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We Need Faster & Scalable Genome Analysis
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Understanding genetic variations,
species, evolution, ... abundance of microbes in a sample
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Rapid surveillance of disease outbreaks Developing personalized medicine

SAFARI And, many, many other applications ... 3



Genome Sequencers

Illumina MiSeq Complete
Genomics
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High-Throughput Sequencers
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Newer Genome Sequencing Technologies

Nanopore sequencing technology and tools for genome assembly:
computational analysis of the current state, bottlenecks and
future directions

Damla Senol Cali ™, Jeremie S Kim, Saugata Ghose, Can Alkan, Onur Mutlu

Briefings in Bioinformatics, bby017, https://doi.org/10.1093/bib/bby017
Published: 02 April2018 Article history v

Oxford Nanopore MinlON

Senol Cali+, "Nanopore Sequencing Technology and Tools for Genome

Assembly: Computational Analysis of the Current State, Bottlenecks
and Future Directions,” Briefings in Bioinformatics, 2018.

[Open arxiv.org version] [Slides (pptx) (pdf)] [Talk Video at AACBB 2019]

SAFARI 0


https://arxiv.org/pdf/1711.08774.pdf
https://people.inf.ethz.ch/omutlu/pub/nanopore-sequencing-technology-and-tools-for-genome-assembly-AACBB18-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/nanopore-sequencing-technology-and-tools-for-genome-assembly-AACBB18-talk.pdf
https://www.youtube.com/watch?v=Zug8FonO8Vo

Genome Sequencing Cost Is Reducing
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https://www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-Costs-Data

Problems with (Genome) Analysis Today

%
Special-Purpose Machine General-Purpose Machine
for Data Generation for Data Analysis

FAST SLOW

Slow and inefficient processing capability
Large amounts of data movement

SAFARI This picture is similar for many “data generators & analyzers” today ~°



Accelerating Genome Analysis [IEEE MICRO 2020]

= Mohammed Alser, Zulal Bingol, Damla Senol Cali, Jeremie Kim, Saugata Ghose, Can
Alkan, and Onur Mutluy,
"Accelerating Genome Analysis: A Primer on an Ongoing Journey"
IEEE Micro (IEEE MICRO), Vol. 40, No. 5, pages 65-75, September/October 2020.
[Slides (pptx)(pdf)]
[Talk Video (1 hour 2 minutes)]

Accelerating Genome
Analysis: A Primer on
an Ongoing Journey

Mohammed Alser Saugata Ghose

ETH Zlrich University of lllinois at Urbana-Champaign and
Ziilal Bingol Carnegie Mellon University

Bilkent University Can Alkan

Damla Senol Cali Bilkent University

Carnegie Mellon University Onur Mutlu

Jeremie Ki ETH Zurich, Carnegie Mellon University, and

SAFARI ETH Zurich and Carnegie Mellon University Bilkent University 9


https://people.inf.ethz.ch/omutlu/pub/AcceleratingGenomeAnalysis_ieeemicro20.pdf
http://www.computer.org/micro/
https://people.inf.ethz.ch/omutlu/pub/onur-AcceleratingGenomeAnalysis-AACBB-Keynote-Feb-16-2019-FINAL.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-AcceleratingGenomeAnalysis-AACBB-Keynote-Feb-16-2019-FINAL.pdf
https://www.youtube.com/watch?v=hPnSmfwu2-A

Accelerating Genome Analysis [pac2023)

Onur Mutlu and Can Firtina,

'Accelerating Genome Analysis via Algorithm-Architecture
Co-Design"

Invited Special Session Paper in Proceedings of the 60th Design
Automation Conference (DAC), San Francisco, CA, USA, July 2023.
[arXiv version]

Accelerating Genome Analysis
via Algorithm-Architecture Co-Design

Onur Mutlu Can Firtina
ETH Ziirich

SAFARI https://arxiv.org/pdf/2305.00492.pdf 10


https://people.inf.ethz.ch/omutlu/pub/AcceleratingGenomeAnalysis_dac23.pdf
https://people.inf.ethz.ch/omutlu/pub/AcceleratingGenomeAnalysis_dac23.pdf
https://www.dac.com/
https://www.dac.com/
https://arxiv.org/abs/2305.00492
https://arxiv.org/pdf/2305.00492.pdf

Simulating Storage: M(QQSim [FAST 2018)

Arash Tavakkol, Juan Gomez-Luna, Mohammad Sadrosadati, Saugata
Ghose, and Onur Mutluy,

"MOSim: A Framework for Enabling Realistic Studies of Modern

Multi-Queue SSD Devices"
Proceedings of the 16th USENIX Conference on File and Storage

Technologies (FAST), Oakland, CA, USA, February 2018.
[Slides (pptx) (pdf)]

[Source Code]

MQSim: A Framework for Enabling Realistic Studies of
Modern Multi-Queue SSD Devices

Arash Tavakkol', Juan Gémez-Luna', Mohammad Sadrosadati”, Saugata Ghose*, Onur Mutlu'*
YETH Ziirich *Carnegie Mellon University

https://github.com/CMU-SAFARI/MQSim



https://people.inf.ethz.ch/omutlu/pub/MQSim-SSD-simulation-framework_fast18.pdf
https://people.inf.ethz.ch/omutlu/pub/MQSim-SSD-simulation-framework_fast18.pdf
https://www.usenix.org/conference/fast18
https://www.usenix.org/conference/fast18
https://people.inf.ethz.ch/omutlu/pub/MQSim-SSD-simulation-framework_fast18-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/MQSim-SSD-simulation-framework_fast18-talk.pdf
https://github.com/CMU-SAFARI/MQSim
https://github.com/CMU-SAFARI/MQSim
https://people.inf.ethz.ch/omutlu/pub/MQSim-SSD-simulation-framework_fast18.pdf

Simulating Memory: Ramulator 2.0

Haocong Luo, Yahya Can Tugrul, F. Nisa Bostanci, Ataberk Olgun, A. Giray
Yaglikci, and Onur Mutlu,

"Ramulator 2.0: A Modern, Modular, and Extensible DRAM Simulator”
Preprint on arxiv, August 2023.

