
Onur Mutlu

omutlu@gmail.com

https://people.inf.ethz.ch/omutlu

6 August 2024

FMS: the Future of Memory and Storage

Storage-Centric Computing

for Genomics and Metagenomics

mailto:omutlu@gmail.com
https://people.inf.ethz.ch/omutlu

Quick

Background & Motivation

We Need Faster & Scalable Genome Analysis

3

Predicting the presence and relative
abundance of microbes in a sample

Understanding genetic variations,
species, evolution, …

Rapid surveillance of disease outbreaks Developing personalized medicine

And, many, many other applications …

Genome Sequencers

… and more! All produce data with
different properties.

Roche/454

Illumina HiSeq2000

Ion Torrent PGM
Ion Torrent Proton

AB SOLiD

Oxford Nanopore GridION

Oxford Nanopore MinION

Complete
Genomics

Illumina MiSeq

Pacific Biosciences RS
Illumina
NovaSeq
6000

… and more! All produce data with different properties.

Illumina MiSeq

Oxford Nanopore MinION

Pacific Biosciences RS IIIllumina NovaSeq 6000

Oxford
Nanopore
SmidgION

High-Throughput Sequencers

5

Pacific
Biosciences
Sequel II

Oxford
Nanopore
PromethION

Newer Genome Sequencing Technologies

6

Senol Cali+, “Nanopore Sequencing Technology and Tools for Genome
Assembly: Computational Analysis of the Current State, Bottlenecks
and Future Directions,” Briefings in Bioinformatics, 2018.
[Open arxiv.org version] [Slides (pptx) (pdf)] [Talk Video at AACBB 2019]

Oxford Nanopore MinION

https://arxiv.org/pdf/1711.08774.pdf
https://people.inf.ethz.ch/omutlu/pub/nanopore-sequencing-technology-and-tools-for-genome-assembly-AACBB18-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/nanopore-sequencing-technology-and-tools-for-genome-assembly-AACBB18-talk.pdf
https://www.youtube.com/watch?v=Zug8FonO8Vo

Genome Sequencing Cost Is Reducing

*From NIH (https://www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-Costs-Data)

https://www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-Costs-Data

Problems with (Genome) Analysis Today

8

Special-Purpose Machine

for Data Generation

General-Purpose Machine

for Data Analysis

FAST SLOW

Slow and inefficient processing capability

This picture is similar for many “data generators & analyzers” today

Large amounts of data movement

Accelerating Genome Analysis [IEEE MICRO 2020]

◼ Mohammed Alser, Zulal Bingol, Damla Senol Cali, Jeremie Kim, Saugata Ghose, Can
Alkan, and Onur Mutlu,
"Accelerating Genome Analysis: A Primer on an Ongoing Journey"
IEEE Micro (IEEE MICRO), Vol. 40, No. 5, pages 65-75, September/October 2020.
[Slides (pptx)(pdf)]

[Talk Video (1 hour 2 minutes)]

9

https://people.inf.ethz.ch/omutlu/pub/AcceleratingGenomeAnalysis_ieeemicro20.pdf
http://www.computer.org/micro/
https://people.inf.ethz.ch/omutlu/pub/onur-AcceleratingGenomeAnalysis-AACBB-Keynote-Feb-16-2019-FINAL.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-AcceleratingGenomeAnalysis-AACBB-Keynote-Feb-16-2019-FINAL.pdf
https://www.youtube.com/watch?v=hPnSmfwu2-A

Accelerating Genome Analysis [DAC 2023]

◼ Onur Mutlu and Can Firtina,
"Accelerating Genome Analysis via Algorithm-Architecture

Co-Design"
Invited Special Session Paper in Proceedings of the 60th Design
Automation Conference (DAC), San Francisco, CA, USA, July 2023.
[arXiv version]

10https://arxiv.org/pdf/2305.00492.pdf

https://people.inf.ethz.ch/omutlu/pub/AcceleratingGenomeAnalysis_dac23.pdf
https://people.inf.ethz.ch/omutlu/pub/AcceleratingGenomeAnalysis_dac23.pdf
https://www.dac.com/
https://www.dac.com/
https://arxiv.org/abs/2305.00492
https://arxiv.org/pdf/2305.00492.pdf

Simulating Storage: MQSim [FAST 2018]

◼ Arash Tavakkol, Juan Gomez-Luna, Mohammad Sadrosadati, Saugata
Ghose, and Onur Mutlu,
"MQSim: A Framework for Enabling Realistic Studies of Modern
Multi-Queue SSD Devices"
Proceedings of the 16th USENIX Conference on File and Storage
Technologies (FAST), Oakland, CA, USA, February 2018.
[Slides (pptx) (pdf)]
[Source Code]

https://github.com/CMU-SAFARI/MQSim

https://people.inf.ethz.ch/omutlu/pub/MQSim-SSD-simulation-framework_fast18.pdf

https://people.inf.ethz.ch/omutlu/pub/MQSim-SSD-simulation-framework_fast18.pdf
https://people.inf.ethz.ch/omutlu/pub/MQSim-SSD-simulation-framework_fast18.pdf
https://www.usenix.org/conference/fast18
https://www.usenix.org/conference/fast18
https://people.inf.ethz.ch/omutlu/pub/MQSim-SSD-simulation-framework_fast18-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/MQSim-SSD-simulation-framework_fast18-talk.pdf
https://github.com/CMU-SAFARI/MQSim
https://github.com/CMU-SAFARI/MQSim
https://people.inf.ethz.ch/omutlu/pub/MQSim-SSD-simulation-framework_fast18.pdf

Simulating Memory: Ramulator 2.0

◼ Haocong Luo, Yahya Can Tugrul, F. Nisa Bostanci, Ataberk Olgun, A. Giray
Yaglikci, and Onur Mutlu,
"Ramulator 2.0: A Modern, Modular, and Extensible DRAM Simulator"
Preprint on arxiv, August 2023.
[arXiv version]
[Ramulator 2.0 Source Code]

12

https://arxiv.org/pdf/2308.11030.pdf

https://github.com/CMU-SAFARI/ramulator2

https://people.inf.ethz.ch/omutlu/pub/Ramulator2_arxiv23.pdf
https://arxiv.org/abs/2308.11030
https://github.com/CMU-SAFARI/ramulator2
https://arxiv.org/pdf/2308.11030.pdf
https://github.com/CMU-SAFARI/ramulator2

Open Source Tools: SAFARI GitHub

13https://github.com/CMU-SAFARI/

https://github.com/CMU-SAFARI/

Genomics Course (Fall 2022)

◼ Fall 2022 Edition:

❑ https://safari.ethz.ch/projects_and_seminars/fall2022/do
ku.php?id=bioinformatics

◼ Spring 2022 Edition:

❑ https://safari.ethz.ch/projects_and_seminars/spring2022
/doku.php?id=bioinformatics

◼ Youtube Livestream (Fall 2022):

❑ https://www.youtube.com/watch?v=nA41964-
9r8&list=PL5Q2soXY2Zi8tFlQvdxOdizD_EhVAMVQV

◼ Youtube Livestream (Spring 2022):

❑ https://www.youtube.com/watch?v=DEL_5A_Y3TI&list=
PL5Q2soXY2Zi8NrPDgOR1yRU_Cxxjw-u18

◼ Project course

❑ Taken by Bachelor’s/Master’s students

❑ Genomics lectures

❑ Hands-on research exploration

❑ Many research readings

14

https://www.youtube.com/onurmutlulectures

https://safari.ethz.ch/projects_and_seminars/fall2022/doku.php?id=bioinformatics
https://safari.ethz.ch/projects_and_seminars/fall2022/doku.php?id=bioinformatics
https://safari.ethz.ch/projects_and_seminars/fall2022/doku.php?id=bioinformatics
https://safari.ethz.ch/projects_and_seminars/spring2022/doku.php?id=bioinformatics
https://safari.ethz.ch/projects_and_seminars/spring2022/doku.php?id=bioinformatics
https://safari.ethz.ch/projects_and_seminars/spring2022/doku.php?id=bioinformatics
https://www.youtube.com/watch?v=nA41964-9r8&list=PL5Q2soXY2Zi8tFlQvdxOdizD_EhVAMVQV
https://www.youtube.com/watch?v=nA41964-9r8&list=PL5Q2soXY2Zi8tFlQvdxOdizD_EhVAMVQV
https://www.youtube.com/watch?v=nA41964-9r8&list=PL5Q2soXY2Zi8tFlQvdxOdizD_EhVAMVQV
https://www.youtube.com/watch?v=DEL_5A_Y3TI&list=PL5Q2soXY2Zi8NrPDgOR1yRU_Cxxjw-u18
https://www.youtube.com/watch?v=DEL_5A_Y3TI&list=PL5Q2soXY2Zi8NrPDgOR1yRU_Cxxjw-u18
https://www.youtube.com/onurmutlulectures

PIM Course (Fall 2022)

◼ Fall 2022 Edition:

❑ https://safari.ethz.ch/projects_and_seminars/fall2022
/doku.php?id=processing_in_memory

◼ Spring 2022 Edition:

❑ https://safari.ethz.ch/projects_and_seminars/spring2
022/doku.php?id=processing_in_memory

◼ Youtube Livestream (Fall 2022):

❑ https://www.youtube.com/watch?v=QLL0wQ9I4Dw&
list=PL5Q2soXY2Zi8KzG2CQYRNQOVD0GOBrnKy

◼ Youtube Livestream (Spring 2022):

❑ https://www.youtube.com/watch?v=9e4Chnwdovo&li
st=PL5Q2soXY2Zi-841fUYYUK9EsXKhQKRPyX

◼ Project course

❑ Taken by Bachelor’s/Master’s students

❑ Processing-in-Memory lectures

❑ Hands-on research exploration

❑ Many research readings

15

https://www.youtube.com/onurmutlulectures

https://safari.ethz.ch/projects_and_seminars/fall2022/doku.php?id=processing_in_memory
https://safari.ethz.ch/projects_and_seminars/fall2022/doku.php?id=processing_in_memory
https://safari.ethz.ch/projects_and_seminars/fall2022/doku.php?id=processing_in_memory
https://safari.ethz.ch/architecture/fall2021/doku.php?id=schedule
https://safari.ethz.ch/projects_and_seminars/spring2022/doku.php?id=processing_in_memory
https://safari.ethz.ch/architecture/fall2021/doku.php?id=schedule
https://safari.ethz.ch/projects_and_seminars/spring2022/doku.php?id=processing_in_memory
https://safari.ethz.ch/projects_and_seminars/spring2022/doku.php?id=processing_in_memory
https://www.youtube.com/watch?v=QLL0wQ9I4Dw&list=PL5Q2soXY2Zi8KzG2CQYRNQOVD0GOBrnKy
https://www.youtube.com/watch?v=9e4Chnwdovo&list=PL5Q2soXY2Zi-841fUYYUK9EsXKhQKRPyX
https://www.youtube.com/watch?v=9e4Chnwdovo&list=PL5Q2soXY2Zi-841fUYYUK9EsXKhQKRPyX
https://www.youtube.com/watch?v=9e4Chnwdovo&list=PL5Q2soXY2Zi-841fUYYUK9EsXKhQKRPyX
https://www.youtube.com/watch?v=9e4Chnwdovo&list=PL5Q2soXY2Zi-841fUYYUK9EsXKhQKRPyX
https://www.youtube.com/onurmutlulectures

SSD Course (Spring 2023)

◼ Spring 2023 Edition:

❑ https://safari.ethz.ch/projects_and_seminars/spring2023/
doku.php?id=modern_ssds

◼ Fall 2022 Edition:

