Storage-Centric Computing for Genomics and Metagenomics

Onur Mutlu <u>omutlu@gmail.com</u>

https://people.inf.ethz.ch/omutlu

6 August 2024 FMS: the Future of Memory and Storage

fill the Future of Memory and Storage

Quick Background & Motivation

We Need Faster & Scalable Genome Analysis

Understanding genetic variations, species, evolution, ...

Rapid surveillance of disease outbreaks

Predicting the presence and relative abundance of **microbes** in a sample

Developing personalized medicine

SAFARI

And, many, many other applications ...

Ion Torrent Proton

......

Complete Genomics

Illumina NovaSeq 6000

Oxford Nanopore GridION

... and more! All produce data with different properties.

High-Throughput Sequencers

SAFARI

5

Newer Genome Sequencing Technologies

Nanopore sequencing technology and tools for genome assembly: computational analysis of the current state, bottlenecks and future directions

Damla Senol Cali ጁ, Jeremie S Kim, Saugata Ghose, Can Alkan, Onur Mutlu

Briefings in Bioinformatics, bby017, https://doi.org/10.1093/bib/bby017 Published: 02 April 2018 Article history ▼

Oxford Nanopore MinION

Senol Cali+, "<u>Nanopore Sequencing Technology and Tools for Genome</u> <u>Assembly: Computational Analysis of the Current State, Bottlenecks</u> <u>and Future Directions</u>," Briefings in Bioinformatics, 2018. [<u>Open arxiv.org version</u>] [<u>Slides (pptx) (pdf)</u>] [<u>Talk Video at AACBB 2019</u>]

Genome Sequencing Cost Is Reducing

Cost per Human Genome

*From NIH (<u>https://www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-Costs-Data</u>)

Problems with (Genome) Analysis Today

Special-Purpose Machine for Data Generation

General-Purpose Machine for Data Analysis

SLOW

Slow and inefficient processing capability Large amounts of data movement

SAFARI This picture is similar for many "data generators & analyzers" today

Accelerating Genome Analysis [IEEE MICRO 2020]

Mohammed Alser, Zulal Bingol, Damla Senol Cali, Jeremie Kim, Saugata Ghose, Can Alkan, and Onur Mutlu,
 "Accelerating Genome Analysis: A Primer on an Ongoing Journey"
 <u>IEEE Micro</u> (IEEE MICRO), Vol. 40, No. 5, pages 65-75, September/October 2020.
 [Slides (pptx)(pdf)]
 [Talk Video (1 hour 2 minutes)]

Accelerating Genome Analysis: A Primer on an Ongoing Journey

Mohammed Alser ETH Zürich

Zülal Bingöl Bilkent University

Damla Senol Cali Carnegie Mellon University

Jeremie Kim ETH Zurich and Carnegie Mellon University Saugata Ghose University of Illinois at Urbana–Champaign and Carnegie Mellon University

Can Alkan Bilkent University

Onur Mutlu ETH Zurich, Carnegie Mellon University, and Bilkent University

Accelerating Genome Analysis [DAC 2023]

 Onur Mutlu and Can Firtina, <u>"Accelerating Genome Analysis via Algorithm-Architecture</u> <u>Co-Design"</u> *Invited Special Session Paper in Proceedings of the <u>60th Design</u> <u>Automation Conference</u> (DAC), San Francisco, CA, USA, July 2023. [arXiv version]*

Accelerating Genome Analysis via Algorithm-Architecture Co-Design

Onur Mutlu Can Firtina ETH Zürich

SAFARI https://arxiv.org/pdf/2305.00492.pdf

Simulating Storage: MQSim [FAST 2018]

Arash Tavakkol, Juan Gomez-Luna, Mohammad Sadrosadati, Saugata Ghose, and Onur Mutlu,
 "MQSim: A Framework for Enabling Realistic Studies of Modern Multi-Queue SSD Devices"
 Proceedings of the 16th USENIX Conference on File and Storage Technologies (FAST), Oakland, CA, USA, February 2018.
 [Slides (pptx) (pdf)]
 [Source Code]

MQSim: A Framework for Enabling Realistic Studies of Modern Multi-Queue SSD Devices

Arash Tavakkol[†], Juan Gómez-Luna[†], Mohammad Sadrosadati[†], Saugata Ghose[‡], Onur Mutlu^{†‡} [†]*ETH Zürich* [‡]*Carnegie Mellon University*

https://github.com/CMU-SAFARI/MQSim

SAFARI https://people.inf.ethz.ch/omutlu/pub/MQSim-SSD-simulation-framework_fast18.pdf

Simulating Memory: Ramulator 2.0

 Haocong Luo, Yahya Can Tugrul, F. Nisa Bostanci, Ataberk Olgun, A. Giray Yaglikci, and Onur Mutlu, "Ramulator 2.0: A Modern, Modular, and Extensible DRAM Simulator" *Preprint on arxiv*, August 2023.
 [arXiv version]
 [Ramulator 2.0 Source Code]

Ramulator 2.0: A Modern, Modular, and Extensible DRAM Simulator

Haocong Luo, Yahya Can Tuğrul, F. Nisa Bostancı, Ataberk Olgun, A. Giray Yağlıkçı, and Onur Mutlu

https://arxiv.org/pdf/2308.11030.pdf

SAFARI https://github.com/CMU-SAFARI/ramulator2

Open Source Tools: SAFARI GitHub

https://github.com/CMU-SAFARI/

Genomics Course (Fall 2022)

Fall 2022 Edition:

https://safari.ethz.ch/projects_and_seminars/fall2022/do ku.php?id=bioinformatics

Spring 2022 Edition:

https://safari.ethz.ch/projects_and_seminars/spring2022 /doku.php?id=bioinformatics

Youtube Livestream (Fall 2022):

https://www.youtube.com/watch?v=nA41964-9r8&list=PL5Q2soXY2Zi8tFlQvdxOdizD_EhVAMVQV

Youtube Livestream (Spring 2022):

- https://www.youtube.com/watch?v=DEL_5A_Y3TI&list= PL5Q2soXY2Zi8NrPDgOR1yRU_Cxxjw-u18
- Project course
 - Taken by Bachelor's/Master's students
 - Genomics lectures
 - Hands-on research exploration
 - Many research readings

https://www.youtube.com/onurmutlulectures

SAFARI

Spring 2022 Meetings/Schedule

Week	Date	Livestream	Meeting	Learning Materials
W1	11.3 Fri.	You Tube Live	M1: P&S Accelerating Genomics Course Introduction & Project Proposals (PDF) (PPT)	Required Materials Recommended Materials
W2	18.3 Fri.	You Tube Live	M2: Introduction to Sequencing	
W3	25.3 Fri.	You Tube Premiere	M3: Read Mapping (PDF) Image (PPT)	
W4	01.04 Fri.	You Tube Premiere	M4: GateKeeper (PDF)	
W5	08.04 Fri.	You Tube Premiere	M5: MAGNET & Shouji a (PDF) a (PPT)	
W6	15.4 Fri.	You Tube Premiere	M6: SneakySnake (PDF) (PPT)	
W7	29.4 Fri.	You Tube Premiere	M7: GenStore (PDF) International (PPT)	
W8	06.05 Fri.	You Tube Premiere	M8: GRIM-Filter (PDF) I (PPT)	
W9	13.05 Fri.	You Tube Premiere	M9: Genome Assembly	
W10	20.05 Fri.	You Tube Live	M10: Genomic Data Sharing Under Differential Privacy (PDF) (2000) (PPT)	
W11	10.06 Fri.	You Tube Premiere	M11: Accelerating Genome Sequence Analysis (PDF)	