[arXiv version]

[Ramulator 2.0 Source Code]

Ramulator 2.0: A Modern, Modular, and
Extensible DRAM Simulator

Haocong Luo, Yahya Can Tugrul, F. Nisa Bostanci, Ataberk Olgun, A. Giray Yaglkei, and Onur Mutlu

https://arxiv.or df/2308.11030.pdf
SAFARI https: //github.com/CMU-SAFARI/ramulator2 12


https://people.inf.ethz.ch/omutlu/pub/Ramulator2_arxiv23.pdf
https://arxiv.org/abs/2308.11030
https://github.com/CMU-SAFARI/ramulator2
https://arxiv.org/pdf/2308.11030.pdf
https://github.com/CMU-SAFARI/ramulator2

Open Source Tools: SAFARI GitHub

SAFARI Research Group at ETH Zurich and Carnegie Mellon University

Site for source code and tools distribution from SAFARI Research Group at ETH Zurich and Carnegie Mellon University.

SAFARI

SAFARI| Research Group
A2 440 followers @ ETH Zurich and Carnegie Mellon U... & https://safari.ethz.ch/ [ omutlu@gmail.com
A People 13

() Overview [ Repositories 98  [f] Projects @ Packages

(] ramulator  Public

A Fast and Extensible DRAM Simulator, with built-in support for
modeling many different DRAM technologies including DDRx, LPDDRX,
GDDRx, WI0Ox, HBMX, and various academic proposals. Described in
the...

@®c++ 1Yr532 Y 206

] MQSim  Public

MQSim is a fast and accurate simulator modeling the performance of
modern multi-queue (MQ) SSDs as well as traditional SATA based
SSDs. MQSim faithfully models new high-bandwidth protocol
implement...

@c++ Yr268 a3

] SoftMC ' Public

SoftMC is an experimental FPGA-based memory controller design that
can be used to develop tests for DDR3 SODIMMs using a C++ based
API. The design, the interface, and its capabilities and limitatio...

® Verilog w120 % 27

(] prim-benchmarks ' Public

PrIM (Processing-In-Memory benchmarks) is the first benchmark suite
for a real-world processing-in-memory (PIM) architecture. PrIM is
developed to evaluate, analyze, and characterize the first publ...

®C w126 % a7

[,.:J rowhammer @ Public

Source code for testing the Row Hammer error mechanism in DRAM
devices. Described in the ISCA 2014 paper by Kim et al. at
http://users.ece.cmu.edu/~omutlufpub/dram-row-hammer_iscal4.pdf.

®c w211 Ya

(] Pythia  Public

A customizable hardware prefetching framework using online
reinforcement learning as described in the MICRO 2021 paper by Bera
et al. (https://arxiv.org/pdf/2109.12021.pdf).

@®cC++ 1109 %34

https://github.com/CMU-SAFARI/

13
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Spring 2022 Meetings/Schedule

- Y t b Liv tr m F II 2 22 : Week Date Livestream Meeting ;Z:;:::Igs

o https://www.youtube.com/watch?v=nA41964- B | | |
Or8&list=PL5Q2s0XY2Zi8tFIQvdxOdizD EhVAMVQV o e S i e
1 H ] 3 | Yool Live : Introduction to Sequencin
= Y Livestream ring 2022): Sl e bl | s

u httDS: //WWW-VOUtUbe-CO m/WatCh?V= DEL 5A Y3TI&| |St= W3 2513 Yol Premiere = M3: Read Mapping
PL5Q2s0XY2Zi8NrPDgOR1yRU Cxxjw-ul8 Fil. & (PDF) 3 (PPT)

w4 01.04 | Yol Premiere = M4: GateKeeper
Fri. aml (PDF) zm (PPT)

W5 08.04 Yol Premiere = M5: MAGNET & Shouji

. Fri. am (PDF) @ (PPT)
= PrOJeCt course w6 154 YoulM Premiere = M6: SneakySnake

o Taken by Bachelor's/Master’s students Fri b o il

. W7 294 Yol Premiere = M7: GenStore
o  Genomics lectures Fri. a (PDF) @l (PPT)
. w8 06.05 VW Premiere = M8: GRIM-Filter
o Hands-on research exploration P < (PDF) 2 (PPT)
o Many research readings we | e WD Fseerioen s oy

https: //www.youtube.com/onurmutlulectures "° %> "™ oo oaashm e

am (PDF) zm (PPT)

W11 10.06 | Youlll Premiere M11: Accelerating Genome
SA ‘ A R ’ Fri. Sequence Analysis

am (PDF) @w (PPT)



https://safari.ethz.ch/projects_and_seminars/fall2022/doku.php?id=bioinformatics
https://safari.ethz.ch/projects_and_seminars/fall2022/doku.php?id=bioinformatics
https://safari.ethz.ch/projects_and_seminars/fall2022/doku.php?id=bioinformatics
https://safari.ethz.ch/projects_and_seminars/spring2022/doku.php?id=bioinformatics
https://safari.ethz.ch/projects_and_seminars/spring2022/doku.php?id=bioinformatics
https://safari.ethz.ch/projects_and_seminars/spring2022/doku.php?id=bioinformatics
https://www.youtube.com/watch?v=nA41964-9r8&list=PL5Q2soXY2Zi8tFlQvdxOdizD_EhVAMVQV
https://www.youtube.com/watch?v=nA41964-9r8&list=PL5Q2soXY2Zi8tFlQvdxOdizD_EhVAMVQV
https://www.youtube.com/watch?v=nA41964-9r8&list=PL5Q2soXY2Zi8tFlQvdxOdizD_EhVAMVQV
https://www.youtube.com/watch?v=DEL_5A_Y3TI&list=PL5Q2soXY2Zi8NrPDgOR1yRU_Cxxjw-u18
https://www.youtube.com/watch?v=DEL_5A_Y3TI&list=PL5Q2soXY2Zi8NrPDgOR1yRU_Cxxjw-u18
https://www.youtube.com/onurmutlulectures