❑ https://safari.ethz.ch/projects_and_seminars/fall2022/do

ku.php?id=modern_ssds

◼ Youtube Livestream (Spring 2023):

❑ https://www.youtube.com/watch?v=4VTwOMmsnJY&list
=PL5Q2soXY2Zi_8qOM5Icpp8hB2SHtm4z57&pp=iAQB

◼ Youtube Livestream (Fall 2022):

❑ https://www.youtube.com/watch?v=hqLrd-
Uj0aU&list=PL5Q2soXY2Zi9BJhenUq4JI5bwhAMpAp13&p
p=iAQB

◼ Project course

❑ Taken by Bachelor’s/Master’s students

❑ SSD Basics and Advanced Topics

❑ Hands-on research exploration

❑ Many research readings

16https://www.youtube.com/onurmutlulectures

https://safari.ethz.ch/projects_and_seminars/spring2023/doku.php?id=modern_ssds
https://safari.ethz.ch/projects_and_seminars/spring2023/doku.php?id=modern_ssds
https://safari.ethz.ch/projects_and_seminars/spring2023/doku.php?id=modern_ssds
https://safari.ethz.ch/projects_and_seminars/fall2022/doku.php?id=modern_ssds
https://safari.ethz.ch/projects_and_seminars/fall2022/doku.php?id=modern_ssds
https://safari.ethz.ch/projects_and_seminars/fall2022/doku.php?id=modern_ssds
https://www.youtube.com/watch?v=4VTwOMmsnJY&list=PL5Q2soXY2Zi_8qOM5Icpp8hB2SHtm4z57&pp=iAQB
https://www.youtube.com/watch?v=4VTwOMmsnJY&list=PL5Q2soXY2Zi_8qOM5Icpp8hB2SHtm4z57&pp=iAQB
https://www.youtube.com/watch?v=4VTwOMmsnJY&list=PL5Q2soXY2Zi_8qOM5Icpp8hB2SHtm4z57&pp=iAQB
https://www.youtube.com/watch?v=_q4rm71DsY4&list=PL5Q2soXY2Zi8vabcse1kL22DEcgMl2RAq
https://www.youtube.com/watch?v=hqLrd-Uj0aU&list=PL5Q2soXY2Zi9BJhenUq4JI5bwhAMpAp13&pp=iAQB
https://www.youtube.com/watch?v=hqLrd-Uj0aU&list=PL5Q2soXY2Zi9BJhenUq4JI5bwhAMpAp13&pp=iAQB
https://www.youtube.com/watch?v=hqLrd-Uj0aU&list=PL5Q2soXY2Zi9BJhenUq4JI5bwhAMpAp13&pp=iAQB
https://www.youtube.com/watch?v=hqLrd-Uj0aU&list=PL5Q2soXY2Zi9BJhenUq4JI5bwhAMpAp13&pp=iAQB
https://www.youtube.com/onurmutlulectures

In-Storage

Genomics & Metagenomics

In-Storage Genomic Data Filtering [ASPLOS 2022]

◼ Nika Mansouri Ghiasi, Jisung Park, Harun Mustafa, Jeremie Kim, Ataberk Olgun, Arvid

Gollwitzer, Damla Senol Cali, Can Firtina, Haiyu Mao, Nour Almadhoun Alserr, Rachata
Ausavarungnirun, Nandita Vijaykumar, Mohammed Alser, and Onur Mutlu,

"GenStore: A High-Performance and Energy-Efficient In-Storage Computing

System for Genome Sequence Analysis"
Proceedings of the 27th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), Virtual, February-March
2022.

[Lightning Talk Slides (pptx) (pdf)]

[Lightning Talk Video (90 seconds)]

18
https://arxiv.org/abs/2202.10400

https://people.inf.ethz.ch/omutlu/pub/GenStore_asplos22-arxiv.pdf
https://people.inf.ethz.ch/omutlu/pub/GenStore_asplos22-arxiv.pdf
https://asplos-conference.org/
https://asplos-conference.org/
https://people.inf.ethz.ch/omutlu/pub/GenStore_asplos22-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/GenStore_asplos22-lightning-talk.pdf
https://www.youtube.com/watch?v=Vi1af8KY0g8
https://arxiv.org/abs/2202.10400

19

GenStore

https://arxiv.org/abs/2202.10400

https://arxiv.org/abs/2202.10400

In-Storage Metagenomics [ISCA 2024]

◼ Nika Mansouri Ghiasi, Mohammad Sadrosadati, Harun Mustafa, Arvid Gollwitzer,
Can Firtina, Julien Eudine, Haiyu Mao, Joel Lindegger, Meryem Banu Cavlak,
Mohammed Alser, Jisung Park, and Onur Mutlu,
"MegIS: High-Performance and Low-Cost Metagenomic Analysis with
In-Storage Processing"
Proceedings of the 51st Annual International Symposium on Computer
Architecture (ISCA), Buenos Aires, Argentina, July 2024.
[Slides (pptx) (pdf)]
[arXiv version]

20
https://arxiv.org/pdf/2406.19113

https://arxiv.org/pdf/2406.19113
https://arxiv.org/pdf/2406.19113
https://iscaconf.org/isca2024/
https://iscaconf.org/isca2024/
https://safari.ethz.ch/wp-content/uploads/MegIS-ISCA24-V6.pptx
https://safari.ethz.ch/wp-content/uploads/MegIS-ISCA24-V6.pdf
https://arxiv.org/abs/2406.19113
https://arxiv.org/pdf/2406.19113

21

MegIS

https://arxiv.org/abs/2406.19113

https://arxiv.org/abs/2406.19113

GenStore
A High-Performance In-Storage Processing System

for Genome Sequence Analysis

Nika Mansouri Ghiasi, Jisung Park, Harun Mustafa, Jeremie Kim, Ataberk Olgun,

Arvid Gollwitzer, Damla Senol Cali, Can Firtina, Haiyu Mao, Nour Almadhoun Alserr,

Rachata Ausavarungnirun, Nandita Vijaykumar, Mohammed Alser, and Onur Mutlu

23

Genome Sequence Analysis
• Genome sequence analysis is critical for many applications

- Personalized medicine

- Outbreak tracing

- Evolutionary studies

• Genome sequencing machines extract smaller fragments of the original
DNA sequence, known as reads

AAGCTTCCATGG

AAATGGGCTTTC

GCCCAAATGGTT

GCTTCCAGAATG

24

Genome Sequence Analysis
• Read mapping: first key step in genome sequence analysis

…GCCCATATGGTTAAGCTTCCATGGAAATGGGCTTTCGCTTCCACAATG…

- Aligns reads to potential matching locations in the reference genome

Reference Genome

Differences Differences

- For each matching location, the alignment step finds the degree of
similarity (alignment score)

AAGCTTCCATGG

GCCCAAATGGTT

GCTTCCAGAATG

AAATGGGCTTTC
• Calculating the alignment score requires computationally-expensive

approximate string matching (ASM) to account for differences between
reads and the reference genome due to:

- Sequencing errors

- Genetic variation

25

Genome Sequence Analysis

Computation overhead

Data movement overhead

Computation
Unit

(CPU or
Accelerator)

Cache
Main

Memory

AAGCTTCCATGG

AAAATTCCATGG

TTTTTTCCAAAA
GCTTCCAGAATG

GGGCCAGAATG

GAATGGGGCCA
TCCCCGGGGCCA

CCTTTGGGTCCA

CGTTCCTTGGCA

Alignment

Data Movement from Storage

Storage
System

26

Heuristics Accelerators Filters

 Computation overhead

AAGCTTCCATGG

AAAATTCCATGG

TTTTTTCCAAAA
GCTTCCAGAATG

GGGCCAGAATG

GAATGGGGCCA
TCCCCGGGGCCA

CCTTTGGGTCCA

CGTTCCTTGGCA Computation
Unit

(CPU or
Accelerator)

Cache
Main

Memory
Storage
System

Data movement overhead

✓

Accelerating Genome Sequence Analysis

27

Storage
System

Key Idea

Non-matching reads
Do not have potential matching locations and can skip alignment

Filter reads that do not require alignment
inside the storage system

AAGCTTCCATGG

AAAATTCCATGG

TTTTTTCCAAAA
GCTTCCAGAATG

GGGCCAGAATG

GAATGGGGCCA
TCCCCGGGGCCA

CCTTTGGGTCCA

CGTTCCTTGGCA

Filtered Reads

Computation
Unit

(CPU or
Accelerator)

Cache
Main

Memory

Exactly-matching reads
Do not need expensive approximate string matching during alignment

28

Challenges

Read mapping workloads can exhibit different behavior

There are limited hardware resources
in the storage system

Filter reads that do not require alignment
inside the storage system

AAGCTTCCATGG

AAAATTCCATGG

TTTTTTCCAAAA
GCTTCCAGAATG

GGGCCAGAATG

GAATGGGGCCA
TCCCCGGGGCCA

CCTTTGGGTCCA

CGTTCCTTGGCA

Filtered Reads

Computation
Unit

(CPU or
Accelerator)

Cache
Main

Memory
Storage
System

29

GenStore

Computation overhead

Data movement overhead

GenStore provides significant speedup (1.4x - 33.6x) and
energy reduction (3.9x – 29.2x) at low cost

Filter reads that do not require alignment
inside the storage system

Computation
Unit

(CPU or
Accelerator)

Cache
Main

Memory

GenStore-Enabled
Storage
System

✓
✓

30

GenStore

SSD Controller

CoreCoreCore

In-SSD DRAM

L2P
Mappings

Flash
Ctrl.#1

Flash
Ctrl.#N

⋯

NAND
Die#4

NAND
Die#1 ⋯

NAND
Die#4

NAND
Die#1

⋯

Host System

FTL

ACC

ACC

ACC GenStore
Metadata

GenStore
FTL

Reads that need
substantial processing

• Key idea: Filter reads that do not require alignment inside the
storage system

• Challenges
- Different behavior across read mapping workloads
- Limited hardware resources in the SSD

31

Filtering Opportunities

• Sequencing machines produce one of two kinds of reads

- Short reads: highly accurate and short

- Long reads: less accurate and long

• High sequencing error rates (long reads) or
• High genetic variation (short or long reads)

Non-matching reads
Do not have potential matching locations, so they skip alignment

• Low sequencing error rates (short reads) combined with
• Low genetic variation

Exactly-matching reads
Do not need expensive approximate string matching during alignment

Reads that do not require the expensive alignment step:

32

GenStore

GenStore-EM for Exactly-Matching Reads

GenStore-NM for Non-Matching Reads

33

GenStore-EM

• Efficient in-storage filter for reads with at least one exact
match in the reference genome

• Uses simple operations, without requiring alignment

• Challenge: large number of random accesses per read to
the reference genome and its index