PIM Course (Fall 2022)

Fall 2022 Edition:

https://safari.ethz.ch/projects and seminars/fall2022 /doku.php?id=processing in memory

Spring 2022 Edition:

https://safari.ethz.ch/projects and seminars/spring2 022/doku.php?id=processing in memory

Youtube Livestream (Fall 2022):

https://www.youtube.com/watch?v=QLL0wQ9I4Dw& list=PL5Q2soXY2Zi8KzG2CQYRNQOVD0GOBrnKy

Youtube Livestream (Spring 2022):

https://www.youtube.com/watch?v=9e4Chnwdovo&li st=PL5Q2soXY2Zi-841fUYYUK9EsXKhQKRPyX

- Project course
 - Taken by Bachelor's/Master's students
 - Processing-in-Memory lectures
 - Hands-on research exploration
 - Many research readings

https://www.youtube.com/onurmutlulectures

SAFARI

Spring 2022 Meetings/Schedule

Week	Date	Livestream	Meeting	Learning Materials	Assignments
W1	10.03 Thu.	You Live	M1: P&S PIM Course Presentation (PDF) (PPT)	Required Materials Recommended Materials	HW 0 Out
W2	15.03 Tue.		Hands-on Project Proposals		
	17.03 Thu.	You Premiere	M2: Real-world PIM: UPMEM PIM		
W3	24.03 Thu.	You Live	M3: Real-world PIM; Microbenchmarking of UPMEM PIM ara (PDF) ara (PPT)		
W4	31.03 Thu.	You Live	M4: Real-world PIM: Samsung HBM-PIM (PDF) (PPT)		
W5	07.04 Thu.	You Live	M5: How to Evaluate Data Movement Bottlenecks		
W6	14.04 Thu.	You Live	M6: Real-world PIM: SK Hynix AiM		
W7	21.04 Thu.	Yee Premiere	M7: Programming PIM Architectures (PDF) (2010) (PPT)		
W8	28.04 Thu.	You iiiii Premiere	M8: Benchmarking and Workload Suitability on PIM (PDF) (PPT)		
W9	05.05 Thu.	You Premiere	M9: Real-world PIM: Samsung AxDIMM (PDF) (PPT)		
W10	12.05 Thu.	You iiii Premiere	M10: Real-world PIM: Alibaba HB- PNM		
W11	19.05 Thu.	You the Live	M11: SpMV on a Real PIM Architecture		
W12	26.05 Thu.	You the Live	M12: End-to-End Framework for Processing-using-Memory		
W13	02.06 Thu.	You Live	M13: Bit-Serial SIMD Processing using DRAM (PDF) (PPT)		
W14	09.06 Thu.	You Live	M14: Analyzing and Mitigating ML Inference Bottlenecks		
W15	15.06 Thu.	You the	M15: In-Memory HTAP Databases with HW/SW Co-design		
W16	23.06 Thu.	You Live	M16: In-Storage Processing for Genome Analysis (PDF) (PPT)		
W17	18.07 Mon.	You Premiere	M17: How to Enable the Adoption of PIM? (m) (PDF) (m) (PPT)		
W18	09.08 Tue.	You Premiere	SS1: ISVLSI 2022 Special Session on PIM (PDF & PPT)		

SSD Course (Spring 2023)

Spring 2023 Edition:

https://safari.ethz.ch/projects_and_seminars/spring2023/ doku.php?id=modern_ssds

Fall 2022 Edition:

https://safari.ethz.ch/projects_and_seminars/fall2022/do ku.php?id=modern_ssds

Youtube Livestream (Spring 2023):

https://www.youtube.com/watch?v=4VTwOMmsnJY&list =PL5Q2soXY2Zi_8qOM5Icpp8hB2SHtm4z57&pp=iAQB

Youtube Livestream (Fall 2022):

- https://www.youtube.com/watch?v=hqLrd-Uj0aU&list=PL5Q2soXY2Zi9BJhenUq4JI5bwhAMpAp13&p p=iAQB
- Project course
 - Taken by Bachelor's/Master's students
 - SSD Basics and Advanced Topics
 - Hands-on research exploration
 - Many research readings

https://www.youtube.com/onurmutlulectures

Fall 2022 Meetings/Schedule

Week	Date	Livestream	Meeting	Learning Materials	Assignments
W1	06.10		M1: P&S Course Presentation	Required Recommended	
W2	12.10	You Live	M2: Basics of NAND Flash- Based SSDs	Required Recommended	
W3	19.10	You Ture Live	M3: NAND Flash Read/Write Operations maPDF maPPT	Required Recommended	
W4	26.10	You The Live	M4: Processing inside NAND Flash	Required Recommended	
W5	02.11	Yeu Tube Live	M5: Advanced NAND Flash Commands & Mapping 2020 PDF 2020 PPT	Required Recommended	
W6	09.11	You Title Live	M6: Processing inside Storage	Required Recommended	
W7	23.11	You Live	M7: Address Mapping & Garbage Collection	Required Recommended	
W8	30.11	You Title Live	M8: Introduction to MQSim	Required Recommended	
W9	14.12	You Live	M9: Fine-Grained Mapping and Multi-Plane Operation-Aware Block Management amPDF amPPT	Required Recommended	
W10	04.01.2023	Yeu Tube Premiere	M10a: NAND Flash Basics	Required Recommended	
			M10b: Reducing Solid-State Drive Read Latency by Optimizing Read-Retry 2020 PDF 2020 PPT 2020 Paper	Required Recommended	
			M10c: Evanesco: Architectural Support for Efficient Data Sanitization in Modern Flash- Based Storage Systems an PDF im PPT im Paper	Required Recommended	
			M10d: DeepSketch: A New Machine Learning-Based Reference Search Technique for Post-Deduplication Delta Compression mPDF m PPT mPaper	Required Recommended	
W11	11.01	Yeu The Live	M11: FLIN: Enabling Fairness and Enhancing Performance in Modern NVMe Solid State Drives and PDF int PPT	Required	
W12	25.01	You Tube Premiere	M12: Flash Memory and Solid- State Drives	Recommended	

In-Storage Genomics & Metagenomics

In-Storage Genomic Data Filtering [ASPLOS 2022]

Nika Mansouri Ghiasi, Jisung Park, Harun Mustafa, Jeremie Kim, Ataberk Olgun, Arvid Gollwitzer, Damla Senol Cali, Can Firtina, Haiyu Mao, Nour Almadhoun Alserr, Rachata Ausavarungnirun, Nandita Vijaykumar, Mohammed Alser, and Onur Mutlu,
 "GenStore: A High-Performance and Energy-Efficient In-Storage Computing System for Genome Sequence Analysis"
 Proceedings of the <u>27th International Conference on Architectural Support for</u> Programming Languages and Operating Systems (ASPLOS), Virtual, February-March 2022.
 [Lightning Talk Slides (pptx) (pdf)]

[Lightning Talk Video (90 seconds)]

GenStore: A High-Performance In-Storage Processing System for Genome Sequence Analysis

Nika Mansouri Ghiasi¹ Jisung Park¹ Harun Mustafa¹ Jeremie Kim¹ Ataberk Olgun¹ Arvid Gollwitzer¹ Damla Senol Cali² Can Firtina¹ Haiyu Mao¹ Nour Almadhoun Alserr¹ Rachata Ausavarungnirun³ Nandita Vijaykumar⁴ Mohammed Alser¹ Onur Mutlu¹