A Modern Primer on Processing in Memor
O u I S e a Onur Mutlu*®, Saugata Ghose", Juan Gémez-Luna®, Rachata Ausavarungnirun®
SAFARI Research Group
“ur i -Ch g
“King Mongkut's University of Technology North Banghok

g w
. Fa I I !o ! ! E d I t I o n n Onur Mutlu, Saugata Ghose, Juan Gomez-Luna, and Rachata Ausavarungnirun,
] “A Modern Primer on Processing in Memory™
NN " R S SR - e aee D

Invited Book Chapter in Emerging Computin
goking Beyond Moore &

o https://safari.ethz.ch/projects and seminars/fall2022 Wotchon e

2 From Devic ms -
eumann, Springer, to be published in 2021.

https://arxiv.ora/pdf/1903,03988.pdf

/doku.php?id=processing _in_memory

« Spring 2022 Edition: =C NN -
o https://safari.ethz.ch/projects and seminars/spring2

w2 15.03 Hands-on Project Proposals

022 /doku.php?id=processing in_memory

17.03 Yol Premiere  M2: Real-world PIM: UPMEM PIM

Thu am (PDF) @a (PPT)
w3 24.03 YoM Live M3: Real-world PIM:
Thu Microbenchmarking of UPMEM
PIM
- am (PDF) zm (PPT)
| |
= Youtube Livestream (Fall 2022): e e T
Thu. HBM-PIM

am (POF) @a (PPT)

o https://www.youtube.com/watch?v=QLLOwQ9I4Dw& T T M

list=PL50Q2s0XY2Zi8KzG2CQYRNQOVDOGOBmKy I eemeen

Thu. am (PDF) s (PPT)

= Youtube Livestream (Spring 2022): o e |

am (POF) um (PPT)

o https://www.youtube.com/watch?v=9e4Chnwdovo’i W00 P | ESE——————

Thu. Suitability on PIM

st=PL5Q250XY2Zi-841 fUYYUK9ESXKhQKRPyX T

W10 1205 Yo} Premiere = M10: Real-world PIM: Alibaba HB-
Thu PNM
aul (PDF) as (PPT)

| PrOjeCt CO Urse w1t :-:)5 Yool Live m;zm:/eonarzeamm

am (PDF) um (PPT)

o Taken by Bachelor's/Master’s students Wit |mos e | M E—

Thu Processing-using-Memory
am (POF) ma (PPT)

ProceSS| ng - i n- Me m ory |ectu res w13 0206 Yol Live M13: Bit-Serial SIMD Processing

Thu using DRAM
am (PDF) @a (PPT)

a
o Hands-on research exp|oration Wia 0006 WD Lve | MiAAnsyzing snd Milgatng ML
a

Thu Inference Bottienecks
au (PDF) an (PPT)

Ma ny resea rch readi ngs w15 1506 Yool Live M15: In-Memory HTAP Databases

Thu with HW/SW Co-design
am (PDF) an (PPT)

w16 2306 Yool Live M16: In-Storage Processing for

https://www.youtube.com/onurmutlulectures S

W17 18,07 Yool Premiere =M17: How to Enable the Adoption
Mon. of PIM?

am (PDF) un (PPT)
w18  09.08 Yool Premiere =SS1: ISVLSI 2022 Special Session

Tue. on PIM
(PDF & PPT)



https://safari.ethz.ch/projects_and_seminars/fall2022/doku.php?id=processing_in_memory
https://safari.ethz.ch/projects_and_seminars/fall2022/doku.php?id=processing_in_memory
https://safari.ethz.ch/projects_and_seminars/fall2022/doku.php?id=processing_in_memory
https://safari.ethz.ch/architecture/fall2021/doku.php?id=schedule
https://safari.ethz.ch/projects_and_seminars/spring2022/doku.php?id=processing_in_memory
https://safari.ethz.ch/architecture/fall2021/doku.php?id=schedule
https://safari.ethz.ch/projects_and_seminars/spring2022/doku.php?id=processing_in_memory
https://safari.ethz.ch/projects_and_seminars/spring2022/doku.php?id=processing_in_memory
https://www.youtube.com/watch?v=QLL0wQ9I4Dw&list=PL5Q2soXY2Zi8KzG2CQYRNQOVD0GOBrnKy
https://www.youtube.com/watch?v=9e4Chnwdovo&list=PL5Q2soXY2Zi-841fUYYUK9EsXKhQKRPyX
https://www.youtube.com/watch?v=9e4Chnwdovo&list=PL5Q2soXY2Zi-841fUYYUK9EsXKhQKRPyX
https://www.youtube.com/watch?v=9e4Chnwdovo&list=PL5Q2soXY2Zi-841fUYYUK9EsXKhQKRPyX
https://www.youtube.com/watch?v=9e4Chnwdovo&list=PL5Q2soXY2Zi-841fUYYUK9EsXKhQKRPyX
https://www.youtube.com/onurmutlulectures

SSD Course (Spring 2023)

e[

D)

= A die (or chip) contains multiple (e.g., 2 — 4) planes

= Spring 2023 Edition:

o https://safari.ethz.ch/projects and seminars/spring2023/
doku.php?id=modern_ssds

= Fall 2022 Edition:

o https://safari.ethz.ch/projects and seminars/fall2022/do
ku.php?id=modern_ssds

= Youtube Livestream (Spring 2023):

a  https://www.youtube.com/watch?v=4VTwOMmsnJY&list

=PL5Q2s0XY2Zi 8qOM5Icpp8hB2SHtM4z57&pp=iAQB
= Youtube Livestream (Fall 2022):

o https://www.youtube.com/watch?v=hgLrd-
Uj0aU&list=PL50Q2s0XY2Zi9BJhenUg4JI15bwhAMpAp13&p
p=iAQB