Expensive random accesses to flash chips

Limited DRAM capacity inside the SSD

34

GenStore-EM: Data Structures

GCCCAAATGGTTRead
GCC

CCC
…

K-mers

K-mer

• Read-sized k-mers: to reduce the number of accesses per

each read

Only one index lookup per read

• Sorted read-sized k-mers: to avoid random accesses to

the index

Sequential scan of the read set and the index✓

✓

35

GenStore-EM: Data Structures

K-mer Loc.
AAAAAAAAAA 1, 8, …
AAAAAAAAAC 51
AAAAAAAAAT 23, 37

… …

Sorted Read Table

ID Read
873 AAAAAAAAAA

232 AAAAAAAAAG

17 AAAAAAAACT

… …

Sorted K-mer Index

S
o

rte
d

Read-sized
 K-mers

Read
AAAAAAAAAA

36

GenStore-EM: Finding a Match

K-mer Loc.
AAAAAAAAAA 1, 8, …
AAAAAAAAAC 51
AAAAAAAAAT 23, 37

… …

Sorted Read Table

ID Read
873 AAAAAAAAAA

232 AAAAAAAAAG

17 AAAAAAAACT

… …

Sorted K-mer Index

Comparator

Read = K-mer

Next

Exact match → Filter the read

Next

37

GenStore-EM: Not Finding a Match

K-mer Loc.
AAAAAAAAAA 1, 8, …
AAAAAAAAAC 51
AAAAAAAAAT 23, 37

… …

Sorted Read Table

ID Read
873 AAAAAAAAAA

232 AAAAAAAAAG

17 AAAAAAAACT

… …

Sorted K-mer Index

Next
Comparator

Read > K-mer

38

Next

GenStore-EM: Not Finding a Match

K-mer Loc.
AAAAAAAAAA 1, 8, …
AAAAAAAAAC 51
AAAAAAAAAT 23, 37

… …

Sorted Read Table

ID Read
873 AAAAAAAAAA

232 AAAAAAAAAG

17 AAAAAAAACT

… …

Sorted K-mer Index

Comparator

Read < K-mer

Not an exact match → Send to read mapper

39

Next

GenStore-EM: Not Finding a Match

K-mer Loc.
AAAAAAAAAA 1, 8, …
AAAAAAAAAC 51
AAAAAAAAAT 23, 37

… …

Sorted Read Table

ID Read
873 AAAAAAAAAA

232 AAAAAAAAAG

17 AAAAAAAACT

… …

Sorted K-mer Index

Comparator

Read < K-mer

Not an exact match → Send to read mapper

Avoids random accesses

Simple low-cost logic✓
✓

40

GenStore-EM: Optimization

• Read-sized k-mer index takes up a large amount of space
(126 GB for human index) due to the larger number of
unique k-mers

K-mer Loc.
AAAAAAAAAA 1, 8, …
AAAAAAAAAC 51
AAAAAAAAAT 23, 37

… …

Sorted K-mer Index

Strong Hash Value

1
4

7
16

Using strong hash values instead of read-sized k-mers
reduces the size of the index by 3.9x

41

GenStore-EM: Design

GenStore-Enabled SSD

Host System

Die#1

Plane#1 Plane#2

Die#4

P#1 P#2

⋯

Die#1

P#1 P#2

Die#4

P#1 P#2

⋯

Die#1

P#1 P#2

Die#4

P#1 P#2

⋯⋯

Channel#1 Channel#2 Channel#N

❷ Exact-match filtering

SSD ControllerNAND Flash Array

SRTable

SKIndex
❶ Sequential Reads

DRAM

Batch#i-1

Batch#i

Batch#j-1

Batch#j

Comparator SRTable Buffer

SKIndex Buffer

Data is evenly distributed between channels, dies, and planes
to leverage the full internal bandwidth of the SSD

Steps 1 and 2 are pipelined.
During filtering, GenStore-EM sends the unfiltered reads

to the host system.

42

Evaluation Methodology

Read Mappers

• Base: state-of-the-art software or hardware read mappers

- Minimap2 [Bioinformatics’18]: software mapper for short and long reads

- GenCache [MICRO’19]: hardware mapper for short reads

- Darwin [ASPLOS’18]: hardware mapper for long reads

• GS: Base integrated with GenStore

SSD Configurations

• SSD-L: with SATA3 interface (0.5 GB/s sequential read bandwidth)

• SSD-M: with PCIe Gen3 interface (3.5 GB/s sequential read bandwidth)

• SSD-H: with PCIe Gen4 interface (7 GB/s sequential read bandwidth)

43

For a read set with 80% exactly-matching reads

Performance – GenStore-EM

0
50

100
150
200

Base GS Base GS Base GS

SSD-L SSD-M SSD-H

E
x

e
c.

 t
im

e
 [

se
c]

0
2
4
6
8

10

Base GS Base GS Base GS

SSD-L SSD-M SSD-H

With the Software Mapper With the Hardware Mapper

2.1× - 2.5× speedup compared to the software Base

1.5× – 3.3× speedup compared to the hardware Base

On average 3.92× energy reduction

2
9

2
.5

x

2
.1

x

2
.1

x 3
.3

x

1
.5

x

2
.5

x

44

For a read set with 99.7% non-matching reads

Performance – GenStore-NM

Base GS Base GS Base GS

SSD-L SSD-M SSD-H

E
xe

c.
 t

im
e

 [
se

c]
L

o
g

 s
ca

le

With the Software Mapper With the Hardware Mapper

22.4× – 27.9× speedup compared to the software Base

6.8× – 19.2× speedup compared to the hardware Base

On average 27.2× energy reduction

0.1

1

10

100

Base GS Base GS Base GS

SSD-L SSD-M SSD-H

2
2.

4

2
9x

2
7.

9
x

1
9.

2
x

6
.8

x

6
.8

x

45

Area and Power

• Based on Synthesis of GenStore accelerators using the Synopsys
Design Compiler @ 65nm technology node

Logic unit # of instances Area [mm2] Power [mW]

Comparator 1 per SSD 0.0007 0.14

K -mer Window 2 per channel 0.0018 0.27

Hash Accelerator 2 per SSD 0.008 1.8

Location Buffer 1 per channel 0.00725 0.37375

Chaining Buffer 1 per channel 0.008 0.95

Chaining PE 1 per channel 0.004 0.98

Control 1 per SSD 0.0002 0.11

Total for an 8-channel SSD - 0.2 26.6

Only 0.006% of a 14nm Intel Processor, less than 9.5% of the three

ARM processors in a SATA SSD controller

GenStore Paper, Slides, Video [ASPLOS 2022]

◼ Nika Mansouri Ghiasi, Jisung Park, Harun Mustafa, Jeremie Kim, Ataberk Olgun, Arvid

Gollwitzer, Damla Senol Cali, Can Firtina, Haiyu Mao, Nour Almadhoun Alserr, Rachata
Ausavarungnirun, Nandita Vijaykumar, Mohammed Alser, and Onur Mutlu,

"GenStore: A High-Performance and Energy-Efficient In-Storage Computing

System for Genome Sequence Analysis"
Proceedings of the 27th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), Virtual, February-March
2022.

[Lightning Talk Slides (pptx) (pdf)]

[Lightning Talk Video (90 seconds)]

46
https://arxiv.org/abs/2202.10400

https://people.inf.ethz.ch/omutlu/pub/GenStore_asplos22-arxiv.pdf
https://people.inf.ethz.ch/omutlu/pub/GenStore_asplos22-arxiv.pdf
https://asplos-conference.org/
https://asplos-conference.org/
https://people.inf.ethz.ch/omutlu/pub/GenStore_asplos22-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/GenStore_asplos22-lightning-talk.pdf
https://www.youtube.com/watch?v=Vi1af8KY0g8
https://arxiv.org/abs/2202.10400

47

GenStore

https://arxiv.org/abs/2202.10400

https://arxiv.org/abs/2202.10400

GenStore
A High-Performance In-Storage Processing System

for Genome Sequence Analysis

Nika Mansouri Ghiasi, Jisung Park, Harun Mustafa, Jeremie Kim, Ataberk Olgun,

Arvid Gollwitzer, Damla Senol Cali, Can Firtina, Haiyu Mao, Nour Almadhoun Alserr,

Rachata Ausavarungnirun, Nandita Vijaykumar, Mohammed Alser, and Onur Mutlu

In-Storage Metagenomics [ISCA 2024]

◼ Nika Mansouri Ghiasi, Mohammad Sadrosadati, Harun Mustafa, Arvid Gollwitzer,
Can Firtina, Julien Eudine, Haiyu Mao, Joel Lindegger, Meryem Banu Cavlak,
Mohammed Alser, Jisung Park, and Onur Mutlu,
"MegIS: High-Performance and Low-Cost Metagenomic Analysis with
In-Storage Processing"
Proceedings of the 51st Annual International Symposium on Computer
Architecture (ISCA), Buenos Aires, Argentina, July 2024.
[Slides (pptx) (pdf)]
[arXiv version]

49
https://arxiv.org/pdf/2406.19113

https://arxiv.org/pdf/2406.19113
https://arxiv.org/pdf/2406.19113
https://iscaconf.org/isca2024/
https://iscaconf.org/isca2024/
https://safari.ethz.ch/wp-content/uploads/MegIS-ISCA24-V6.pptx
https://safari.ethz.ch/wp-content/uploads/MegIS-ISCA24-V6.pdf
https://arxiv.org/abs/2406.19113
https://arxiv.org/pdf/2406.19113

50

MegIS

https://arxiv.org/abs/2406.19113

https://arxiv.org/abs/2406.19113

MegIS

High-Performance, Energy-Efficient, and Low-Cost

Metagenomic Analysis with In-Storage Processing

Nika Mansouri Ghiasi

Mohammed Alser Jisung Park Onur Mutlu

Mohammad Sadrosadati Harun Mustafa Arvid Gollwitzer Can Firtina

Julien Eudine Haiyu Mao Joël Lindegger Meryem Banu Cavlak

52

Outline

Conclusion

Background

Motivation and Goal

MegIS

Evaluation

53

What is Metagenomics?
• Metagenomics: Study of genome sequences of diverse organisms
 within a shared environment (e.g., blood, ocean, soil)

• Overcomes the limitations of traditional genomics
- Bypasses the need for analyzing individual species in isolation

54

What is Metagenomics?

Has led to groundbreaking advances

• Precision medicine

• Understanding microbial diversity of an environment

• Discovering early warnings of communicable diseases

• Metagenomics: Study of genome sequences of diverse organisms
 within a shared environment (e.g., blood, ocean, soil)

55

Metagenomic Analysis

A large database
containing information

on many species

Metagenomic sample
with species that

are not known in advance

Preparation
of Input Queries Q

ue
ry

K

-m
er

s

…

GCTCA

CTCAT

TCATG

Presence/Absence
Identification

Abundance
Estimation

V. cholerae

E. coli

SARS-CoV-2

(e.g., > 100 TBs in emerging databases)

56

Outline

Conclusion

Background

Motivation and Goal

MegIS

Evaluation

57

Motivation
• Case study of the performance of metagenomic analysis tools

• With various state-of-the-art SSD configurations

N
o

rm
a

li
ze

d
 T

h
ro

u
g

h
p

u
t

Database Size (Terabyte)

I/O data movement causes significant performance overhead

0

0.2

0.4

0.6

0.8

1

0.7 1.4

No I/O Performance-Optimized Cost-Optimized

3.
2x

4.
1x

27
.6

x

39
.2

x

58

Motivation
• Case study on the throughput of metagenomic analysis tools

• With Various state-of-the-art SSD configurations

N
o

rm
a

li
ze

d
 T

h
ro

u
g

h
p

u
t

Database Size (Terabyte)

0

0.2

0.4

0.6

0.8

1

0.7 1.4

I/O data movement causes significant performance overhead

Cost-Optimized Performance-Optimized No I/O

I/O becomes an even larger overhead (by 2.7x)

in systems where other bottlenecks are alleviated

59

I/O Overhead is Hard to Avoid

I/O overhead due to accessing large, low-reuse data is hard to avoid

Sampling techniques to shrink database sizes

Keeping all data required by metagenomic analysis
completely and always resident in main memory

Reduce accuracy to levels unacceptable for many use cases

Energy inefficient, costly, unscalable, and unsustainable

• Database sizes increase rapidly (doubling every few months)

• Different analyses need different databases

[Wood+, Genome Biology’19], [Ounit+, BMC Genomics’15], [Kim+, Genome Research’16], …