¹ETH Zürich ²Bionano Genomics ³KMUTNB ⁴University of Toronto

SAFARI

https://arxiv.org/abs/2202.10400

GenStore

GenStore: A High-Performance and Energy-Efficient In-Storage Computing System for Genome Sequence Analysis

Nika Mansouri Ghiasi¹ Jisung Park¹ Harun Mustafa¹ Jeremie Kim¹ Ataberk Olgun¹ Arvid Gollwitzer¹ Damla Senol Cali² Can Firtina¹ Haiyu Mao¹ Nour Almadhoun Alserr¹ Rachata Ausavarungnirun³ Nandita Vijaykumar⁴ Mohammed Alser¹ Onur Mutlu¹

¹ETH Zürich ²Bionano Genomics ³KMUTNB ⁴University of Toronto

https://arxiv.org/abs/2202.10400

In-Storage Metagenomics [ISCA 2024]

 Nika Mansouri Ghiasi, Mohammad Sadrosadati, Harun Mustafa, Arvid Gollwitzer, Can Firtina, Julien Eudine, Haiyu Mao, Joel Lindegger, Meryem Banu Cavlak, Mohammed Alser, Jisung Park, and Onur Mutlu,
 "MegIS: High-Performance and Low-Cost Metagenomic Analysis with In-Storage Processing"
 Proceedings of the 51st Annual International Symposium on Computer Architecture (ISCA), Buenos Aires, Argentina, July 2024.
 [Slides (pptx) (pdf)]
 [arXiv version]

MegIS: High-Performance, Energy-Efficient, and Low-Cost Metagenomic Analysis with In-Storage Processing

Nika Mansouri Ghiasi¹ Mohammad Sadrosadati¹ Harun Mustafa¹ Arvid Gollwitzer¹ Can Firtina¹ Julien Eudine¹ Haiyu Mao¹ Joël Lindegger¹ Meryem Banu Cavlak¹ Mohammed Alser¹ Jisung Park² Onur Mutlu¹ ¹ETH Zürich ²POSTECH

MegIS: High-Performance, Energy-Efficient, and Low-Cost Metagenomic Analysis with In-Storage Processing

Nika Mansouri Ghiasi¹ Mohammad Sadrosadati¹ Harun Mustafa¹ Arvid Gollwitzer¹ Can Firtina¹ Julien Eudine¹ Haiyu Mao¹ Joël Lindegger¹ Meryem Banu Cavlak¹ Mohammed Alser¹ Jisung Park² Onur Mutlu¹ ¹ETH Zürich ²POSTECH

https://arxiv.org/abs/2406.19113

GenStore

A High-Performance In-Storage Processing System for Genome Sequence Analysis

Nika Mansouri Ghiasi, Jisung Park, Harun Mustafa, Jeremie Kim, Ataberk Olgun, Arvid Gollwitzer, Damla Senol Cali, Can Firtina, Haiyu Mao, Nour Almadhoun Alserr, Rachata Ausavarungnirun, Nandita Vijaykumar, Mohammed Alser, and Onur Mutlu

Genome Sequence Analysis

- Genome sequence analysis is critical for many applications
 - Personalized medicine
 - Outbreak tracing
 - Evolutionary studies
- Genome sequencing machines extract smaller fragments of the original DNA sequence, known as reads

Genome Sequence Analysis

- Read mapping: first key step in genome sequence analysis
 - Aligns reads to potential matching locations in the reference genome
 - For each matching location, the alignment step finds the degree of similarity (alignment score)

- Calculating the align ment score requires computationally-expensive approximate string matching (ASM) to account for differences between reads and the reference genome due to:
 - Sequencing errors
 - Genetic variation

Accelerating Genome Sequence Analysis

Data movement overhead

Filter reads that do *not* require alignment *inside the storage system*

Exactly-matching reads

Do not need expensive approximate string matching during alignment

Non-matching reads

Do not have potential matching locations and can skip alignment

Challenges

Filter reads that do *not* require alignment *inside the storage system*

Read mapping workloads can exhibit different behavior

There are limited hardware resources in the storage system

Filter reads that do *not* require alignment *inside the storage system*

GenStore

• Key idea: Filter reads that do not require alignment inside the storage system

Challenges

- Different behavior across read mapping workloads
- Limited hardware resources in the SSD

Filtering Opportunities

- Sequencing machines produce one of two kinds of reads
 - Short reads: highly accurate and short
 - Long reads: less accurate and long

Reads that do not require the expensive alignment step:

Exactly-matching reads

Do not need expensive approximate string matching during alignment

- Low sequencing error rates (short reads) combined with
- Low genetic variation

Non-matching reads

Do not have potential matching locations, so they skip alignment

- High sequencing error rates (long reads) or
- High genetic variation (short or long reads)

GenStore-EM for Exactly-Matching Reads

GenStore-NM for Non-Matching Reads

GenStore-EM

- Efficient in-storage filter for reads with at least one exact match in the reference genome
- Uses simple operations, without requiring alignment
- **Challenge:** large number of random accesses per read to the reference genome and its index

Expensive random accesses to flash chips

Limited DRAM capacity inside the SSD

GenStore-EM: Data Structures

• Read-sized k-mers: to reduce the number of accesses per each read

• **Sorted read-sized k-mers:** to avoid random accesses to the index

Sequential scan of the read set and the index

GenStore-EM: Data Structures

Sorted Read Table

Sorted K-mer Index

GenStore-EM: Finding a Match

GenStore-EM: Not Finding a Match

GenStore-EM: Not Finding a Match

Sorted Read TableSorted K-mer IndexReadK-merAA

Not an exact match \rightarrow Send to read mapper

Comparator

Read < K-mer

SAFARI

Next

GenStore-EM: Not Finding a Match

GenStore-EM: Optimization

• Read-sized k-mer index takes up a large amount of space (126 GB for human index) due to the larger number of unique k-mers

Sorted K-mer Index

Strong Hash Value	Loc.
1	1, 8,
4	51
7	23, 37
16	

Using strong hash values instead of read-sized k-mers reduces the size of the index by 3.9x

GenStore-EM: Design

Steps 1 and 2 are pipelined.

During filtering, GenStore-EM sends the unfiltered reads to the host system.

Data is evenly distributed between channels, dies, and planes to leverage the full internal bandwidth of the SSD

Evaluation Methodology

Read Mappers

- **Base:** state-of-the-art software or hardware read mappers
 - Minimap₂ [Bioinformatics'₁₈]: software mapper for short and long reads
 - GenCache [MICRO'19]: hardware mapper for short reads
 - Darwin [ASPLOS'18]: hardware mapper for long reads
- GS: Base integrated with GenStore

SSD Configurations

- **SSD-L:** with SATA₃ interface (0.5 GB/s sequential read bandwidth)
- **SSD-M:** with PCIe Gen3 interface (3.5 GB/s sequential read bandwidth)
- **SSD-H:** with PCIe Gen4 interface (7 GB/s sequential read bandwidth)

Performance – GenStore-EM

2.1× - 2.5× speedup compared to the software Base

1.5× – 3.3× speedup compared to the hardware Base

On average 3.92× energy reduction

Performance – GenStore-NM

For a read set with 99.7% non-matching reads

With the Software Mapper

With the Hardware Mapper

22.4× – 27.9× speedup compared to the software Base

6.8× – 19.2× speedup compared to the hardware Base

On average 27.2× energy reduction

Area and Power

• Based on Synthesis of GenStore accelerators using the Synopsys Design Compiler @ 65nm technology node

Logic unit	# of instances	Area [mm²]	Power [mW]
Comparator	1 per SSD	0.0007	0.14
K -mer Window	2 per channel	0.0018	0.27
Hash Accelerator	2 per SSD	0.008	1.8
Location Buffer	1 per channel	0.00725	0.37375
Chaining Buffer	1 per channel	0.008	0.95
Chaining PE	1 per channel	0.004	0.98
Control	1 per SSD	0.0002	0.11
Total for an 8-channel SSD	-	0.2	26.6

Only 0.006% of a 14nm Intel Processor, less than 9.5% of the three ARM processors in a SATA SSD controller

GenStore Paper, Slides, Video [ASPLOS 2022]

 Nika Mansouri Ghiasi, Jisung Park, Harun Mustafa, Jeremie Kim, Ataberk Olgun, Arvid Gollwitzer, Damla Senol Cali, Can Firtina, Haiyu Mao, Nour Almadhoun Alserr, Rachata Ausavarungnirun, Nandita Vijaykumar, Mohammed Alser, and Onur Mutlu,
"GenStore: A High-Performance and Energy-Efficient In-Storage Computing System for Genome Sequence Analysis" Proceedings of the 27th International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS), Virtual, February-March 2022.