= Project course

Taken by Bachelor's/Master’s students
SSD Basics and Advanced Topics
Hands-on research exploration

Many research readings

0o 0o 0O O

Watch on [0 YouTube

___ Row/Column Decoders ____

i

/= Planes share decoders:

limits internal parallelism

Fall 2022 Meetings/Schedule

Week Date
w1 06.10
w2 12.10
wa 19.10
w4 26.10
ws 02.11
wé 09.11
w7 231
wa 30.11
we 14.12

W10 | 04.01.2023

wit | 11.01

https: //www.youtube.com/onurmutlulectures

wi2 | 2501

Livestream

Yol Live

Youfll) Live

Youl [ Live

Yool Live

Youll) Live

Yol Live

YofllD Live

Youfll) Live

Yol Premiere

Youf ) Live

Wil Premiers

(only operations @ the
same WL offset)

Meeting

M1: P&S Course Presentation
@aPDF s PPT

M2: Basics of NAND Flash-
Based SSDs

aaPDF 5 PPT

M3: NAND Flash Read/Write
Operations

aaPOF m PPT

M4: Processing inside NAND
Flash

aaPDF ma PPT

M5: Advanced NAND Flash
Commands & Mapping
aaPDF ga PPT

MB6: Processing inside Storage
xa PDF wm PPT

M7: Address Mapping &
Garbage Collection

aaPDF maPPT

M8: Introduction to MQSim
aaPDF maPPT

Learning
Materials
Required
Recommended

Required
Recommended

Required
Recommended

M3: Fine-Grained Mapping and equire

Muiti-Plane Operation-Aware
Block Management

anPDF ma PPT

M10a: NAND Flash Basics
aaPDF ma PPT

M10b: Reducing Solid-State
Drive Read Latency by
Optimizing Read-Retry
aaPOF ma PPT aaPaper
M10c: Evanesco: Architectural
Support for Efficient Data
Sanitization in Modern Flash-
Based Storage Systems

& PDF @ PPT aaPaper
M10d: DeepSketch: A New
Machine Leaming-Based
Refarenca Search Technique
for Post-Deduplication Delta
Compression

aaPDF ma PPT aaPaper

M11: FLIN: Enabling Faimess
and Enhancing Performance in
Modern NVMe Solid Stats
Drives

auPDF mPPT

M12: Flash Memory and Solid-
State Drives

@ PDF 1 PPT

Required


https://safari.ethz.ch/projects_and_seminars/spring2023/doku.php?id=modern_ssds
https://safari.ethz.ch/projects_and_seminars/spring2023/doku.php?id=modern_ssds
https://safari.ethz.ch/projects_and_seminars/spring2023/doku.php?id=modern_ssds
https://safari.ethz.ch/projects_and_seminars/fall2022/doku.php?id=modern_ssds
https://safari.ethz.ch/projects_and_seminars/fall2022/doku.php?id=modern_ssds
https://safari.ethz.ch/projects_and_seminars/fall2022/doku.php?id=modern_ssds
https://www.youtube.com/watch?v=4VTwOMmsnJY&list=PL5Q2soXY2Zi_8qOM5Icpp8hB2SHtm4z57&pp=iAQB
https://www.youtube.com/watch?v=4VTwOMmsnJY&list=PL5Q2soXY2Zi_8qOM5Icpp8hB2SHtm4z57&pp=iAQB
https://www.youtube.com/watch?v=4VTwOMmsnJY&list=PL5Q2soXY2Zi_8qOM5Icpp8hB2SHtm4z57&pp=iAQB
https://www.youtube.com/watch?v=_q4rm71DsY4&list=PL5Q2soXY2Zi8vabcse1kL22DEcgMl2RAq
https://www.youtube.com/watch?v=hqLrd-Uj0aU&list=PL5Q2soXY2Zi9BJhenUq4JI5bwhAMpAp13&pp=iAQB
https://www.youtube.com/watch?v=hqLrd-Uj0aU&list=PL5Q2soXY2Zi9BJhenUq4JI5bwhAMpAp13&pp=iAQB
https://www.youtube.com/watch?v=hqLrd-Uj0aU&list=PL5Q2soXY2Zi9BJhenUq4JI5bwhAMpAp13&pp=iAQB
https://www.youtube.com/watch?v=hqLrd-Uj0aU&list=PL5Q2soXY2Zi9BJhenUq4JI5bwhAMpAp13&pp=iAQB
https://www.youtube.com/onurmutlulectures

In-Storage
Genomics & Metagenomics




In-Storage Genomic Data Filtering [aspLos 2022)

Nika Mansouri Ghiasi, Jisung Park, Harun Mustafa, Jeremie Kim, Ataberk Olgun, Arvid
Gollwitzer, Damla Senol Cali, Can Firtina, Haiyu Mao, Nour Almadhoun Alserr, Rachata
Ausavarungnirun, Nandita Vijaykumar, Mohammed Alser, and Onur Mutlu,
"GenStore: A High-Performance and Energy-Efficient In-Storage Computin
System for Genome Sequence Analysis"

Proceedings of the 2/th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), Virtual, February-March
2022.

[Lightning Talk Slides (pptx) (pdf)]

[Lightning Talk Video (90 seconds)]

GenStore: A High-Performance In-Storage Processing System
for Genome Sequence Analysis

Nika Mansouri Ghiasi' Jisung Park! Harun Mustafa! Jeremie Kim' Ataberk Olgun!
Arvid Gollwitzer! Damla Senol Cali? Can Firtina! Haiyu Mao' Nour Almadhoun Alserr!
Rachata Ausavarungnirun® Nandita Vijaykumar?* Mohammed Alser! Onur Mutlu!

