare / copy / dualcast

• put_buf

• finish

Application usage: Operations Workflow & Data Structures: spdk_accel_*

DPU
Memory

CPU
Memory

CPU
Memory

DPU
Memory

(PCIe
private

memory)

Memory Domains

Multiple
DMA transfers

between
 host & device buffers

CPU+DPU Co-Processing (CXL)
Key paradigm shift
• Create single shared

memory domain
between CPU and DPU

• Use CXL-attached
device memory (i.e.,
CXL.mem) as CPU+DPU
shared memory

• Avoids explicit data
movement between
CPU and DPU

• Preserve, leverage
existing software stack
workflows &
datastructure’s

6

DPU

Accel
X

Storage Stack/Pipeline (E.g., SPDK)

Target Storage Accelerator Functions
 Erasure Coding
 Replication, Deduplication
 Storage Compression
 Storage Encryption

CXL (.io, .cache, .mem)

HW
SW

Accel
Y

Accel
Z

Step1

CPU

Step2

N/W

Shared
CPU & DPU

Memory
(CXL.mem)

Storage Initiator/Target Node
Memory
Domains

Step3

Step n

7

Accelerator Init

Get IO Channel: PCIe

Assign Use Memory Domain: PCIe private mem

App Buffer: Allocate & align

Accelerator operation sequence(s)

App Buffer: Free

Accelerator Finish

Storage Node:
CPU+DPU Co-Processing (CXL) using SPDK software stack / services

• initialize
• get_io_channel

• memory_domain
• get_buf; get_buf_align

• operation_exec_ctx; sequence_finish / reverse / abort
• submit_dif_verify / encrypt / compress / xor
• submit_dif_generate / decrypt / decompress
• submit_crc32c / crc32cv
• submit_compare / copy / dualcast

• put_buf

• finish

Application usage: Operations Workflow & Data Structures: spdk_accel_*

Shared CPU &
DPU Memory

(CXL.mem)

Memory Domains

*https :/ / s pdk.io/ doc/ accel_8h.html#details

https://spdk.io/doc/accel_8h.html#details

DPUCPU
Shared CPU & DPU Memory (CXL.mem)

8

Accelerator Init

Assign Memory Domain: CXL.mem

Buffer Allocate & Align

Accelerator Operations

Free Buffer

Accelerator Finish Func:

X

DIF
Verify

En
Crypt

Compress

XOR

CRC

Copy
Func:

Y

Compare

CRC

XOR

De
Compress

De
Crypt

DIF
Generate

Accel “X” Accel “Y” Accel “Z”

Func:

Z

Func
#Z1

Func
#Z2

Func
#Z3

Func
#Z4

Func
#Z6

Func
#Z6

Storage Node:
CPU+DPU Co-Processing (CXL) using SPDK software stack

 Higher IOPS due to simplified Storage data accesses & operations, e.g.,
• bdev_write: sequence_encrypt + sequence_compress + Storage_write
• bdev_read: Storage_read + sequence_decompress + sequence_decrypt

 Preserves Software stack / workflow investments
• Existing CPU accelerators, newer DPU accelerators can both be leveraged
• Accelerator operations vs [data segmentation & reassembly and storage transport]

STORAGE NODE using CXL

Thank you
• Q&A

9

Reference / Back up

10

Storage INITIATOR

Deployment Scenarios (e.g., 25TB)

11

Storage TARGET: JBoD

Storage TARGET: JBoF

Storage TARGET: Tape

N/W compression
N/W encryption

N/W de-compression
N/W de-encryption

Application VM Config
8 vCPUs, 128GB, 100Gbps, 25TB Storage Functions

 Erasure Coding
 Replication
 Deduplication
 Storage Compression
 Storage Encryption

FABRIC SERVICES

 Connectivity (Authentication)
 Policy (Partition, Failover, KPIs)
 Scalability (Load Balance,

Data growth, Determinism)

AWS: Global Accelerator, S3TA
Google: ???
Microsoft: Azure Front Door

Implementation Scenario (e.g., SPDK)

12

Compute & Storage processing: SPDK

Storage
access

Network & Storage processing

Accelerator(s)

Accelerator(s)

DIMMs

DIMMs

NIC-DIMM

CPU-DIMM

NIC-Acclr

CPU-Acclr

NIC-Storage

Ingress / Egress

Storage

PCIe PCIe

FABRIC
SERVICES

NVMe-oF Target(s)

vhost Target(s)

iSCSI Target(s)

J
B
O
F

J
B
O
D

JBOD

Storage TARGET

	Improving SW-HW processing pipeline for storage stack / service workflows with CXL
	Building High Performance Storage Solutions
	Rise of the DPU (aka IPU)
	Challenges : CPU+DPU Co-Processing (PCIe)
	Slide Number 5
	CPU+DPU Co-Processing (CXL)
	Slide Number 7
	Slide Number 8
	Thank you
	Reference / Back up
	Deployment Scenarios (e.g., 25TB)
	Implementation Scenario (e.g., SPDK)