[Lightning Talk Slides (pptx) (pdf)] [Lightning Talk Video (90 seconds)]

GenStore: A High-Performance In-Storage Processing System for Genome Sequence Analysis

Nika Mansouri Ghiasi¹ Jisung Park¹ Harun Mustafa¹ Jeremie Kim¹ Ataberk Olgun¹ Arvid Gollwitzer¹ Damla Senol Cali² Can Firtina¹ Haiyu Mao¹ Nour Almadhoun Alserr¹ Rachata Ausavarungnirun³ Nandita Vijaykumar⁴ Mohammed Alser¹ Onur Mutlu¹

¹ETH Zürich ²Bionano Genomics ³KMUTNB ⁴University of Toronto

SAFARI

https://arxiv.org/abs/2202.10400

GenStore

GenStore: A High-Performance and Energy-Efficient In-Storage Computing System for Genome Sequence Analysis

Nika Mansouri Ghiasi¹ Jisung Park¹ Harun Mustafa¹ Jeremie Kim¹ Ataberk Olgun¹ Arvid Gollwitzer¹ Damla Senol Cali² Can Firtina¹ Haiyu Mao¹ Nour Almadhoun Alserr¹ Rachata Ausavarungnirun³ Nandita Vijaykumar⁴ Mohammed Alser¹ Onur Mutlu¹

¹ETH Zürich ²Bionano Genomics ³KMUTNB ⁴University of Toronto

https://arxiv.org/abs/2202.10400

GenStore

A High-Performance In-Storage Processing System for Genome Sequence Analysis

Nika Mansouri Ghiasi, Jisung Park, Harun Mustafa, Jeremie Kim, Ataberk Olgun, Arvid Gollwitzer, Damla Senol Cali, Can Firtina, Haiyu Mao, Nour Almadhoun Alserr, Rachata Ausavarungnirun, Nandita Vijaykumar, Mohammed Alser, and Onur Mutlu

In-Storage Metagenomics [ISCA 2024]

 Nika Mansouri Ghiasi, Mohammad Sadrosadati, Harun Mustafa, Arvid Gollwitzer, Can Firtina, Julien Eudine, Haiyu Mao, Joel Lindegger, Meryem Banu Cavlak, Mohammed Alser, Jisung Park, and Onur Mutlu,
"MegIS: High-Performance and Low-Cost Metagenomic Analysis with In-Storage Processing"
Proceedings of the 51st Annual International Symposium on Computer Architecture (ISCA), Buenos Aires, Argentina, July 2024.
[Slides (pptx) (pdf)]
[arXiv version]

MegIS: High-Performance, Energy-Efficient, and Low-Cost Metagenomic Analysis with In-Storage Processing

Nika Mansouri Ghiasi¹ Mohammad Sadrosadati¹ Harun Mustafa¹ Arvid Gollwitzer¹ Can Firtina¹ Julien Eudine¹ Haiyu Mao¹ Joël Lindegger¹ Meryem Banu Cavlak¹ Mohammed Alser¹ Jisung Park² Onur Mutlu¹ ¹ETH Zürich ²POSTECH

MegIS: High-Performance, Energy-Efficient, and Low-Cost Metagenomic Analysis with In-Storage Processing

Nika Mansouri Ghiasi¹ Mohammad Sadrosadati¹ Harun Mustafa¹ Arvid Gollwitzer¹ Can Firtina¹ Julien Eudine¹ Haiyu Mao¹ Joël Lindegger¹ Meryem Banu Cavlak¹ Mohammed Alser¹ Jisung Park² Onur Mutlu¹ ¹ETH Zürich ²POSTECH

https://arxiv.org/abs/2406.19113

MegIS

High-Performance, Energy-Efficient, and Low-Cost Metagenomic Analysis with In-Storage Processing

Nika Mansouri Ghiasi

Mohammad Sadrosadati Harun Mustafa Arvid Gollwitzer Can Firtina

Julien Eudine Haiyu Mao Joël Lindegger Meryem Banu Cavlak

Mohammed Alser Jisung Park Onur Mutlu

Background

Motivation and Goal

MegIS

Evaluation

Conclusion

What is Metagenomics?

• <u>Metagenomics</u>: Study of genome sequences of diverse organisms within a shared environment (e.g., blood, ocean, soil)

- Overcomes the limitations of traditional genomics
 - Bypasses the need for analyzing individual species in isolation

What is Metagenomics?

• <u>Metagenomics</u>: Study of genome sequences of diverse organisms within a shared environment (e.g., blood, ocean, soil)

Has led to groundbreaking advances

- Precision medicine
- Understanding microbial diversity of an environment
- Discovering early warnings of communicable diseases

Metagenomic Analysis

SAFARI (e.g., > 100 TBs in emerging databases)

Background

Motivation and Goal

MegIS

Evaluation

Conclusion

Motivation

- Case study of the performance of metagenomic analysis tools
- With various state-of-the-art SSD configurations

I/O data movement causes significant performance overhead

Motivation

- Case study on the throughput of metagenomic analysis tools
- With Various state-of-the-art SSD configurations

I/O becomes an even larger overhead (by 2.7x) in systems where other bottlenecks are alleviated

I/O data movement causes significant performance overhead

I/O Overhead is Hard to Avoid

I/O overhead due to accessing large, low-reuse data is hard to avoid

Sampling techniques to shrink database sizes

[Wood+, Genome Biology'19], [Ounit+, BMC Genomics'15], [Kim+, Genome Research'16], ...