60

Our Goal

Improve metagenomic analysis performance

by reducing large data movement overhead

from the storage system

in a cost-effective manner and with high accuracy

61

Challenges of In-Storage Processing

No metagenomic analysis tool can run in-storage due to SSD limits

- Long latency of NAND flash chips

- Limited DRAM capacity inside the SSD

- Limited DRAM bandwidth inside the SSD

SSD DRAM

⋯

SSD
ControllerCoresFTL

⋯

S
S

D

CntrlCntrl

Channel#NChannel#1

62

Outline

Conclusion

Background

Motivation and Goal

MegIS

Evaluation

63

MegIS: Metagenomics In-Storage

• First in-storage system for end-to-end metagenomic analysis

• Idea: Cooperative in-storage processing for metagenomic analysis

- Hardware/software co-design between the storage system and host system

H
o

st
 S

y
st

e
m

SSD DRAM

Standard
Metadata

⋯

SSD
ControllerCoresFTL

⋯

M
e

g
IS

-E
n

a
b

le
d

 S
S

D

CntrlCntrl

Channel#NChannel#1

64

MegIS’s Steps

A large database
containing information

on many species

Metagenomic sample
with species that

are not known in advance

Preparation
of Input Queries Q

ue
ry

K

-m
er

s

…

GCTCA

CTCAT

TCATG

Presence/Absence
Identification

V. cholerae

E. coli

SARS-CoV-2

Abundance
Estimation

Step 1

Step 2

Step 3

65

MegIS Hardware-Software Co-Design
H

o
st

 S
y

st
e

m

SSD DRAM

Standard
Metadata

⋯

SSD
ControllerCoresFTL

⋯

M
e

g
IS

-E
n

a
b

le
d

 S
S

D

CntrlCntrl

Channel#NChannel#1

66

MegIS Hardware-Software Co-Design
H

o
st

 S
y

st
e

m

SSD DRAM

Standard
Metadata

⋯

SSD
ControllerCoresFTL

⋯

M
e

g
IS

-E
n

a
b

le
d

 S
S

D

CntrlCntrl

Channel#NChannel#1

Step 1

Task partitioning and mapping
• Each step executes

in its most suitable system

Step 2 Step 3

67

MegIS Hardware-Software Co-Design
H

o
st

 S
y

st
e

m

SSD DRAM

Standard
Metadata

⋯

SSD
ControllerCoresFTL

⋯

M
e

g
IS

-E
n

a
b

le
d

 S
S

D

CntrlCntrl

Channel#NChannel#1

Data/computation flow coordination
• Reduce communication overhead

• Reduce #writes to flash chips

Step 1 Step 2 Step 3

Task partitioning and mapping
• Each step executes

in its most suitable system

68

MegIS Hardware-Software Co-Design
H

o
st

 S
y

st
e

m

SSD DRAM

Standard
Metadata

⋯

SSD
ControllerCoresFTL

⋯

M
e

g
IS

-E
n

a
b

le
d

 S
S

D

CntrlCntrl

Channel#NChannel#1

Storage-aware algorithms
• Enable efficient

access patterns to the SSD

Step 1 Step 2 Step 3

Data/computation flow coordination
• Reduce communication overhead

• Reduce #writes to flash chips

Task partitioning and mapping
• Each step executes

in its most suitable system

69

MegIS Hardware-Software Co-Design
H

o
st

 S
y

st
e

m

SSD DRAM

Standard
Metadata

⋯

SSD
ControllerCoresFTL

⋯

M
e

g
IS

-E
n

a
b

le
d

 S
S

D

ACCACC

CntrlCntrl

Channel#NChannel#1

Lightweight in-storage accelerators
• Minimize SRAM/DRAM buffer spaces

needed inside the SSD

Step 1 Step 2 Step 3

Storage-aware algorithms
• Enable efficient

access patterns to the SSD

Data/computation flow coordination
• Reduce communication overhead

• Reduce #writes to flash chips

Task partitioning and mapping
• Each step executes

in its most suitable system

70

MegIS Hardware-Software Co-Design
H

o
st

 S
y

st
e

m

SSD DRAM

Standard
Metadata

⋯

SSD
ControllerCoresFTL

⋯

M
e

g
IS

-E
n

a
b

le
d

 S
S

D

MegIS
FTL

MegIS
Metadata

CntrlCntrl

Channel#NChannel#1

Data mapping scheme and Flash Translation Layer (FTL)
• Specialize to the characteristics of metagenomic analysis

• Leverage the SSD’s full internal bandwidth

Step 1 Step 2 Step 3

Storage-aware algorithms
• Enable efficient

access patterns to the SSD

Lightweight in-storage accelerators
• Minimize SRAM/DRAM buffer spaces

needed inside the SSD

Data/computation flow coordination
• Reduce communication overhead

• Reduce #writes to flash chips

Task partitioning and mapping
• Each step executes

in its most suitable system

ACCACC

71

Step 1 Overview

A large database
containing information

on many species

Metagenomic sample
with species that

are not known in advance Presence/Absence
Identification

V. cholerae

E. coli

SARS-CoV-2

Abundance
Estimation

Preparation
of Input Queries Q

ue
ry

K

-m
er

s

…

GCTCA

CTCAT

TCATG

Step 1

Step 2

Step 3

72

Step 1 Overview
MegIS employs sorted data structures

 to avoid expensive random accesses to the SSD

- Extract k-mers from the sample

- Sort the k-mers (database is sorted offline)

Preparation
of Input Queries Q

ue
ry

K

-m
er

s

…

GCTCA

CTCAT

TCATG

MegIS executes Step 1 in the host system

- Benefits from larger DRAM and more powerful computation

- Incurs fewer writes to NAND flash chips (than processing this step in the SSD)

- Enables overlapping Step 1 with Step 2

To execute Step 1 efficiently in the host system, MegIS needs to:

- Avoid significant overhead due to data transfer time between the steps

- Minimize performance and lifetime overheads even when host DRAM cannot
hold all query k-mers

73

Step 1 Design

Divide k-mers into independent partitions by their alphabetical range

 Can overlap operations on different partitions

Host DRAMHost CPU

Read
Input Queries

ACGTTACGATT…

ACGTT

⋯

Q
u

er
y

K
-m

e
rs

CGTTA

GTTAC

MegIS-Enabled SSD

Partition

A

ACGTC

ACTTT

ATGAT
⋯

⋯

C

CATTA

CTATG

CCGCA
⋯

G

GTTAC

GGTCC

GACAG
⋯

⋯

A

ACGTC

ACTTT

ATGAT
⋯

CATTA

CTATG

CCGCA
⋯

Overlap Step 1’s sorting

with Data transfer

and Step 2’s In-storage operations

74

Step 2 Overview

A large database
containing information

on many species

Metagenomic sample
with species that

are not known in advance

Abundance
Estimation

Preparation
of Input Queries Q

ue
ry

K

-m
er

s

…

GCTCA

CTCAT

TCATG

Step 1

Presence/Absence
Identification

V. cholerae

E. coli

SARS-CoV-2

Step 2

Step 3

75

Step 2 Overview

- Identify the common k-mers
between the query k-mers

 and the database k-mers

- Retrieve the species IDs

 of the common k-mers

MegIS executes Step 2 in the SSD

- Accesses large data with low reuse

- Involves lightweight computation

To execute Step 2 efficiently in the SSD, MegIS needs to:

- Leverage internal bandwidth efficiently

- Not require expensive hardware inside the SSD

 (e.g., large DRAM bandwidth/capacity and costly logic units)

Presence/Absence
Identification

V. cholerae

E. coli

SARS-CoV-2

76

Step 2 Design: Identifying the Common K-mers

• Challenge: Limited internal DRAM bandwidth

SSD DRAMSSD Controller

MegIS-Enabled
SSDC

h
a

n
n

e
l#

1

C
h

a
n

n
e

l#
NAAAAA

TAACC

CAAAA

AGTTT

TTGGT

CCGTG⋯

⋯

⋯ ⋯

Database K-mers

Query K-mers
from the Host

CGTCA

⋯

Common
K-mers

⋯

AGTTTDatabase K-mers
from Flash Chips

77

Step 2 Design: Identifying the Common K-mers

• Challenge: Limited internal DRAM bandwidth

SSD DRAMSSD Controller

MegIS-Enabled
SSDC

h
a

n
n

e
l#

1

C
h

a
n

n
e

l#
NAAAAA

TAACC

CAAAA

AGTTT

TTGGT

CCGTG⋯

⋯

⋯ ⋯

Database K-mers

Query K-mers
from the Host

CGTCA

⋯

IntersectIntersect

Buffer Buffer

Compute directly on the flash data streams

Reduce buffer size based on application features

K-mer Register

K-mer Register

K-mer Register

K-mer Register

Write to DRAM

Common
K-mers

[Zou+, MICRO’22]

78

Space-Inefficient

Step 2 Design: Retrieving the Species ID

• MegIS retrieves the species IDs of the common k-mers by looking
up a sketch database

K-mer ID
AAAAA 1,5

AAAAC 6

AATCC 2, 9

… …

Space-Efficient

A A A/8 A A/1

C/6

T/5 C/3 C/2

Slow inside the SSD
due to long

NAND flash latency

79

Space-Inefficient

Step 2 Design: Retrieving the Species ID

• MegIS retrieves the species IDs of the common k-mers by looking
up a sketch database

K-mer ID
AAAAA 1,5

AAAAC 6

AATCC 2, 9

… …

Space-Efficient

A A A/8 A A/1

C/6

T/5 C/3 C/2

7.5x Smaller 2.1× Larger

K-mer Sketch Streaming

K-mer Sketch Streaming is much more suitable for in-storage processing
 due to its streaming accesses

80

Space-Inefficient

Step 2 Design: Retrieving the Species ID

• MegIS retrieves the species IDs of the common k-mers by looking
up a sketch database

K-mer ID
AAAAA 1,5

AAAAC 6

AATCC 2, 9

… …

Space-Efficient

A A A/8 A A/1

C/6

T/5 C/3 C/2

7.5x Smaller 2.1× Larger

K-mer Sketch Streaming

K-mer Sketch Streaming is much more suitable for in-storage processing
 due to its streaming accesses

Design details are in the paper

81

Step 3

A large database
containing information

on many species

Metagenomic sample
with species that

are not known in advance

Preparation
of Input Queries Q

ue
ry

K

-m
er

s

…

GCTCA

CTCAT

TCATG

Step 1

Presence/Absence
Identification

V. cholerae

E. coli

SARS-CoV-2

Step 2

Abundance
Estimation

Step 3

82

Step 3

MegIS performs additional analysis on
species identified in the sample to

estimate their abundance

MegIS can flexibly integrate with different approaches

1. Lightweight statistical approaches: Directly uses the output of Step 2

2. More accurate and costly read mapping: MegIS facilitates integration by
preparing mapping indexes in the SSD

Abundance
Estimation

Step 3 and MegIS FTL are in the paper

83

Outline

Conclusion

Background

Motivation and Goal

MegIS

Evaluation

84

Evaluation Methodology Overview (I)
Performance, Energy, and Power Analysis

Baseline Comparison Points

• Performance-optimized software, Kraken2 [Genome Biology’19]

• Accuracy-optimized software, Metalign [Genome Biology’20]

• PIM hardware-accelerated tool (using processing-in-memory), Sieve [ISCA’21]

SSD Configurations

• SSD-C: with SATA3 interface (0.5 GB/s sequential read bandwidth)

• SSD-P: with PCIe Gen4 interface (7 GB/s sequential read bandwidth)