1ETH Ziirich “Bionano Genomics *KMUTNB *University of Toronto

SAFARI https: //arxiv.orq/abs/2202.10400 18


https://people.inf.ethz.ch/omutlu/pub/GenStore_asplos22-arxiv.pdf
https://people.inf.ethz.ch/omutlu/pub/GenStore_asplos22-arxiv.pdf
https://asplos-conference.org/
https://asplos-conference.org/
https://people.inf.ethz.ch/omutlu/pub/GenStore_asplos22-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/GenStore_asplos22-lightning-talk.pdf
https://www.youtube.com/watch?v=Vi1af8KY0g8
https://arxiv.org/abs/2202.10400

GenStore

GenStore: A High-Performance and Energy-Efficient
In-Storage Computing System for Genome Sequence Analysis

Nika Mansouri Ghiasi' Jisung Park! Harun Mustafa’ Jeremie Kim' Ataberk Olgun!
Arvid Gollwitzer! Damla Senol Cali® Can Firtina! Haiyu Mao! Nour Almadhoun Alserr!
Rachata Ausavarungnirun® Nandita Vijaykumar®* Mohammed Alser' Onur Mutlu!

'ETH Ziirich “Bionano Genomics *KMUTNB “University of Toronto

https://arxiv.org/abs/2202.10400

SAFARI


https://arxiv.org/abs/2202.10400

In-Storage Metagenomics [isca 2024

Nika Mansouri Ghiasi, Mohammad Sadrosadati, Harun Mustafa, Arvid Gollwitzer,
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Genome Sequence Analysis

* Genome sequence analysis is critical for many applications
- Personalized medicine
- Outbreak tracing
- Evolutionary studies

* Genome sequencing machines extract smaller fragments of the original
DNA sequence, known as reads

/
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Genome Sequence Analysis

. first key step in genome sequence analysis

- Aligns reads to potential matching locations in the reference genome
- For each matching location, the alignment step finds the degree of
similarity (alignment score)

N Reference Genome
...GCCCATATGGTTAAGCTTCCATGGAAATGGGCTTTCGCTTCCACAATG...

Differences Differences
[GCTTCCAGAATG

» Calculating the alignfiéftbedrefequires computationally-expensive
GCCCAAATGGT

approximate string matc%ﬁ%%% account for differences between
reads and the reference genome due to:

- Sequencing errors
- Genetic variation

SAFARI 24



Genome Sequence Analysis

‘I Data Movement from Storage

Alignment
Computation
Storage Main Cache Unit
System Memory (CPU or
Accelerator)
x Computation overhead
x Data movement overhead
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Accelerating Genome Sequence Analysis

Storage
System

v
X

SAFARI

Heuristics

Main
Memory

Accelerators Filters

Y

Cache

Computation
Unit
(CPU or
Accelerator)

Computation overhead

Data movement overhead
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Key Idea

Y Filter reads that do not require alignment
inside the storage system

AAQCGTTCCTTGGCA] Computation
[AAICCTTTGGGTCCA] Main Cache Unit
[GAATGGGGCCA|
[TTITCCCCGGGGCCA Memory (CPU or
GCTTCCAGAATG Accelerator)

Filtered Reads

Exactly-matching reads
Do not need expensive approximate string matching during alignment

Non-matching reads
Do not have potential matching locations and can skip alignment

SAFARI 27



Challenges

Y Filter reads that do not require alignment
inside the storage system

Storage
System

Filtered Reads

Main
Memory

Cache

Computation
Unit
(CPU or
Accelerator)

Read mapping workloads can exhibit different behavior

There are limited hardware resources
In the storage system

SAFARI
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GenStore

Y Filter reads that do not require alignment
inside the storage system

Computation
GenStore-Enabled Main Unit
Storage M Cache CPU
System emory ( or
Accelerator)
\/ Computation overhead
\/ Data movement overhead

GenStore provides significant speedup (1.4x - 33.6x) and

energy reduction (3.9x - 29.2x) at low cost
SAFARI 29



GenStore

* Key idea: Filter reads that do not require alignment inside the
storage system

* Challenges
- Different behavior across read mapping workloads
- Limited hardware resources in the SSD

[ Host System )

Reads that need

substantial processing
- ™
Flash GenStore In-SSD DRAM
N,_L\ND N:_L\ND curl# | ACC FrL ||| L2p

Die#1 Die#4 : |_[ Core Mappings
Flash [ GenStore |

NAND| |NAND (||CtrL.#N ALEE AcC Metadata
Die#1 Die#4 : g

1€ 1€ SSD Controller

.
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Filtering Opportunities

* Sequencing machines produce one of two kinds of reads

- Short reads: highly accurate and short

- Long reads: less accurate and long
Reads that do not require the expensive alignment step:

[Exactly-matching reads ]_

Do not need expensive approximate string matching during alignment

* Low sequencing error rates (short reads) combined with
* Low genetic variation

[Non-matching reads ]_

Do not have potential matching locations, so they skip alignment

* High sequencing error rates (long reads) or
* High genetic variation (short or long reads)

SAFARI 31



GenStore

GenStore-EM for Exactly-Matching Reads

GenStore-NM for Non-Matching Reads

SAFARI
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GenStore-EM

* Efficient in-storage filter for reads with at least one exact
match in the reference genome

* Uses simple operations, without requiring alignment

* Challenge: large number of random accesses per read to
the reference genome and its index

Expensive random accesses to flash chips

Limited DRAM capacity inside the SSD

SAFARI 33



GenStore-EM: Data Structures

* Read-sized k-mers: to reduce the number of accesses per
each read

R aanchr [GCCCAAATGGTT]

m
K-mers [ccc]
Only one index lookwp perread

e Sorted read-sized k-mers: to avoid random accesses to
the index

\/ Sequential scan of the read set and the index

SAFARI 34



GenStore-EM: Data Structures

Sorted Read Table

Read

Sorted K-mer Index

AAAAAAAAAA

K-mer

AAAAAAAAAG

AAAAAAAAAA

AAAAAAAACT

AAAAAAAAAC

AAAAAAAAAT

SAFARI

Read-sized
K-mers

35



GenStore-EM: Finding a Match

Sorted Read Table Sorted K-mer Index
Read K-mer
AAAAAAAAAA AAAAAAAAAA
AAAAAAAAAG AAAAAAAAAC
AAAAAAAACT AAAAAAAAAT
Next ‘ — ‘ Next
Comparator |