X Reduce accuracy to levels unacceptable for many use cases

Keeping all data required by metagenomic analysis completely and always resident in main memory

Energy inefficient, costly, unscalable, and unsustainable

- Database sizes **increase rapidly** (doubling every few months)
- Different analyses need **different databases**

Our Goal

Improve metagenomic analysis **performance** by reducing large **data movement overhead** from the storage system in a **cost-effective** manner and with **high accuracy**

Challenges of In-Storage Processing

No metagenomic analysis tool can run in-storage due to SSD limits

- Long latency of NAND flash chips
- Limited **DRAM capacity** inside the SSD
- Limited **DRAM bandwidth** inside the SSD

Background

Motivation and Goal

MegIS

Evaluation

Conclusion

MegIS: Metagenomics In-Storage

- First in-storage system for *end-to-end* metagenomic analysis
- Idea: Cooperative in-storage processing for metagenomic analysis
 - Hardware/software co-design between

MegIS's Steps

Task partitioning and mapping

• Each step executes in its most suitable system

• Enable efficient access patterns to the SSD

• Enable efficient access patterns to the SSD Lightweight in-storage accelerators
Minimize SRAM/DRAM buffer spaces needed inside the SSD

Data mapping scheme and Flash Translation Layer (FTL)

• Specialize to the characteristics of metagenomic analysis

• Leverage the SSD's full internal bandwidth

Step 1 Overview

Step 1 Overview

MegIS employs **sorted data structures** to avoid expensive random accesses to the SSD

- Extract k-mers from the sample
- **Sort** the k-mers (database is sorted offline)
- MegIS executes Step 1 in the host system
- Benefits from larger DRAM and more powerful computation
- Incurs fewer writes to NAND flash chips (than processing this step in the SSD)
- Enables overlapping Step 1 with Step 2

To execute Step 1 efficiently in the host system, MegIS needs to:

- Avoid significant overhead due to data transfer time between the steps
- Minimize performance and lifetime overheads even when host DRAM cannot hold all query k-mers
Step 1 Design

Divide k-mers into independent partitions by their alphabetical range

Can overlap operations on different partitions

Step 2 Overview

Step 2 Overview

- Identify the common k-mers between the <u>query k-mers</u> and the <u>database k-mers</u>
- Retrieve the species IDs of the common k-mers

- Accesses large data with low reuse
- Involves lightweight computation

To execute Step 2 efficiently in the SSD, MegIS needs to:

- Leverage internal bandwidth efficiently
- Not require expensive hardware inside the SSD (e.g., large DRAM bandwidth/capacity and costly logic units)

Step 2 Design: Identifying the Common K-mers

• **Challenge:** Limited internal DRAM bandwidth

Step 2 Design: Identifying the Common K-mers

- Challenge: Limited internal DRAM bandwidth
 - Compute directly on the flash data streams [Zou+, MICRO'22]
 - Reduce buffer size based on application features

Step 2 Design: Retrieving the Species ID

 MegIS retrieves the species IDs of the common k-mers by looking up a sketch database

K-mer	
AAAAA	
AAAAC	
AATCC	

Space-Efficient

Slow inside the SSD due to long NAND flash latency

Step 2 Design: Retrieving the Species ID

 MegIS retrieves the species IDs of the common k-mers by looking up a sketch database

K-mer Sketch Streaming is much more suitable for in-storage processing due to its streaming accesses

Step 2 Design: Retrieving the Species ID

 MegIS retrieves the species IDs of the common k-mers by looking up a sketch database

Design details are in the paper

K-mer Sketch Streaming is much more suitable for in-storage processing due to its streaming accesses

Step 3

Step 3

MegIS performs additional analysis on species identified in the sample to estimate their abundance

MegIS can flexibly integrate with different approaches

- 1. Lightweight statistical approaches: Directly uses the output of Step 2
- 2. More accurate and costly read mapping: MegIS facilitates integration by preparing mapping indexes in the SSD

	K-mer	Loc.		K-mer	Loc.	N	K-mer	Loc.
	ATT	14		AAG	2		AAG	1002
	CCA	9		CCA	21	Merge	ATT	14
	GCT	5		TGC	4		CCA	<mark>9,</mark> 1021
						V	GCT	5
Reference Index		K I	Reference Index		Unified	TGC	1004	
Organism A			Organism B		Reference Index			

Step 3 and MegIS FTL are in the paper

Background

Motivation and Goal

MegIS

Evaluation

Conclusion

Evaluation Methodology Overview (I)

Performance, Energy, and Power Analysis

Hardware Components

- Synthesized Verilog model for the in-storage accelerators
- MQSim [Tavakkol+, FAST'18] for SSD's internal operations
- Ramulator [Kim+, CAL'15] for SSD's internal DRAM

Software Components

Measure on a real system:

- AMD[®] EPYC[®] CPU with 128 physical cores
- 1-TB DRAM

Baseline Comparison Points

- Performance-optimized software, Kraken2 [Genome Biology'19]
- Accuracy-optimized software, Metalign [Genome Biology'20]
- PIM hardware-accelerated tool (using processing-in-memory), Sieve [ISCA'21]

SSD Configurations

- **SSD-C:** with SATA3 interface (0.5 GB/s sequential read bandwidth)
- SSD-P: with PCIe Gen4 interface (7 GB/s sequential read bandwidth)
 SAFARI

Evaluation Methodology Overview (II)

Metagenomic Analysis Task

- Finding species present in the sample
- Analysis of the abundance estimation task is in the paper

Metagenomic Samples

- With varying degrees of genetic diversity
 - Low
 - Medium
 - High

Speedup over Software (with Cost-Optimized SSD)

MegIS provides significant speedup over both

Performance-Optimized and Accuracy-Optimized baselines

Speedup over Software (with Performance-Optimized SSD)

MegIS provides significant speedup over both Performance-Optimized and Accuracy-Optimized baselines MegIS improves performance on both cost-optimized and performance-optimized SSDs

Speedup over the PIM Hardware Baseline

MegIS provides significant speedup over the PIM baseline

Reduction in Energy Consumption

MegIS provides significant energy reduction over

the Performance-Optimized, Accuracy-Optimized, and PIM baselines

Accuracy, Area, and Power

Accuracy

- Same accuracy as the accuracy-optimized baseline
- Significantly higher accuracy than the performance-optimized and PIM baselines
 - 4.6 5.2× higher F1 score
 - 3 24% lower L1 norm error

Area and Power

Total for an 8-channel SSD:

- Area: 0.04 mm²
- **Power:** 7.658 mW

(Only **1.7%** of the area and **4.6%** of the power consumption of three ARM Cortex R4 cores in an SSD controller) **SAFARI**

System Cost-Efficiency

- **Cost-optimized system (\$):** With SSD-C and 64-GB DRAM
- Performance-optimized system (\$\$\$): With SSD-P and 1-TB DRAM

MegIS outperforms the baselines even when running on a much less costly system

System Cost-Efficiency

- **Cost-optimized system (\$):** With SSD-C and 64-GB DRAM
- Performance-optimized system (\$\$\$): With SSD-P and 1-TB DRAM

MegIS outperforms the baselines even when running on a much less costly system

More in the Paper

- MegIS's performance when running in-storage processing operations on the **cores existing in the SSD controller**
- MegIS's performance when using the same accelerators outside SSD
- Sensitivity analysis with varying
 - Database sizes
 - Memory capacities
 - #SSDs
 - #Channels
 - #Samples
- MegIS's performance for abundance estimation
 SAFARI

MegIS: High-Performance, Energy-Efficient, and Low-Cost Metagenomic Analysis with In-Storage Processing

Nika Mansouri Ghiasi¹ Mohammad Sadrosadati¹ Harun Mustafa¹ Arvid Gollwitzer¹ Can Firtina¹ Julien Eudine¹ Haiyu Mao¹ Joël Lindegger¹ Meryem Banu Cavlak¹ Mohammed Alser¹ Jisung Park² Onur Mutlu¹ ¹ETH Zürich ²POSTECH

- Database sizes
- Memory capacities
- #SSDs
- #Channels
- #Samples

MegIS's performance for abundance estimation

https://arxiv.org/abs/2406.19113

Background

Motivation and Goal

MegIS

Evaluation

Conclusion

Conclusion

Metagenomic analysis suffers from significant storage I/O data movement overhead

MegIS

The *first* **in-storage processing** system for *end-to-end* metagenomic analysis Leverages and orchestrates **processing inside** and **outside** the storage system

Improves performance

2.7×-37.2× over performance-optimized software
6.9×-100.2× over accuracy-optimized software
1.5×-5.1× over hardware-accelerated PIM baseline