Hardware Components

• Synthesized Verilog model for the in-storage accelerators

• MQSim [Tavakkol+, FAST’18] for SSD’s internal operations

• Ramulator [Kim+, CAL’15] for SSD’s internal DRAM

Software Components

Measure on a real system:

• AMD® EPYC® CPU with
128 physical cores

• 1-TB DRAM

85

Evaluation Methodology Overview (II)

Metagenomic Analysis Task

• Finding species present in the sample

• Analysis of the abundance estimation task is in the paper

Metagenomic Samples

• With varying degrees of genetic diversity

- Low

- Medium

- High

86

Speedup over Software (with Cost-Optimized SSD)

MegIS provides significant speedup over both

Performance-Optimized and Accuracy-Optimized baselines

S
p

ee
d

u
p

Performance-Optimized MegISAccuracy-Optimized

Sample Genetic Diversity

0
1
2
3
4
5
6
7

Low Med High GMean

SSD-C

5
.8

x
1

4
.9

x

0
1
2
3
4
5
6
7

Low Med High GMean

SSD-C

5
.8

x

Sample Genetic Diversity

1
4

.9
x

87

MegIS provides significant speedup over both

Performance-Optimized and Accuracy-Optimized baselines

S
p

ee
d

u
p

Performance-Optimized MegISAccuracy-Optimized

Sample Genetic Diversity

0
1
2
3
4
5
6
7

Low Med High GMean

SSD-P

4
.0

x

1
2

.1
x

MegIS improves performance on both

cost-optimized and performance-optimized SSDs

Speedup over Software (with Performance-Optimized SSD)

88

4.
9x

0

2

4

6

Low Med High GMean

0

1

2

3

Low Med High GMean

S
p

e
e

d
u

p

SSD-C

PIM MegIS

1.
9x

SSD-P

Sample Genetic Diversity Sample Genetic Diversity

PIM MegIS

MegIS provides significant speedup over the PIM baseline

Speedup over the PIM Hardware Baseline

89

• On average across different input sets and SSDs

0

1

2

3

4

5

6

Perf-Opt Acc-Opt PIM MegISG
e

o
M

e
a

n
 E

n
e

rg
y

 R
e

d
u

ct
io

n
(H

ig
h

e
r

is
 B

e
tt

e
r)

MegIS provides significant energy reduction over

the Performance-Optimized, Accuracy-Optimized, and PIM baselines

5.
4x

1
5

.2
x

1.
9x

Reduction in Energy Consumption

Same
accuracy

90

Accuracy, Area, and Power
Accuracy

• Same accuracy as the accuracy-optimized baseline

• Significantly higher accuracy than the performance-optimized and
PIM baselines

- 4.6 – 5.2× higher F1 score

- 3 – 24% lower L1 norm error

Area and Power

Total for an 8-channel SSD:

• Area: 0.04 mm2

• Power: 7.658 mW

(Only 1.7% of the area and 4.6% of the power consumption

of three ARM Cortex R4 cores in an SSD controller)

91

System Cost-Efficiency
G

M
e

a
n

 S
p

e
e

d
u

p

0

5

10

15

20

Perf-Opt ($) Acc-Opt ($) Perf-Opt($$$) Acc-Opt ($$$) MegIS ($)

• Cost-optimized system ($): With SSD-C and 64-GB DRAM

• Performance-optimized system ($$$): With SSD-P and 1-TB DRAM

MegIS outperforms the baselines

even when running on a much less costly system

($) ($) ($$$) ($$$) ($)

7
.2

x

2
.4

x

16
.2

x

19
.9

x

92

System Cost-Efficiency
G

M
e

a
n

 S
p

e
e

d
u

p

0

5

10

15

20

Perf-Opt ($) Acc-Opt ($) Perf-Opt($$$) Acc-Opt ($$$) MegIS ($)

• Cost-optimized system ($): With SSD-C and 64-GB DRAM

• Performance-optimized system ($$$): With SSD-P and 1-TB DRAM

MegIS outperforms the baselines

even when running on a much less costly system

($) ($) ($$$) ($$$) ($)

7
.2

x

2
.4

x

16
.2

x

19
.9

xMegIS improves system cost-efficiency

and makes accurate metagenomics more accessible

for wider adoption

93

More in the Paper
• MegIS’s performance when running in-storage processing

operations on the cores existing in the SSD controller

• MegIS’s performance when using the same accelerators
outside SSD

• Sensitivity analysis with varying

- Database sizes

- Memory capacities

- #SSDs

- #Channels

- #Samples

• MegIS’s performance for abundance estimation

94

More in the Paper

• MegIS’s performance with the cores in the SSD controller

• MegIS’s performance outside SSD

• Sensitivity analysis with varying

- Database sizes

- Memory capacities

- #SSDs

- #Channels

- #Samples

• MegIS’s performance for abundance estimation
https://arxiv.org/abs/2406.19113

https://arxiv.org/abs/2406.19113

95

Outline

Conclusion

Background

Motivation and Goal

MegIS

Evaluation

96

Metagenomic analysis suffers from
significant storage I/O data movement overhead

Conclusion

The first in-storage processing system for end-to-end metagenomic analysis

Leverages and orchestrates processing inside and outside the storage system

MegIS

Improves performance
2.7×–37.2× over performance-optimized software

6.9×–100.2× over accuracy-optimized software

1.5×–5.1× over hardware-accelerated PIM baseline

Small area/power
Area: 0.04 mm2

Power: 7.658 mW

Reduces energy consumption
5.4× over performance-optimized software

15.2× over accuracy-optimized software

1.9× over hardware-accelerated PIM baseline

High accuracy
Same as accuracy-optimized

4.8× higher F1 score

 over performance-optimized/PIM

MegIS

High-Performance, Energy-Efficient, and Low-Cost

Metagenomic Analysis with In-Storage Processing

https://arxiv.org/abs/2406.19113

https://arxiv.org/abs/2406.19113

In-Storage Metagenomics [ISCA 2024]

◼ Nika Mansouri Ghiasi, Mohammad Sadrosadati, Harun Mustafa, Arvid Gollwitzer,
Can Firtina, Julien Eudine, Haiyu Mao, Joel Lindegger, Meryem Banu Cavlak,
Mohammed Alser, Jisung Park, and Onur Mutlu,
"MegIS: High-Performance and Low-Cost Metagenomic Analysis with
In-Storage Processing"
Proceedings of the 51st Annual International Symposium on Computer
Architecture (ISCA), Buenos Aires, Argentina, July 2024.
[Slides (pptx) (pdf)]
[arXiv version]

98
https://arxiv.org/pdf/2406.19113

https://arxiv.org/pdf/2406.19113
https://arxiv.org/pdf/2406.19113
https://iscaconf.org/isca2024/
https://iscaconf.org/isca2024/
https://safari.ethz.ch/wp-content/uploads/MegIS-ISCA24-V6.pptx
https://safari.ethz.ch/wp-content/uploads/MegIS-ISCA24-V6.pdf
https://arxiv.org/abs/2406.19113
https://arxiv.org/pdf/2406.19113

99

MegIS

https://arxiv.org/abs/2406.19113

https://arxiv.org/abs/2406.19113

Onur Mutlu

omutlu@gmail.com

https://people.inf.ethz.ch/omutlu

6 August 2024

FMS: the Future of Memory and Storage

Storage-Centric Computing

for Genomics and Metagenomics

mailto:omutlu@gmail.com
https://people.inf.ethz.ch/omutlu

Backup Slides

GenStore
A High-Performance In-Storage Processing System

for Genome Sequence Analysis

Nika Mansouri Ghiasi, Jisung Park, Harun Mustafa, Jeremie Kim, Ataberk Olgun,

Arvid Gollwitzer, Damla Senol Cali, Can Firtina, Haiyu Mao, Nour Almadhoun Alserr,

Rachata Ausavarungnirun, Nandita Vijaykumar, Mohammed Alser, and Onur Mutlu

103

Genome Sequence Analysis
• Genome sequence analysis is critical for many applications

- Personalized medicine

- Outbreak tracing

- Evolutionary studies

• Genome sequencing machines extract smaller fragments of the original
DNA sequence, known as reads

AAGCTTCCATGG

AAATGGGCTTTC

GCCCAAATGGTT

GCTTCCAGAATG

104

Genome Sequence Analysis
• Read mapping: first key step in genome sequence analysis

…GCCCATATGGTTAAGCTTCCATGGAAATGGGCTTTCGCTTCCACAATG…

- Aligns reads to potential matching locations in the reference genome

Reference Genome

Differences Differences

- For each matching location, the alignment step finds the degree of
similarity (alignment score)

AAGCTTCCATGG

GCCCAAATGGTT

GCTTCCAGAATG

AAATGGGCTTTC
• Calculating the alignment score requires computationally-expensive

approximate string matching (ASM) to account for differences between
reads and the reference genome due to:

- Sequencing errors

- Genetic variation

105

Genome Sequence Analysis

Computation overhead

Data movement overhead

Computation
Unit

(CPU or
Accelerator)

Cache
Main

Memory

AAGCTTCCATGG

AAAATTCCATGG

TTTTTTCCAAAA
GCTTCCAGAATG

GGGCCAGAATG

GAATGGGGCCA
TCCCCGGGGCCA

CCTTTGGGTCCA

CGTTCCTTGGCA

Alignment

Data Movement from Storage

Storage
System

106

Heuristics Accelerators Filters

 Computation overhead

AAGCTTCCATGG

AAAATTCCATGG

TTTTTTCCAAAA
GCTTCCAGAATG

GGGCCAGAATG

GAATGGGGCCA
TCCCCGGGGCCA

CCTTTGGGTCCA

CGTTCCTTGGCA Computation
Unit

(CPU or
Accelerator)

Cache
Main

Memory
Storage
System

Data movement overhead

✓

Accelerating Genome Sequence Analysis

107

Storage
System

Key Idea

Non-matching reads
Do not have potential matching locations and can skip alignment

Filter reads that do not require alignment
inside the storage system

AAGCTTCCATGG

AAAATTCCATGG

TTTTTTCCAAAA
GCTTCCAGAATG

GGGCCAGAATG

GAATGGGGCCA
TCCCCGGGGCCA

CCTTTGGGTCCA

CGTTCCTTGGCA

Filtered Reads

Computation
Unit

(CPU or
Accelerator)

Cache
Main

Memory

Exactly-matching reads
Do not need expensive approximate string matching during alignment

108

Challenges

Read mapping workloads can exhibit different behavior

There are limited hardware resources
in the storage system

Filter reads that do not require alignment
inside the storage system

AAGCTTCCATGG

AAAATTCCATGG

TTTTTTCCAAAA
GCTTCCAGAATG

GGGCCAGAATG

GAATGGGGCCA
TCCCCGGGGCCA

CCTTTGGGTCCA

CGTTCCTTGGCA

Filtered Reads

Computation
Unit

(CPU or
Accelerator)

Cache
Main

Memory
Storage
System

109

GenStore

Computation overhead

Data movement overhead

GenStore provides significant speedup (1.4x - 33.6x) and
energy reduction (3.9x – 29.2x) at low cost

Filter reads that do not require alignment
inside the storage system

Computation
Unit

(CPU or
Accelerator)

Cache
Main

Memory

GenStore-Enabled
Storage
System

✓
✓

110

Conclusions

Background

Motivation and Goal

GenStore

Evaluation

Outline

111

GCC 7
CCC 8
CAA 1
AAA 31 101
CCA 25 230 400

… … … …

Read Mapping Process

…CAATTTGCCCATATGGTTAAGCTTCCATGGAAATGGGCTTTCGCTTTG…Reference

> 3 billion characters

Index

K-mer Locations

GCCCAAATGGTTRead
GCC

CCC
…

K-mers

Determine potential matching locations (seeds) in the
reference genome

Prune some seeds in the reference genome

Determine the exact differences between the read
and the reference genome

Seeding

Seed Filtering
(e.g., Chaining)