Read = K-mer

Exact match = Filter the read
SAFARI
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GenStore-EM: Not Finding a Match

Sorted Read Table

Sorted K-mer Index

Read K-mer
AAAAAAAAAA AAAAAAAAAA
AAAAAAAAAG AAAAAAAAAC
AAAAAAAACT AAAAAAAAAT

SAFARI

LA Next
Comparator J

'

Read > K-mer



GenStore-EM: Not Finding a Match

Sorted Read Table

Read

AAAAAAAAAA

AAAAAAAAAG

Sorted K-mer Index

K-mer

AAAAAAAAAA

AAAAAAAACT

SAFARI

AAAAAAAAAC

AAAAAAAAAT

i

Next L Comparator

'

Read < K-mer

Not an exact match > Send to read mapper

38



GenStore-EM: Not Finding a Match

\/ Avoids random accesses

\/ Simple low-cost logic

SAFARI
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GenStore-EM: Optimization

* Read-sized k-mer index takes up a large amount of space
(126 GB for human index) due to the larger number of

unique k-mers
Sorted K-mer Index

Strong Hash Value | LoOC.
1 1,8, ...
4 51
7 23,37
16

Using strong hash values instead of read-sized k-mers
reduces the size of the index by 3.9x

SAFARI 40



GenStore-EM: Design

[ Host System j
( . . )
GenStore-Enabled SSD @ Exact-match filtering
Batch#i-1
SRTable Comparator o } SRTable Buffer
SKIndex Batch#j-1 }
© Sequential Reads Batch#j S A

| | NANDFlashArray | | SSD Controller DRAM J

Steps 1 and 2 are pipelined.
During filtering, GenStore-EM sends the unfiltered reads
to the host system.

Data is evenly distributed between channels, dies, and planes
to leverage the full internal bandwidth of the SSD

SAFARI
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Evaluation Methodology
Read Mappers

* Base: state-of-the-art software or hardware read mappers
- Minimap2 [Bioinformatics'18]: software mapper for short and long reads
- GenCache [MICRO"19]: hardware mapper for short reads
- Darwin [ASPLOS'18]: hardware mapper for long reads

* GS: Base integrated with GenStore

SSD Configurations
» SSD-L: with SATA3 interface (0.5 GB/s sequential read bandwidth)

* SSD-M: with PCle Gen3 interface (3.5 GB/s sequential read bandwidth)

* SSD-H: with PCle Geny interface (7 GB/s sequential read bandwidth)

SAFARI
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Performance — GenStore-EM

For a read set with 80% exactly-matching reads
With the Software Mapper

X
-
[ 3

X
-
[<

5 200

S 150 f 5

GEJ 100 F o

5 50 |

g o

ﬁ Base| GS
SSD-L

Base| GS

SSD-M

Base| GS

SSD-H

ONPH OO

With the Hardware Mapper

X

] 4 ™

3 o

Ral K
Base| GS |Base| GS (Base| GS
SSD-L SSD-M SSD-H

2.1x - 2.5x speedup compared to the software Base

1.5x = 3.3x speedup compared to the hardware Base

SAFARI

On average 3.92x energy reduction
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Performance — GenStore-NM

For a read set with 99.7% non-matching reads
With the Software Mapper

Exec. time [sec]
Log scale
[
- O
- (=) =)

e
[y

With the Hardware Mapper

V'

22.4

v

A
X
()]
N
|

X

=

I3

I ]
]

Base‘ GS
SSD-L

Base‘ GS
SSD-M

Base‘ GS
SSD-H

V'

<
19.2x

X

0

I I ]
I

X

%

I I 1
I

Base| GS
SSD-L

Base| GS
SSD-M

Base| GS
SSD-H

22.4x - 27.9x speedup compared to the software Base

6.8x —19.2x speedup compared to the hardware Base

SAFARI

On average 27.2x energy reduction
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Area and Power

* Based on Synthesis of GenStore accelerators using the Synopsys
Design Compiler @ 65nm technology node

Logic unit ‘ # of instances Area[mm2] | Power [mW]
Comparator 1 perSSD 0.0007 0.14
K -mer Window 2 per channel 0.0018 0.27
Hash Accelerator 2 perSSD 0.008 1.8
Location Buffer 1 per channel 0.00725 0.37375
Chaining Buffer 1 per channel 0.008 0.95
Chaining PE 1 per channel 0.004 0.98
Control 1 per SSD 0.0002 0.11
[ Total for an 8-channel SSD - 0.2 26.6 ]

Only 0.006% of a 14nm Intel Processor, less than 9.5% of the three
ARM processors in a SATA SSD controller
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What is Metagenomics?

* Metagenomics: Study of genome sequences of diverse organisms
within a shared environment (e.g., blood, ocean, soil)

* Overcomes the limitations of traditional genomics
- Bypasses the need for analyzing individual species in isolation

SAFARI 53



What is Metagenomics?