High accuracy

Same as accuracy-optimized

4.8× higher F1 score

over performance-optimized/PIM

Reduces energy consumption

5.4× over performance-optimized software
15.2× over accuracy-optimized software

1.9× over hardware-accelerated PIM baseline

Small area/power

Area: 0.04 mm2

Power: **7.658 mW**

MegIS

High-Performance, Energy-Efficient, and Low-Cost Metagenomic Analysis with In-Storage Processing

https://arxiv.org/abs/2406.19113

In-Storage Metagenomics [ISCA 2024]

 Nika Mansouri Ghiasi, Mohammad Sadrosadati, Harun Mustafa, Arvid Gollwitzer, Can Firtina, Julien Eudine, Haiyu Mao, Joel Lindegger, Meryem Banu Cavlak, Mohammed Alser, Jisung Park, and Onur Mutlu,
 "MegIS: High-Performance and Low-Cost Metagenomic Analysis with In-Storage Processing"
 Proceedings of the 51st Annual International Symposium on Computer Architecture (ISCA), Buenos Aires, Argentina, July 2024.
 [Slides (pptx) (pdf)]
 [arXiv version]

MegIS: High-Performance, Energy-Efficient, and Low-Cost Metagenomic Analysis with In-Storage Processing

Nika Mansouri Ghiasi¹ Mohammad Sadrosadati¹ Harun Mustafa¹ Arvid Gollwitzer¹ Can Firtina¹ Julien Eudine¹ Haiyu Mao¹ Joël Lindegger¹ Meryem Banu Cavlak¹ Mohammed Alser¹ Jisung Park² Onur Mutlu¹ ¹ETH Zürich ²POSTECH

MegIS: High-Performance, Energy-Efficient, and Low-Cost Metagenomic Analysis with In-Storage Processing

Nika Mansouri Ghiasi¹ Mohammad Sadrosadati¹ Harun Mustafa¹ Arvid Gollwitzer¹ Can Firtina¹ Julien Eudine¹ Haiyu Mao¹ Joël Lindegger¹ Meryem Banu Cavlak¹ Mohammed Alser¹ Jisung Park² Onur Mutlu¹ ¹ETH Zürich ²POSTECH

https://arxiv.org/abs/2406.19113

Storage-Centric Computing for Genomics and Metagenomics

Onur Mutlu <u>omutlu@gmail.com</u>

https://people.inf.ethz.ch/omutlu

6 August 2024 FMS: the Future of Memory and Storage

fill the Future of Memory and Storage

Backup Slides

GenStore

A High-Performance In-Storage Processing System for Genome Sequence Analysis

Nika Mansouri Ghiasi, Jisung Park, Harun Mustafa, Jeremie Kim, Ataberk Olgun, Arvid Gollwitzer, Damla Senol Cali, Can Firtina, Haiyu Mao, Nour Almadhoun Alserr, Rachata Ausavarungnirun, Nandita Vijaykumar, Mohammed Alser, and Onur Mutlu

Genome Sequence Analysis

- Genome sequence analysis is critical for many applications
 - Personalized medicine
 - Outbreak tracing
 - Evolutionary studies
- Genome sequencing machines extract smaller fragments of the original DNA sequence, known as reads

Genome Sequence Analysis

- Read mapping: first key step in genome sequence analysis
 - Aligns reads to potential matching locations in the reference genome
 - For each matching location, the alignment step finds the degree of similarity (alignment score)

- Calculating the alignment score requires computationally-expensive approximate string matching (ASM) to account for differences between reads and the reference genome due to:
 - Sequencing errors
 - Genetic variation

Accelerating Genome Sequence Analysis

Computation overhead

Data movement overhead

Filter reads that do *not* require alignment *inside the storage system*

Exactly-matching reads

Do not need expensive approximate string matching during alignment

Non-matching reads

Do not have potential matching locations and can skip alignment

Challenges

Filter reads that do *not* require alignment *inside the storage system*

Read mapping workloads can exhibit different behavior

There are limited hardware resources in the storage system

Filter reads that do *not* require alignment *inside the storage system*

Background

Motivation and Goal

GenStore

Evaluation

Conclusions

Background

Motivation and Goal

GenStore

Evaluation

Conclusions

Motivation

- Case study on a real-world genomic read dataset
 - Various read mapping systems
 - Various state-of-the-art SSD configurations

The ideal in-storage filter significantly improves performance by

- 1) reducing the computation overhead
- 2) reducing the data movement overhead

Motivation

- Case study on a real-world genomic read dataset
 - Various read mapping systems
 - Various state-of-the-art SSD configurations

Filtering outside SSD provides lower performance benefit since it

1) does not reduce the data movement overhead

2) must compete with read mapping for system resources

A HW accelerator reduces the computation bottleneck, which makes I/O a larger bottleneck in the system

Our Goal

Design an in-storage filter for genome sequence analysis in a cost-effective manner

Design Objectives:

Performance

Provide high in-storage filtering performance to overlap the filtering with the read mapping of unfiltered data

Applicability

Support reads with 1) different properties and 2) different degrees of genetic variation in the compared genomes

Low-cost

Do not require significant hardware overhead

Outline

Background

Motivation and Goal

GenStore

Evaluation

Conclusions

GenStore

• Key idea: Filter reads that do not require alignment inside the storage system

Challenges

- Different behavior across read mapping workloads
- Limited hardware resources in the SSD

Filtering Opportunities

- Sequencing machines produce one of two kinds of reads
 - Short reads: highly accurate and short
 - Long reads: less accurate and long

Reads that do not require the expensive alignment step:

Exactly-matching reads

Do not need expensive approximate string matching during alignment

- Low sequencing error rates (short reads) combined with
- Low genetic variation

Non-matching reads

Do not have potential matching locations, so they skip alignment

- High sequencing error rates (long reads) or
- High genetic variation (short or long reads)

GenStore-EM for Exactly-Matching Reads

GenStore-NM for Non-Matching Reads

GenStore-EM for Exactly-Matching Reads

GenStore-NM for <u>Non-Matching Reads</u>

120

GenStore-EM

- Efficient in-storage filter for reads with at least one exact match in the reference genome
- Uses simple operations, without requiring alignment
- **Challenge:** large number of random accesses per read to the reference genome and its index

Expensive random accesses to flash chips

Limited DRAM capacity inside the SSD

GenStore-EM: Data Structures

• Read-sized k-mers: to reduce the number of accesses per each read

• **Sorted read-sized k-mers:** to avoid random accesses to the index

Sequential scan of the read set and the index

GenStore-EM: Data Structures

Sorted Read Table

Sorted K-mer Index

GenStore-EM: Finding a Match

GenStore-EM: Not Finding a Match

GenStore-EM: Not Finding a Match

Sorted Read TableSorted K-mer IndexReadK-merAA

AAAAAAAACT Next Comparator Read < K-mer

Not an exact match \rightarrow Send to read mapper

GenStore-EM: Not Finding a Match

GenStore-EM: Optimization

• Read-sized k-mer index takes up a large amount of space (126 GB for human index) due to the larger number of unique k-mers

Sorted K-mer Index

Strong Hash Value	Loc.	
1	1, 8,	
4	51	
7	23, 37	
16		

Using strong hash values instead of read-sized k-mers reduces the size of the index by 3.9x

GenStore-EM: Design

Steps 1 and 2 are pipelined.

During filtering, GenStore-EM sends the unfiltered reads to the host system.