Alignment

Seeds

…

112

Conclusions

Background

Motivation and Goal

GenStore

Evaluation

Outline

113

Motivation

• Case study on a real-world genomic read dataset
- Various read mapping systems

- Various state-of-the-art SSD configurations

The ideal in-storage filter significantly improves performance by

1) reducing the computation overhead

2) reducing the data movement overhead

114

Motivation

• Case study on a real-world genomic read dataset
- Various read mapping systems

- Various state-of-the-art SSD configurations

Filtering outside SSD provides lower performance benefit since it

1) does not reduce the data movement overhead

2) must compete with read mapping for system resources

A HW accelerator reduces the computation bottleneck,

which makes I/O a larger bottleneck in the system

115

Our Goal

Design Objectives:

Design an in-storage filter for genome sequence analysis

in a cost-effective manner

Provide high in-storage filtering performance to overlap the
filtering with the read mapping of unfiltered data

Performance

Support reads with 1) different properties and 2) different
degrees of genetic variation in the compared genomes

Applicability

Do not require significant hardware overhead
Low-cost

116

Conclusions

Background

Motivation and Goal

GenStore

Evaluation

Outline

117

GenStore

SSD Controller

CoreCoreCore

In-SSD DRAM

L2P
Mappings

Flash
Ctrl.#1

Flash
Ctrl.#N

⋯

NAND
Die#4

NAND
Die#1 ⋯

NAND
Die#4

NAND
Die#1

⋯

Host System

FTL

ACC

ACC

ACC GenStore
Metadata

GenStore
FTL

Reads that need
substantial processing

• Key idea: Filter reads that do not require alignment inside the
storage system

• Challenges
- Different behavior across read mapping workloads
- Limited hardware resources in the SSD

118

Filtering Opportunities

• Sequencing machines produce one of two kinds of reads

- Short reads: highly accurate and short

- Long reads: less accurate and long

• High sequencing error rates (long reads) or
• High genetic variation (short or long reads)

Non-matching reads
Do not have potential matching locations, so they skip alignment

• Low sequencing error rates (short reads) combined with
• Low genetic variation

Exactly-matching reads
Do not need expensive approximate string matching during alignment

Reads that do not require the expensive alignment step:

119

GenStore

GenStore-EM for Exactly-Matching Reads

GenStore-NM for Non-Matching Reads

120

GenStore

GenStore-EM for Exactly-Matching Reads

GenStore-NM for Non-Matching Reads

121

GenStore-EM

• Efficient in-storage filter for reads with at least one exact
match in the reference genome

• Uses simple operations, without requiring alignment

• Challenge: large number of random accesses per read to
the reference genome and its index

Expensive random accesses to flash chips

Limited DRAM capacity inside the SSD

122

GenStore-EM: Data Structures

GCCCAAATGGTTRead
GCC

CCC
…

K-mers

K-mer

• Read-sized k-mers: to reduce the number of accesses per

each read

Only one index lookup per read

• Sorted read-sized k-mers: to avoid random accesses to

the index

Sequential scan of the read set and the index✓

✓

123

GenStore-EM: Data Structures

K-mer Loc.
AAAAAAAAAA 1, 8, …
AAAAAAAAAC 51
AAAAAAAAAT 23, 37

… …

Sorted Read Table

ID Read
873 AAAAAAAAAA

232 AAAAAAAAAG

17 AAAAAAAACT

… …

Sorted K-mer Index

S
o

rte
d

Read-sized
 K-mers

Read
AAAAAAAAAA

124

GenStore-EM: Finding a Match

K-mer Loc.
AAAAAAAAAA 1, 8, …
AAAAAAAAAC 51
AAAAAAAAAT 23, 37

… …

Sorted Read Table

ID Read
873 AAAAAAAAAA

232 AAAAAAAAAG

17 AAAAAAAACT

… …

Sorted K-mer Index

Comparator

Read = K-mer

Next

Exact match → Filter the read

Next

125

GenStore-EM: Not Finding a Match

K-mer Loc.
AAAAAAAAAA 1, 8, …
AAAAAAAAAC 51
AAAAAAAAAT 23, 37

… …

Sorted Read Table

ID Read
873 AAAAAAAAAA

232 AAAAAAAAAG

17 AAAAAAAACT

… …

Sorted K-mer Index

Next
Comparator

Read > K-mer

126

Next

GenStore-EM: Not Finding a Match

K-mer Loc.
AAAAAAAAAA 1, 8, …
AAAAAAAAAC 51
AAAAAAAAAT 23, 37

… …

Sorted Read Table

ID Read
873 AAAAAAAAAA

232 AAAAAAAAAG

17 AAAAAAAACT

… …

Sorted K-mer Index

Comparator

Read < K-mer

Not an exact match → Send to read mapper

127

Next

GenStore-EM: Not Finding a Match

K-mer Loc.
AAAAAAAAAA 1, 8, …
AAAAAAAAAC 51
AAAAAAAAAT 23, 37

… …

Sorted Read Table

ID Read
873 AAAAAAAAAA

232 AAAAAAAAAG

17 AAAAAAAACT

… …

Sorted K-mer Index

Comparator

Read < K-mer

Not an exact match → Send to read mapper

Avoids random accesses

Simple low-cost logic✓
✓

128

GenStore-EM: Optimization

• Read-sized k-mer index takes up a large amount of space
(126 GB for human index) due to the larger number of
unique k-mers

K-mer Loc.
AAAAAAAAAA 1, 8, …
AAAAAAAAAC 51
AAAAAAAAAT 23, 37

… …

Sorted K-mer Index

Strong Hash Value

1
4

7
16

Using strong hash values instead of read-sized k-mers
reduces the size of the index by 3.9x

129

GenStore-EM: Design

GenStore-Enabled SSD

Host System

Die#1

Plane#1 Plane#2

Die#4

P#1 P#2

⋯

Die#1

P#1 P#2

Die#4

P#1 P#2

⋯

Die#1

P#1 P#2

Die#4

P#1 P#2

⋯⋯

Channel#1 Channel#2 Channel#N

❷ Exact-match filtering

SSD ControllerNAND Flash Array

SRTable

SKIndex
❶ Sequential Reads

DRAM

Batch#i-1

Batch#i

Batch#j-1

Batch#j

Comparator SRTable Buffer

SKIndex Buffer

Data is evenly distributed between channels, dies, and planes
to leverage the full internal bandwidth of the SSD

Steps 1 and 2 are pipelined.
During filtering, GenStore-EM sends the unfiltered reads

to the host system.

130

GenStore

GenStore-EM for Exactly-Matching Reads

GenStore-NM for Non-Matching Reads

131

GenStore-NM

• Efficient chaining-based in-storage filter to prune most of the non-
matching reads

• Challenge: how to perform chaining inside the SSD

- For a read with Seeds 𝑆1 to 𝑆𝑁, the chaining score for 𝑆1 … 𝑆𝑖 can be calculated as

𝐦𝐚𝐱{𝐦𝐚𝐱 𝑺𝒄𝒐𝒓𝒆 𝑺𝒋 + 𝑴𝒂𝒕𝒄𝒉_𝑺𝒄𝒐𝒓𝒆 𝑺𝒊 , 𝑺𝒋 − 𝑮𝒂𝒑_𝑷𝒆𝒏𝒂𝒍𝒕𝒚(𝑺𝒊 , 𝑺𝒋) , 𝒘}
i > j > 1

Costly dynamic programming on many seeds in each read

Particularly challenging for long reads with many seeds

Determine potential matching locations (seeds) in the
reference genome

Prune some seeds in the reference genome

Determine the exact differences between the read
and the reference genome

Seeding

Seed Filtering
(e.g., Chaining)

Alignment

132

GenStore-NM: Mechanism

Filters many non-aligning reads without
costly hardware resources in the SSD

P
ro

b
a

b
il

it
y

0

0.5

1

0 16 32 48 64 80 96 112 128 144

Number of seeds per read

High Alignment
Probability

A
li

g
n

m
e

n
t

Reads with a sufficiently large number of seeds

are very likely to align to the reference genome

• GenStore-NM uses a light-weight chaining filter

- Selectively performs chaining only on reads with a small number of seeds

- Directly sends reads that require more complex chaining to the host system

✓

133

GenStore-NM: Mechanism

Can filter many non-aligning reads without
costly hardware resources in the SSD

P
ro

b
a

b
il

it
y

0

0.5

1

0 16 32 48 64 80 96 112 128 144

Number of seeds per read

High Alignment
Probability

A
li

g
n

m
e

n
t

Reads with a sufficiently large number of seeds

are very likely to align to the reference genome

• GenStore-NM uses a light-weight chaining filter

- Selectively performs chaining only on reads with a small number of seeds

- Directly sends reads that require more complex chaining to the host system

Details on GenStore-NM’s design are in the paper

134

Conclusions

Background

Motivation and Goal

GenStore

Evaluation

Outline

135

Evaluation Methodology

Read Mappers

• Base: state-of-the-art software or hardware read mappers

- Minimap2 [Bioinformatics’18]: software mapper for short and long reads

- GenCache [MICRO’19]: hardware mapper for short reads

- Darwin [ASPLOS’18]: hardware mapper for long reads

• GS: Base integrated with GenStore

SSD Configurations

• SSD-L: with SATA3 interface (0.5 GB/s sequential read bandwidth)

• SSD-M: with PCIe Gen3 interface (3.5 GB/s sequential read bandwidth)

• SSD-H: with PCIe Gen4 interface (7 GB/s sequential read bandwidth)

136

For a read set with 80% exactly-matching reads

Performance – GenStore-EM

0
50

100
150
200

Base GS Base GS Base GS

SSD-L SSD-M SSD-H

E
x

e
c.

 t
im

e
 [

se
c]

0
2
4
6
8

10

Base GS Base GS Base GS

SSD-L SSD-M SSD-H

With the Software Mapper With the Hardware Mapper

2.1× - 2.5× speedup compared to the software Base

1.5× – 3.3× speedup compared to the hardware Base

On average 3.92× energy reduction

2
9

2
.5

x

2
.1

x

2
.1

x 3
.3

x

1
.5

x

2
.5

x

137

For a read set with 99.7% non-matching reads

Performance – GenStore-NM

Base GS Base GS Base GS

SSD-L SSD-M SSD-H

E
xe

c.
 t

im
e

 [
se

c]
L

o
g

 s
ca

le

With the Software Mapper With the Hardware Mapper

22.4× – 27.9× speedup compared to the software Base

6.8× – 19.2× speedup compared to the hardware Base

On average 27.2× energy reduction

0.1

1

10

100

Base GS Base GS Base GS

SSD-L SSD-M SSD-H

2
2.

4

2
9x

2
7.

9
x

1
9.