* Metagenomics: Study of genome sequences of diverse organisms
within a shared environment (e.g., blood, ocean, soil)

Has led to groundbreaking advances

* Precision medicine
* Understanding microbial diversity of an environment

* Discovering early warnings of communicable diseases

SAFARI 54




Metagenomic Analysis

Preparation
of Input Queries

Query
K-mers

|

N

_|

E I

Metagenomic sample l V. cholerae

with species that
are not known in advance Presence/Absence

j Identification

SARS-CoV-2

E. coli

Abundance

A large database Estimation
containing information
Oon many species

SAFARI (e.g.,> 100 TBs in emerging databases)
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Motivation

* Case study of the performance of metagenomic analysis tools
* With various state-of-the-art SSD configurations

. ONol/O [EPerformance-Optimized @O Cost-Optimized

o 1

I T 1 T 1

(o) 0.8 n ¢>\|< L>p< ﬁ ¢>\I<

< : o N < )

= 0.6 | N )

o g

v :

N 04 F

g :

Z X v v
0 I

0.7 _ 1.4
Database Size (Terabyte)

1/O data movement causes significant performance overhead
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Motivation

I/O becomes an even larger overhead (by 2.7x)

In systems where other bottlenecks are alleviated

SAFARI
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/O Overhead is Hard to Avoid

/O overhead due to accessing large, low-reuse data is hard to avoid

Sampling techniques to shrink database sizes

[Wood+, Genome Biology’19], [Ounit+, BMC Genomics’15], [Kim+, Genome Research’16], ...

x Reduce accuracy to levels unacceptable for many use cases

Keeping all data required by metagenomic analysis
completely and always resident in main memory

x Energy inefficient, costly, unscalable, and unsustainable

» Database sizes increase rapidly (doubling every few months)

» Different analyses need different databases

SAFARI 59




Our Goal

Improve metagenomic analysis performance
by reducing large data movement overhead
from the storage system
in a cost-effective manner and with high accuracy

SAFARI
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Challenges of In-Storage Processing

No metagenomic analysis tool can run in-storage due to SSD limits

- Long latency of NAND flash chips

- Limited DRAM capacity inside the SSD

- Limited DRAM bandwidth inside the SSD

SAFARI

— SSD
Cores Controller

FTL

Channel#1 Channel#N

o o)

SSD DRAM
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MeglS: Metagenomics In-Storage

* First in-storage system for end-to-end metagenomic analysis

* Idea: Cooperative in-storage processing for metagenomic analysis

- Hardware/software co-design between

QO

Host System

SAFARI

[MegIS-EnabIed SSD |

FTL b
Cores Controller
? Cntrl a CntrII:|
Channel#1 Channel#N

SSD DRAM

Standard
Metadata
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MeglS’s Steps
Step 1

Preparation

of Input Queries

Metagenomic sample
with species that
are not known in advance

V. cholerae

SARS-CoV-2

E. coli

Abundance
A large database Estimation

containing information
Oon many species
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MeglS Hardware-Software Co-Design

SAFARI

/MegIS-EnabIed SSD |

FTL 25D
Cores Controller
! Cntrl Cntrl |
Channel#1 Channel#N

SSD DRAM

Standard
Metadata
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MeglS Hardware-Software Co-Design

Task partitioning and mapping

* Each step executes

in its most suitable system

aﬁ

Host System

SAFARI

[D )
(- L SSD SSD DRAM
= Cores Controller Standard

% a ™| Metadata

5 [ Cntrl a Cntrl |

L L

o)

§ Channel#1 Channel#N

\_ ,
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MeglS Hardware-Software Co-Design

Data/computation flow coordination
* Reduce communication overhead
* Reduce #writes to flash chips

[D )
g ETL L SSD SSD DRAM

GEJ l - Cores Controller Standard

|2 a % a ™| Metadata

>‘ ©

- :

+ Cntrl a Cntrl
§ Channel#1 Channel#N

L \_ J

SAFARI
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MeglS Hardware-Software Co-Design

—)
&

[D )
(- L SSD SSD DRAM
= Cores Controller Standard

% a ™| Metadata

5 [ Cntrl a Cntrl |

L L

o)

§ Channel#1 Channel#N

\_ ,

Storage-aware algorithms
* Enable efficient
access patterns to the SSD

SAFARI
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MeglS Hardware-Software Co-Design

[D )
a L — SSD SSD DRAM
GEJ ‘ - Fl Cores Controller Standard
v
4‘;{ a % ACC a ACC |™| Metadata
g a _ 5 | Cntrl a Cntrl
:CE’ 7
§ Channel#1 Channel#N
L \_ J

SAFARI

Lightweight in-storage accelerators
* Minimize SRAM/DRAM buffer spaces

needed inside the SSD
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MeglS Hardware-Software Co-Design

.

-
(|
7l Megis L, SSD SSD DRAM
= o FTL Cores Controller
e ) o Standard
- a < |[AcC Q ACC || Metadata
B a 5 | Cntrl a Cntrl
% C— " Megis
o) - - Metadata
s Channel#1 Channel#N
L \_ J

Data mapping scheme and Flash Translation Layer (FTL)
* Specialize to the characteristics of metagenomic analysis
* Leverage the SSD’s full internal bandwidth
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Step 1 Overview
Step 1

Preparation

of Input Queries

Metagenomic sample
with species that
are not known in advance

V. cholerae

SARS-CoV-2

E. coli

Abundance
A large database Estimation

containing information
Oon many species
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Step 1 Overview

—

MeglS employs sorted data structures

. to avoid expensive random accesses to the SSD
Preparation kp ) ) I
of Input Queries i - Extract k-mers from the sample

- Sort the k-mers (database is sorted offline)

E MeglS executes Step 1 in the host system

lllll

- Benefits from larger DRAM and more powerful computation
- Incurs fewer writes to NAND flash chips (than processing this step in the SSD)
- Enables overlapping Step 1 with Step 2

To execute Step 1 efficiently in the host system, MeglS needs to:

- Avoid significant overhead due to data transfer time between the steps

- Minimize performance and lifetime overheads even when host DRAM cannot
hold all query k-mers

SAFARI 72



Step 1 Design
Divide k-mers into independent partitions by their alphabetical range

W/ Can overlap operations on different partitions

Host CPU —p} Partition Host DRAM
ACGTTACGATT... ACGTC CATTA GTTAC
o ([ACGTT ACTTT CTATG GGTCC
] GTTAC A C G
Overlap Step 1's sorting

with Data transfer

VY
Read
Input Queries a
MeglS-Enabled SSD o

and Step 2’s In-storage operations

SAFARI
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Step 2 Overview
Step 1