Data is evenly distributed between channels, dies, and planes to leverage the full internal bandwidth of the SSD

GenStore-EM for Exactly-Matching Reads

GenStore-NM for Non-Matching Reads

GenStore-NM

• Efficient chaining-based in-storage filter to prune most of the nonmatching reads

Seeding	Determine potential matching locations (seeds) in the reference genome	
Seed Filtering (e.g., Chaining)	rune some seeds in the reference genome	
Alignment	Determine the exact differences between the read and the reference genome	

• **Challenge:** how to perform chaining inside the SSD

Costly dynamic programming on many seeds in each read Particularly challenging for long reads with many seeds

GenStore-NM: Mechanism

- GenStore-NM uses a light-weight chaining filter
 - Selectively performs chaining only on reads with a small number of seeds
 - Directly sends reads that require more complex chaining to the host system

Reads with a sufficiently large number of seeds are very likely to align to the reference genome

Filters many non-aligning reads without costly hardware resources in the SSD

GenStore-NM: Mechanism

- GenStore-NM uses a light-weight chaining filter
 - Selectively performs chaining only on reads with a small number of seeds
 - Directly sends reads that require more complex chaining to the host system

Reads with a sufficiently large number of seeds are very likely to align to the reference genome

Details on GenStore-NM's design are in the paper

Outline

Background

Motivation and Goal

GenStore

Evaluation

Conclusions

Evaluation Methodology

Read Mappers

- **Base:** state-of-the-art software or hardware read mappers
 - Minimap₂ [Bioinformatics'₁₈]: software mapper for short and long reads
 - GenCache [MICRO'19]: hardware mapper for short reads
 - Darwin [ASPLOS'18]: hardware mapper for long reads
- GS: Base integrated with GenStore

SSD Configurations

- **SSD-L:** with SATA₃ interface (0.5 GB/s sequential read bandwidth)
- **SSD-M:** with PCIe Gen3 interface (3.5 GB/s sequential read bandwidth)
- **SSD-H:** with PCIe Gen4 interface (7 GB/s sequential read bandwidth)

Performance – GenStore-EM

2.1× - 2.5× speedup compared to the software Base

1.5× – 3.3× speedup compared to the hardware Base

On average 3.92× energy reduction

Performance – GenStore-NM

For a read set with 99.7% non-matching reads

With the Software Mapper

With the Hardware Mapper

22.4× – 27.9× speedup compared to the software Base

6.8× – 19.2× speedup compared to the hardware Base

On average 27.2× energy reduction

Area and Power

• Based on Synthesis of GenStore accelerators using the Synopsys Design Compiler (a) 65nm technology node

Logic unit	# of instances	Area [mm²]	Power [mW]
Comparator	1 per SSD	0.0007	0.14
K -mer Window	2 per channel	0.0018	0.27
Hash Accelerator	2 per SSD	0.008	1.8
Location Buffer	1 per channel	0.00725	0.37375
Chaining Buffer	1 per channel	0.008	0.95
Chaining PE	1 per channel	0.004	0.98
Control	1 per SSD	0.0002	0.11
Total for an 8-channel SSD	-	0.2	26.6

Only 0.006% of a 14nm Intel Processor, less than 9.5% of the three ARM processors in a SATA SSD controller

More in the Paper

- Effect of read set features on performance
 - Data size (up to 440 GB)
 - Filter ratio
- Performance benefit of an implementation of GenStore outside the SSD
 - In some cases, it provides performance benefits due more efficient streaming accesses
 - Provides significantly lower benefit compared to GenStore
- More detailed characterization of non-matching reads across different read mapping use cases and species

More in the Paper

GenStore: A High-Performance and Energy-Efficient In-Storage Computing System for Genome Sequence Analysis

Nika Mansouri Ghiasi¹ Jisung Park¹ Harun Mustafa¹ Jeremie Kim¹ Ataberk Olgun¹ Arvid Gollwitzer¹ Damla Senol Cali² Can Firtina¹ Haiyu Mao¹ Nour Almadhoun Alserr¹ Rachata Ausavarungnirun³ Nandita Vijaykumar⁴ Mohammed Alser¹ Onur Mutlu¹

¹ETH Zürich ²Bionano Genomics ³KMUTNB ⁴University of Toronto

outside the SSD

- In some cases, it provi efficient streaming ac
- Provides significantly

nefits due more

ared to GenStore

• More detailed characterization or non-matching reads across differe <u>https://arxiv.org/abs/2202.10400</u>d species

Outline

Background

Motivation and Goal

GenStore

Evaluation

Conclusions

Conclusion

- There has been significant effort into improving read mapping performance through efficient heuristics, hardware acceleration, accurate filters
- <u>Problem</u>: while these approaches address the computation overhead, none of them alleviate the **data movement overhead** from storage
- <u>Goal</u>: improve the performance of genome sequence analysis by effectively reducing unnecessary data movement from the storage system
- <u>Idea</u>: filter reads that **do not require the expensive alignment** computation **in the storage system** to fundamentally reduce the data movement overhead
- <u>Challenges</u>:
 - Read mapping workloads can exhibit different behavior
 - There are **limited available hardware resources** in the storage system
- <u>GenStore</u>: the *first* in-storage processing system designed for genome sequence analysis to reduce both the computation and data movement overhead
- <u>Key Results</u>: GenStore provides significant speedup (1.4x 33.6x) and energy reduction (3.9x 29.2x) at low cost

GenStore

A High-Performance In-Storage Processing System for Genome Sequence Analysis

Nika Mansouri Ghiasi, Jisung Park, Harun Mustafa, Jeremie Kim, Ataberk Olgun, Arvid Gollwitzer, Damla Senol Cali, Can Firtina, Haiyu Mao, Nour Almadhoun Alserr, Rachata Ausavarungnirun, Nandita Vijaykumar, Mohammed Alser, and Onur Mutlu

GenStore Backup Slides

End-to-End Workflow of Genome Sequence Analysis

- There are three key initial steps in a standard genome sequencing and analysis workflow
 - Collection, preparation, and sequencing of a DNA sample in the laboratory
 - Basecalling
 - Read mapping
- Genomic read sets can be obtained by
 - Sequencing a DNA sample and storing the generated read set into the SSD of a sequencing machine
 - Downloading read sets from publicly available repositories and storing them into an SSD
- We focus on optimizing the performance of read mapping because sequencing and basecalling are performed only once per read set, whereas read mapping can be performed many times
 - Analyzing the differences between a reads from an individual and many reference genomes of other individuals
 - Repeating the read mapping step many times to improve the outcome of read mapping
- Improving read mapping performance is critical in almost all genomic analyses that use sequencing
 - 45% of the execution time when discovering sequence variants in cancer genomics studies
 - 60% of the execution time when profiling the species composition of a multi-species (i.e., metagenomic) read

Motivation

Motivation

Benefits of Ideal In-Storage Filter

The ideal in-storage filter significantly improves performance by

- 1) Reducing computation overhead
- 2) Reducing data movement overhead

Overheads of Software Mappers

I/O has a significant impact on application performance which can be alleviated at the cost of expensive storage devices and interfaces

Overheads of Software Mappers

SW-filter provides limited benefits compared to Base

The filtering process outside the SSD must compete with the read mapping process for the resources in the system

Overheads of Hardware Mappers

Even the high-end SSD does not fully alleviate the storage bottleneck

The ideal in-storage filter significantly improves performance

Ideal-OSF

• Execution time of an ideal in-storage filter:

 $T_{\text{Ideal-ISF}} = T_{\text{I/O-Ref}} + \max\left\{T_{\text{I/O-Unfiltered}}, T_{\text{RM-Unfiltered}}\right\}$

- Execution time of an ideal outside-storage filter:
 - 60% slower than Ideal-ISF in our analysis

 $T_{\text{Ideal-OSF}} = T_{\text{I/O-Ref}} + \max\left\{T_{\text{I/O-All-Reads}}, T_{\text{RM-Unfiltered}}\right\}$

Comparison to PIM

- Even though read mapping applications could also benefit from other near-data, in-storage processing can fundamentally address the data movement problem by filtering large, low-reuse data where the data initially resides.
- Even if an ideal accelerator achieved a zero execution time, there would still exist the need to bring the data from storage to the accelerator.
 - 2.15x slower than the execution time that Ideal-ISF+ACC provides in our motivational analysis

In-storage filter can be integrated with any read mapping accelerator, including PIM accelerators, to alleviate their data movement overhead.