2
x

6
.8

x

6
.8

x

138

Area and Power

• Based on Synthesis of GenStore accelerators using the Synopsys
Design Compiler @ 65nm technology node

Logic unit # of instances Area [mm2] Power [mW]

Comparator 1 per SSD 0.0007 0.14

K -mer Window 2 per channel 0.0018 0.27

Hash Accelerator 2 per SSD 0.008 1.8

Location Buffer 1 per channel 0.00725 0.37375

Chaining Buffer 1 per channel 0.008 0.95

Chaining PE 1 per channel 0.004 0.98

Control 1 per SSD 0.0002 0.11

Total for an 8-channel SSD - 0.2 26.6

Only 0.006% of a 14nm Intel Processor, less than 9.5% of the three

ARM processors in a SATA SSD controller

139

More in the Paper

• Effect of read set features on performance

- Data size (up to 440 GB)

- Filter ratio

• Performance benefit of an implementation of GenStore
outside the SSD

- In some cases, it provides performance benefits due more
efficient streaming accesses

- Provides significantly lower benefit compared to GenStore

• More detailed characterization of non-matching reads
across different read mapping use cases and species

140

More in the Paper

• Effect of read set features on performance

- Data size (up to 440 GB)

- Filter ratio

• Performance benefit of an implementation of GenStore
outside the SSD

- In some cases, it provides performance benefits due more
efficient streaming accesses

- Provides significantly lower benefit compared to GenStore

• More detailed characterization of non-matching reads
across different read mapping use cases and specieshttps://arxiv.org/abs/2202.10400

https://arxiv.org/abs/2202.10400

141

Conclusions

Background

Motivation and Goal

GenStore

Evaluation

Outline

142

Conclusion
• There has been significant effort into improving read mapping performance

through efficient heuristics, hardware acceleration, accurate filters

• Problem: while these approaches address the computation overhead, none of
them alleviate the data movement overhead from storage

• Goal: improve the performance of genome sequence analysis by effectively
reducing unnecessary data movement from the storage system

• Idea: filter reads that do not require the expensive alignment computation in
the storage system to fundamentally reduce the data movement overhead

• Challenges:

- Read mapping workloads can exhibit different behavior

- There are limited available hardware resources in the storage system

• GenStore: the first in-storage processing system designed for genome sequence
analysis to reduce both the computation and data movement overhead

• Key Results: GenStore provides significant speedup (1.4x - 33.6x) and energy
reduction (3.9x – 29.2x) at low cost

GenStore
A High-Performance In-Storage Processing System

for Genome Sequence Analysis

Nika Mansouri Ghiasi, Jisung Park, Harun Mustafa, Jeremie Kim, Ataberk Olgun,

Arvid Gollwitzer, Damla Senol Cali, Can Firtina, Haiyu Mao, Nour Almadhoun Alserr,

Rachata Ausavarungnirun, Nandita Vijaykumar, Mohammed Alser, and Onur Mutlu

144

GenStore Backup Slides

145

End-to-End Workflow of Genome Sequence Analysis

• There are three key initial steps in a standard genome sequencing and analysis workflow

- Collection, preparation, and sequencing of a DNA sample in the laboratory

- Basecalling

- Read mapping

• Genomic read sets can be obtained by

- Sequencing a DNA sample and storing the generated read set into the SSD of a sequencing machine

- Downloading read sets from publicly available repositories and storing them into an SSD

• We focus on optimizing the performance of read mapping because sequencing and basecalling are
performed only once per read set, whereas read mapping can be performed many times

- Analyzing the differences between a reads from an individual and many reference genomes of other individuals

- Repeating the read mapping step many times to improve the outcome of read mapping

• Improving read mapping performance is critical in almost all genomic analyses that use sequencing

- 45% of the execution time when discovering sequence variants in cancer genomics studies

- 60% of the execution time when profiling the species composition of a multi-species (i.e., metagenomic) read

146

Motivation

SSD-L SSD-M SSD-H DRAM

0

25

50

75

100

Base SW-filtered Ideal-ISF Accelerator Ideal-ISF+ACC

0

2

4

N
/A

2
4

.8

N
/A

3
.5

4
2

.0
1

1
.6

4

1
.4

4
0

.7
21
0

.1

E
x

e
cu

ti
o

n
 t

im
e

 [
se

c
]

ACCSW-filter

147

State-of-the-art software
read mapper, Minimap2

Motivation

0

20

40

60

80

100

Base SW-filter Ideal-ISF

SSD-L SSD-H DRAM

E
xe

cu
ti

o
n

 t
im

e
[s

ec
]

Base integrated with a software filter
that prunes 80% of exactly-matching reads

Base integrated with an
ideal in-storage filter

N
/A

148

Motivation

0

20

40

60

80

100

Base SW-filter Ideal-ISF

SSD-L SSD-H DRAM

E
xe

cu
ti

o
n

 t
im

e
[s

ec
]

Low-end SSD with SATA3
interface (0.5 GB/s)

High-end SSD with PCIe Gen4
interface (7 GB/s)

Data preloaded in DRAM,
with no I/O overhead

N
/A

149

Benefits of Ideal In-Storage Filter

0

20

40

60

80

100

Base SW-filter Ideal-ISF

SSD-L SSD-H DRAM

E
xe

cu
ti

o
n

 t
im

e
[s

ec
]

The ideal in-storage filter significantly improves performance by

1) Reducing computation overhead

2) Reducing data movement overhead

N
/A

150

Overheads of Software Mappers

0

20

40

60

80

100

Base SW-filter Ideal-ISF

SSD-L SSD-H DRAM

E
xe

cu
ti

o
n

 t
im

e
[s

ec
]

I/O has a significant impact on application performance

which can be alleviated at the cost of
expensive storage devices and interfaces

N
/A

151

Overheads of Software Mappers

0

20

40

60

80

100

Base SW-filter Ideal-ISF

SSD-L SSD-H DRAM

E
xe

cu
ti

o
n

 t
im

e
[s

ec
]

SW-filter provides limited benefits compared to Base

N
/A

The filtering process outside the SSD must compete
with the read mapping process for the resources in the system

152

Overheads of Hardware Mappers

0

1

2

Accelerator Ideal-ISF

SSD-L SSD-H DRAM
E

xe
cu

ti
o

n
 t

im
e

[s
ec

]

2
4

.8

1
0

.123%

The ideal in-storage filter significantly improves performance

Even the high-end SSD does not fully alleviate the storage bottleneck

N
/A

153

Ideal-OSF

• Execution time of an ideal in-storage filter:

• Execution time of an ideal outside-storage filter:
• 60% slower than Ideal-ISF in our analysis

154

Comparison to PIM

• Even though read mapping applications could also benefit from other near-data,
in-storage processing can fundamentally address the data movement problem
by filtering large, low-reuse data where the data initially resides.

• Even if an ideal accelerator achieved a zero execution time, there would still exist
the need to bring the data from storage to the accelerator.

- 2.15x slower than the execution time that Ideal-ISF+ACC provides in our
motivational analysis

In-storage filter can be integrated with any read mapping accelerator,

including PIM accelerators, to alleviate their data movement overhead.

155

Long Read Use Cases

156

FTL

GenStore-Enabled SSD

GenStore SSD Controller

CoreCoreCore

SSD-LV
ACC

DRAM

L2P
Mappings

Flash
Ctrl.#1

Flash
Ctrl.#N

⋯ ⋯

CH-LV
ACC#1

CH-LV
ACC#N

GenStore
Metadata

① Start analysis ⑤ Unfiltered data

NAND
Die#4

NAND
Die#1 ⋯

NAND
Die#4

NAND
Die#1

⋯

③ Full-bandwidth read

②
 P

re
p

a
ra

tio
n

F
lu

sh
L

o
a

d

GenStore
FTL

④ Filtering

Host System

❷ ❸

❶

157

FTL: Metadata

• GenStore metadata includes the mapping information of
the data structures necessary for read mapping
acceleration

• In accelerator mode, GenStore also keeps in internal
DRAM other metadata structures of the regular FTL
- Examples include the page status table and block read counts

which need to be updated during the filtering process

• We carefully design GenStore to only sequentially access
the underlying NAND flash chips while operating as an
accelerator
- Requires only a small amount of metadata to access the stored

data

158

FTL: Data Placement

• GenStore needs to properly place its data structures to
enable the full utilization of the internal SSD bandwidth

• When each data structure is initially written to the SSD,
GenStore sequentially and evenly distributes it across
NAND flash chips

• GenStore can specify the physical location of a 30-GB
data structure by maintaining only the list of 1,250 (30
GB/24 MB) physical block addresses

• It significantly reduces the size of the necessary mapping
information from 300 MB (with conventional 4-KiB page
mapping) to only 5 KB (1,250 4 bytes)

159

FTL: SSD Management Tasks

• In accelerator mode, GenStore only reads data structures to
perform filtering, and does not write any new data

- GenStore does not require any write-related SSD-management
tasks such as garbage collection and wear-leveling

• The other tasks necessary for ensuring data reliability can be done
before or after the filtering process

- GenStore significantly limits the amount of data whose retention
age would exceed the manufacturer-specified threshold since
GenStore’s filtering process takes a short time.

- GenStore-FTL can easily avoid read disturbance errors for data
with high read counts since GenStore sequentially reads NAND
flash blocks only once during filtering

160

Data Sizes

• Conventional k-mer index in Minimap2 + reference genome: 7 GB
(k = 15)

• Read-sized k-mer index before optimization: 126 GB (k= 150)

• Read-sized k-mer index after optimization: 32 GB (k = 150)

161

SSD Specs

• SSD-L: SATA3 interface (0.5 GB/s sequential read)
- 1.2 GB/s per channel bandwidth

- 8 channels

• SSD-L: PCIe Gen3 M.2 interface (3.5 GB/s sequential
read)
- 1.2 GB/s per channel bandwidth

- 16 channels

• SSD-L: PCIe Gen4 interface (7 GB/s sequential read)
- 1.2 GB/s per channel bandwidth

- 16 channels

162

Evaluation Methodology

• Performance modeling
- Ramulator for DRAM timing

- MQSim for SSD timing

- We model the end-to-end throughput of GenStore based on the
throughput of each GenStore pipeline stage

• Accessing NAND flash chips

• Accessing internal DRAM

• Accelerator computation

• Transferring unfiltered data to the host

• Real system results
- AMD EPYC 7742 CPU

- 1TB DDR4 DRAM

- AMD μProf

163

GenStore-NM

GenStore-Enabled SSD

Host System

Flash Array

Input
Read Set

 SSD ControllerDRAM

KmerIndex

Seed Finder

Location Buffer

① Reads
Chaining-Based Filter

(Filters low-score reads)

❸

M ≤ # of Seeds < N

Seed Count-Based Filter
(Filters if # of Seeds < M)

❷

of Seeds ≥ N High chaining score

❶

④ Seeds

③ Query

K-mer Window

Hash Acc.

K-mers②

164

Chaining Processing Element

165

GenStore-EM

0
50

100
150
200

B
a

se

S
IM

D

G
S

-E
x

t

G
S

B
a

se

S
IM

D

G
S

-E
x

t

G
S

B
a

se

S
IM

D

G
S

-E
x

t

G
S

SSD-L SSD-M SSD-H

Other Alignment

0

5

10

B
a

se

G
S

-E
x

t

G
S

B
a

se

G
S

-E
x

t

G
S

B
a

se

G
S

-E
x

t

G
S

SSD-L SSD-M SSD-H

E
x

e
c.

 t
im

e
 [

se
c] 44 108 15

GS-Ext provides significant performance improvements

over both Base and SIMD in SSD-M and SSD-H.

GS-Ext provides limited benefits over SIMD in SSD-L

due to low external I/O bandwidth.

166

GenStore-NM

0.1

1

10

100

B
a

se G
S

B
a

se G
S

B
a

se G
S

SSD-L SSD-M SSD-H

B
as

e

G
S

-E
x

t

G
S

B
as

e

G
S

-E
x

t

G
S

B
as

e

G
S

-E
x

t

G
S

SSD-L SSD-M SSD-H

GS-Ext performs significantly slower than Base (2.28x - 1.91x)

on all systems.