Long Read Use Cases

Use case	Input read set (Short/Long)	Size [GB]	Reference	Align [%]
Sequencing errors	ERR3988483 (L) [157] HG002_ONT_20200204 (L) [158]	54 371	hg38 [144]	47.4 69.3
Rapidly evolving samples	SRR5413248 (L) [157] SRR12423642 (S) [157]	1.69 0.466	NZ_NJEX02 [159] NC_045512.2 [160]	60.0 23.1
No reference	SRR6767727 (L) [157] SRR9953689 (L) [157]	12.4 15.9	NZ_NJEX02 [159]	0.35 37.0
Contamination	SRR9953689 (L) [157]	15.9	hg38 [144]	1.0

FTL

FTL: Metadata

- GenStore metadata includes the mapping information of the data structures necessary for read mapping acceleration
- In accelerator mode, GenStore also keeps in internal DRAM other metadata structures of the regular FTL
 - Examples include the page status table and block read counts which need to be updated during the filtering process
- We carefully design GenStore to only sequentially access the underlying NAND flash chips while operating as an accelerator
 - Requires only a small amount of metadata to access the stored data

FTL: Data Placement

- GenStore needs to properly place its data structures to enable the full utilization of the internal SSD bandwidth
- When each data structure is initially written to the SSD, GenStore sequentially and evenly distributes it across NAND flash chips
- GenStore can specify the physical location of a 30-GB data structure by maintaining only the list of 1,250 (30 GB/24 MB) physical block addresses
- It significantly reduces the size of the necessary mapping information from 300 MB (with conventional 4-KiB page mapping) to only 5 KB (1,250 4 bytes)

FTL: SSD Management Tasks

- In accelerator mode, GenStore only reads data structures to perform filtering, and does not write any new data
 - GenStore does not require any write-related SSD-management tasks such as garbage collection and wear-leveling
- The other tasks necessary for ensuring data reliability can be done before or after the filtering process
 - GenStore significantly limits the amount of data whose retention age would exceed the manufacturer-specified threshold since GenStore's filtering process takes a short time.
 - GenStore-FTL can easily avoid read disturbance errors for data with high read counts since GenStore sequentially reads NAND flash blocks only once during filtering

Data Sizes

- Conventional k-mer index in Minimap2 + reference genome: 7 GB (k = 15)
- Read-sized k-mer index before optimization: 126 GB (k= 150)
- Read-sized k-mer index after optimization: 32 GB (k = 150)

SSD Specs

- **SSD-L:** SATA3 interface (0.5 GB/s sequential read)
 - 1.2 GB/s per channel bandwidth
 - 8 channels
- **SSD-L:** PCIe Gen3 M.2 interface (3.5 GB/s sequential read)
 - 1.2 GB/s per channel bandwidth
 - 16 channels
- SSD-L: PCIe Gen4 interface (7 GB/s sequential read)
 - 1.2 GB/s per channel bandwidth
 - 16 channels

Evaluation Methodology

Performance modeling

- Ramulator for DRAM timing
- MQSim for SSD timing
- We model the end-to-end throughput of GenStore based on the throughput of each GenStore pipeline stage
 - Accessing NAND flash chips
 - Accessing internal DRAM
 - Accelerator computation
 - Transferring unfiltered data to the host

Real system results

- AMD EPYC 7742 CPU
- 1TB DDR4 DRAM
- AMD μ Prof

GenStore-NM

Chaining Processing Element

GenStore-EM

GS-Ext provides significant performance improvements over both Base and SIMD in SSD-M and SSD-H.

GS-Ext provides limited benefits over SIMD in SSD-L due to low external I/O bandwidth.

GenStore-NM

GS-Ext performs significantly slower than Base (2.28x - 1.91x) on all systems.

Effect of Inputs on GenStore-EM

$$DM_Saving = \frac{Size_{Ref} + Size_{ReadSet}}{Size_{Ref} + Size_{ReadSet} \times (1 - Ratio_{Filter})}$$

Effect of Inputs on GenStore-NM

$$DM_Saving = \frac{Size_{Ref} + Size_{ReadSet}}{Size_{Ref} + Size_{ReadSet} \times (1 - Ratio_{Filter})}$$

MegIS Backup Slides

Motivational Analysis

Database access patterns

(a)Random Query

(b)Streaming Query

Overview of MegIS's Steps

More Details on Step 1

K-mer Sketch Data Structures

Baseline K-mer Sketch Tables

5-mer	ID
AAAAA	1
AAAAC	6
AATCC	2

4-mer	ID
AAAA	1,6
AATC	2, 3

3-mer	ID	
AAA	1, 6, 8	
AAT	2,3, 5	

c K-mer Sketch Streaming Tables

8

5

...

K-mer Sketch Streaming Hardware Design

Index Generation in Step 3

MegIS FTL

Multi-Sample Analysis

SSD Configurations

Specification	SSD-C	SSD-P	
General	48-WL-layer 3D TLC NAND flash-based SSD 4 TB capacity, 4 GB internal LPDDR4 DRAM [226]		
Bandwidth (BW)	600 MB/s interface BW (SATA3); 560 MB/s sequential-read BW 1.2-GB/s channel I/O rate	8 GB/s interface BW (4-lane PCIe Gen4); 7 GB/s sequential-read BW 1.2-GB/s channel I/O rate	
NAND Config	8 channels, 8 dies/channel, 4 planes/dies, 2,048 blocks/plane, 196 WLs/block, 16 KiB/page (4/8/16 channels in Fig. 17)	16 channels, 8 dies/channel, 2 planes/dies, 2,048 blocks/plane, 196 WLs/block, 16 KiB/page (8/16/32 channels in Fig. 17)	
Latencies	Read (tR): 52.5 μ s, Program (tPROG): 700 μ s		
Embedded Cores	3 ARM Cortex-R4 cores [86]	4 ARM Cortex-R4 cores [86]	

Impact of Different Optimizations

Impact of Different Optimizations

Speedup with Different Database Sizes

Speedup with Different #SSDs

Speedup with Different Main Memory Capacities

Speedup with Varying SSD Internal Bandwidth

Speedup of Abundance Estimation

Multi-Sample Use Case

Area and Power

• Based on **synthesis** of **MegIS** accelerators using the Synopsys Design Compiler @ 65nm technology node

Logic Unit	# of instances	Area [mm²]	Power [mW]
Intersect (120-bit)	1 per channel	0.001361	0.284
k-mer Registers (2 x 120-bit)	1 per channel	0.002821	0.645
Index Generator (64-bit)	1 per channel	0.000272	0.025
Control Unit	1 per SSD	0.000188	0.026
Total for an 8-channel SSD	-	0.04	7.658

Only 1.7% of the area of three 28-nm ARM Cortex R4 cores

in a SATA SSD controller