167

Effect of Inputs on GenStore-EM

N
o

rm
a

li
ze

d

e
x

e
c.

 t
im

e

Read set size:

Exact match:
0

0.2
0.4
0.6
0.8

1

75% 85% 75% 85% 75% 85%

1x 10x 20x

75% 85% 75% 85% 75% 85%

1x 10x 20x

Base GS

168

Effect of Inputs on GenStore-NM

0.001

0.01

0.1

1

0.3% 37% 0.3% 37% 0.3% 37%

1x 10x 20x

0.3% 37% 0.3% 37% 0.3% 37%

1x 10x 20x

Base GS

N
o

rm
a

li
ze

d

e
x

e
c.

 t
im

e

Read set size:

Align. rate:

0
.6

9

0
.6

7

0
.6

6

MegIS Backup Slides

170

Motivational Analysis

Database access patterns

(a)Random Query

(b)Streaming Query

171

Overview of MegIS’s Steps

172

More Details on Step 1

173

K-mer Sketch Data Structures

174

K-mer Sketch Streaming Hardware Design

SSD Controller
Intersection

Curr. Register

MegIS-
Enabled

SSDC
h

a
n

n
el

#
1

C
h

a
n

n
el

#
2

Internal
DRAM

5-mer 5-mer ID
AAAAA 1
AAAAC 6
AATCC 2

… …

4-mer ID
-
3
…

AGTTT

⋯

Idx.
Gen

AAAAC

Next Register
AATCC

Move to
Next 4-mer

❶ Intersect 5-mers ❷ Intersect 4-mers

6

2

Curr. Register
AAAA

Next Register
AATC

-

3
AATC

Intersect Intersect

❸ Send Tax IDs

175

Index Generation in Step 3

176

MegIS FTL

177

Multi-Sample Analysis

178

SSD Configurations

179

Impact of Different Optimizations

180

Impact of Different Optimizations

181

Speedup with Different Database Sizes

182

Speedup with Different #SSDs

183

Speedup with Different Main Memory Capacities

184

Speedup with Varying SSD Internal Bandwidth

185

Speedup of Abundance Estimation

186

Multi-Sample Use Case

187

Area and Power

• Based on synthesis of MegIS accelerators using the
Synopsys Design Compiler @ 65nm technology node

Only 1.7% of the area of three 28-nm ARM Cortex R4 cores

in a SATA SSD controller

Logic Unit # of instances Area [mm2] Power [mW]

Intersect (120-bit) 1 per channel 0.001361 0.284

k-mer Registers (2 x 120-bit) 1 per channel 0.002821 0.645

Index Generator (64-bit) 1 per channel 0.000272 0.025

Control Unit 1 per SSD 0.000188 0.026

Total for an 8-channel SSD - 0.04 7.658

	Slide 1: Storage-Centric Computing for Genomics and Metagenomics
	Slide 2: Quick Background & Motivation
	Slide 3: We Need Faster & Scalable Genome Analysis
	Slide 4
	Slide 5: High-Throughput Sequencers
	Slide 6: Newer Genome Sequencing Technologies
	Slide 7: Genome Sequencing Cost Is Reducing
	Slide 8: Problems with (Genome) Analysis Today
	Slide 9: Accelerating Genome Analysis [IEEE MICRO 2020]
	Slide 10: Accelerating Genome Analysis [DAC 2023]
	Slide 11: Simulating Storage: MQSim [FAST 2018]
	Slide 12: Simulating Memory: Ramulator 2.0
	Slide 13: Open Source Tools: SAFARI GitHub
	Slide 14: Genomics Course (Fall 2022)
	Slide 15: PIM Course (Fall 2022)
	Slide 16: SSD Course (Spring 2023)
	Slide 17: In-Storage Genomics & Metagenomics
	Slide 18: In-Storage Genomic Data Filtering [ASPLOS 2022]
	Slide 19: GenStore
	Slide 20: In-Storage Metagenomics [ISCA 2024]
	Slide 21: MegIS
	Slide 22: GenStore A High-Performance In-Storage Processing System for Genome Sequence Analysis
	Slide 23: Genome Sequence Analysis
	Slide 24: Genome Sequence Analysis
	Slide 25: Genome Sequence Analysis
	Slide 26: Accelerating Genome Sequence Analysis
	Slide 27: Key Idea
	Slide 28: Challenges
	Slide 29: GenStore
	Slide 30: GenStore
	Slide 31: Filtering Opportunities
	Slide 32: GenStore
	Slide 33: GenStore-EM
	Slide 34: GenStore-EM: Data Structures
	Slide 35: GenStore-EM: Data Structures
	Slide 36: GenStore-EM: Finding a Match
	Slide 37: GenStore-EM: Not Finding a Match
	Slide 38: GenStore-EM: Not Finding a Match
	Slide 39: GenStore-EM: Not Finding a Match
	Slide 40: GenStore-EM: Optimization
	Slide 41: GenStore-EM: Design
	Slide 42: Evaluation Methodology
	Slide 43: Performance – GenStore-EM
	Slide 44: Performance – GenStore-NM
	Slide 45: Area and Power
	Slide 46: GenStore Paper, Slides, Video [ASPLOS 2022]
	Slide 47: GenStore
	Slide 48: GenStore A High-Performance In-Storage Processing System for Genome Sequence Analysis
	Slide 49: In-Storage Metagenomics [ISCA 2024]
	Slide 50: MegIS
	Slide 51: MegIS High-Performance, Energy-Efficient, and Low-Cost Metagenomic Analysis with In-Storage Processing
	Slide 52: Outline
	Slide 53: What is Metagenomics?
	Slide 54: What is Metagenomics?
	Slide 55: Metagenomic Analysis
	Slide 56: Outline
	Slide 57: Motivation
	Slide 58: Motivation
	Slide 59: I/O Overhead is Hard to Avoid
	Slide 60: Our Goal
	Slide 61: Challenges of In-Storage Processing
	Slide 62: Outline
	Slide 63: MegIS: Metagenomics In-Storage
	Slide 64: MegIS’s Steps
	Slide 65: MegIS Hardware-Software Co-Design
	Slide 66: MegIS Hardware-Software Co-Design
	Slide 67: MegIS Hardware-Software Co-Design
	Slide 68: MegIS Hardware-Software Co-Design
	Slide 69: MegIS Hardware-Software Co-Design
	Slide 70: MegIS Hardware-Software Co-Design
	Slide 71: Step 1 Overview
	Slide 72: Step 1 Overview
	Slide 73: Step 1 Design
	Slide 74: Step 2 Overview
	Slide 75: Step 2 Overview
	Slide 76: Step 2 Design: Identifying the Common K-mers
	Slide 77: Step 2 Design: Identifying the Common K-mers
	Slide 78: Step 2 Design: Retrieving the Species ID
	Slide 79: Step 2 Design: Retrieving the Species ID
	Slide 80: Step 2 Design: Retrieving the Species ID
	Slide 81: Step 3
	Slide 82: Step 3
	Slide 83: Outline
	Slide 84: Evaluation Methodology Overview (I)
	Slide 85: Evaluation Methodology Overview (II)
	Slide 86: Speedup over Software (with Cost-Optimized SSD)
	Slide 87: Speedup over Software (with Performance-Optimized SSD)
	Slide 88: Speedup over the PIM Hardware Baseline
	Slide 89: Reduction in Energy Consumption
	Slide 90: Accuracy, Area, and Power
	Slide 91: System Cost-Efficiency
	Slide 92: System Cost-Efficiency
	Slide 93: More in the Paper
	Slide 94: More in the Paper
	Slide 95: Outline
	Slide 96: Conclusion
	Slide 97: MegIS High-Performance, Energy-Efficient, and Low-Cost Metagenomic Analysis with In-Storage Processing
	Slide 98: In-Storage Metagenomics [ISCA 2024]
	Slide 99: MegIS
	Slide 100: Storage-Centric Computing for Genomics and Metagenomics
	Slide 101: Backup Slides
	Slide 102: GenStore A High-Performance In-Storage Processing System for Genome Sequence Analysis
	Slide 103: Genome Sequence Analysis
	Slide 104: Genome Sequence Analysis
	Slide 105: Genome Sequence Analysis
	Slide 106: Accelerating Genome Sequence Analysis
	Slide 107: Key Idea
	Slide 108: Challenges
	Slide 109: GenStore
	Slide 110: Outline
	Slide 111: Read Mapping Process
	Slide 112: Outline
	Slide 113: Motivation
	Slide 114: Motivation
	Slide 115: Our Goal
	Slide 116: Outline
	Slide 117: GenStore
	Slide 118: Filtering Opportunities
	Slide 119: GenStore
	Slide 120: GenStore
	Slide 121: GenStore-EM
	Slide 122: GenStore-EM: Data Structures
	Slide 123: GenStore-EM: Data Structures
	Slide 124: GenStore-EM: Finding a Match
	Slide 125: GenStore-EM: Not Finding a Match
	Slide 126: GenStore-EM: Not Finding a Match
	Slide 127: GenStore-EM: Not Finding a Match
	Slide 128: GenStore-EM: Optimization
	Slide 129: GenStore-EM: Design
	Slide 130: GenStore
	Slide 131: GenStore-NM
	Slide 132: GenStore-NM: Mechanism
	Slide 133: GenStore-NM: Mechanism
	Slide 134: Outline
	Slide 135: Evaluation Methodology
	Slide 136: Performance – GenStore-EM
	Slide 137: Performance – GenStore-NM
	Slide 138: Area and Power
	Slide 139: More in the Paper
	Slide 140: More in the Paper
	Slide 141: Outline
	Slide 142: Conclusion
	Slide 143: GenStore A High-Performance In-Storage Processing System for Genome Sequence Analysis
	Slide 144: GenStore Backup Slides
	Slide 145: End-to-End Workflow of Genome Sequence Analysis
	Slide 146: Motivation
	Slide 147: Motivation
	Slide 148: Motivation
	Slide 149: Benefits of Ideal In-Storage Filter
	Slide 150: Overheads of Software Mappers
	Slide 151: Overheads of Software Mappers
	Slide 152: Overheads of Hardware Mappers
	Slide 153: Ideal-OSF
	Slide 154: Comparison to PIM
	Slide 155: Long Read Use Cases
	Slide 156: FTL
	Slide 157: FTL: Metadata
	Slide 158: FTL: Data Placement
	Slide 159: FTL: SSD Management Tasks
	Slide 160: Data Sizes
	Slide 161: SSD Specs
	Slide 162: Evaluation Methodology
	Slide 163: GenStore-NM
	Slide 164: Chaining Processing Element
	Slide 165: GenStore-EM
	Slide 166: GenStore-NM
	Slide 167: Effect of Inputs on GenStore-EM
	Slide 168: Effect of Inputs on GenStore-NM
	Slide 169
	Slide 170: Motivational Analysis
	Slide 171: Overview of MegIS’s Steps
	Slide 172: More Details on Step 1
	Slide 173: K-mer Sketch Data Structures
	Slide 174: K-mer Sketch Streaming Hardware Design
	Slide 175: Index Generation in Step 3
	Slide 176: MegIS FTL
	Slide 177: Multi-Sample Analysis
	Slide 178: SSD Configurations
	Slide 179: Impact of Different Optimizations
	Slide 180: Impact of Different Optimizations
	Slide 181: Speedup with Different Database Sizes
	Slide 182: Speedup with Different #SSDs
	Slide 183: Speedup with Different Main Memory Capacities
	Slide 184: Speedup with Varying SSD Internal Bandwidth
	Slide 185: Speedup of Abundance Estimation
	Slide 186: Multi-Sample Use Case
	Slide 187: Area and Power