Preparation

of Input Queries

Metagenomic sample
with species that
are not known in advance

V. cholerae

SARS-CoV-2

E. coli

Abundance
A large database Estimation

containing information
Oon many species
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Step 2 Overview

- Identify the common k-mers
between the query k-mers

Presence/Absence SARS-CoVo and the database k-mers
Identification

E coli - Retrieve the species IDs
of the common k-mers

V. cholerae

[:_[SSD |t MeglS executes Step 2 in the SSD

- Accesses large data with low reuse

- Involves lightweight computation

To execute Step 2 efficiently in the SSD, MeglS needs to:

- Leverage internal bandwidth efficiently

- Not require expensive hardware inside the SSD
(e.g., large DRAM bandwidth/capacity and costly logic units)

SAFARI
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Step 2 Design: Identifying the Common K-mers

* Challenge: Limited internal DRAM bandwidth

SSD Controller Query K-mers SSD DRAM
from the Host [T cerea
< _— C
)
Database K-mers — Ny - AG?TT
from Flash Chips
Common
—d K-mers
A ABAAR ] AGTTT -
o CAAAA CCGTG <
§ : L % MeglS-Enabled
S | Taacc | | "TTGGT | < SSD

Database K-mers
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Step 2 Design: Identifying the Common K-mers

* Challenge: Limited internal DRAM bandwidth

\/ Compute directly on the flash data streams [Zou+, MICRO22]

\/ Reduce buffer size based on application features

SSD Controller

Query K-mers
from the Host

SSD DRAM

\ 4

Intersect =» Worite to DRAM

4

Intersect

K-mer Reqister

h CGTCA

| Common

K-mers

AGTTT

CCGTG

K-mer Register
4‘.;' AAARA
] CAAAA
c -
g :
£ | TAACC |
O

SAFARI

F’TTC:;GT

Channel#N

Database K-mers

MeglS-Enabled
SSD
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Step 2 Design: Retrieving the Species ID

* MeglS retrieves the species IDs of the common k-mers by looking

up a sketch database

K-mer

AAAAA

AAAAC

AATCC

Space-Inefficient

SAFARI

Space-Efficient

X Slow inside the SSD

due to long
NAND flash latency
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Step 2 Design: Retrieving the Species ID

* MeglS retrieves the species IDs of the common k-mers by looking
up a sketch database

e [ OfOLOLOL
AAAAA | 1,5
AAAAC | 6 @

AATCC [ 2,9 @ @ @

Space-Inefficient Space-Efficient

7.5x Smaller < 2.1x Larger

K-mer Sketch Streaming

K-mer Sketch Streaming is much more suitable for in-storage processing
due to its streaming accesses
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Step 2 Design: Retrieving the Species ID

K-mer Sketch Streaming is much more suitable for in-storage processing
due to its streaming accesses

SAFARI 80



Step 3

Metagenomic sample
with species that
are not known in advance

Preparation
of Input Queries

V. cholerae

SARS-CoV-2

E. coli

Abundance
A large database Estimation

containing information
Oon many species
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Step 3

Abundance
Estimation

MeglS performs additional analysis on
species identified in the sample to
estimate their abundance

MeglS can flexibly integrate with different approaches
1. Lightweight statistical approaches: Directly uses the output of Step 2

2. More accurate and costly read mapping: MeglS facilitates integration by

preparing mapping indexes in the SSD

SAFARI

K-mer | Loc. K-mer | Loc. K-mer Loc.
ATT 14 AAG 2 AAG 1002
CCA 9 CCA 21 Merge ATT 14
GCT 5 TGC 4 CCA | 9,1021

GCT 5
Reference Index Reference Index Unified TGC 1004
Organism A Organism B Reference Index

Step 3 and MegIS FTL are in the paper
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Evaluation Methodology Overview (l)

Performance, Energy, and Power Analysis

Hardware Components Software Components

* Synthesized Verilog model for the in-storage accelerators  Measure on a real system:
« MQSim [Tavakkol+, FAST28] for SSD's internal operations ¢ AMD® EPYC® CPU with

128 physical cores
* Ramulator [Kim+, CAL’15] for SSD’s internal DRAM PaY>!
 1-TB DRAM

Baseline Comparison Points

* Performance-optimized software, Kraken2 [Genome Biology'19]
* Accuracy-optimized software, Metalign [Genome Biology’20]
e PIM hardware-accelerated tool (using processing-in-memory), Sieve [ISCA’21]

SSD Configurations
* SSD-C: with SATA3 interface (0.5 GB/s sequential read bandwidth)

* SSD-P: with PCle Gen4 interface (7 GB/s sequential read bandwidth)
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Evaluation Methodology Overview (1)

Metagenomic Analysis Task
* Finding species present in the sample

* Analysis of the abundance estimation task is in the paper

Metagenomic Samples

* With varying degrees of genetic diversity

- Low
- Medium
- High
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Speedup over Software (with Cost-Optimized SSD)

Performance-Optimized W Accuracy-Optimized @ MeglS
7
6 [ SSD-C R
a 5 | t
=) B (<)
T 4r s
3 3¢ , l
v 2 i
1 i
o H— | BN | B ||
Low Med High GMean
Sample Genetic Diversity
MeglS provides significant speedup over both
Performance-Optimized and baselines
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SpEEdUp over Software (with Performance-Optimized SSD)

Performance-Optimized I Accuracy-Optimized O MeglS O
7
6 - SSD-P
I
o 4 r T
g 30 8 A
nwn 2 r Y O
1 f
31 NN WM S .
Low Med High GMean

Sample Genetic Diversity

MeglS provides significant speedup over both

Performance-Optimized and Accuracy-Optimized baselines

MeglS improves performance on both

cost-optimized and performance-optimized SSDs
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Speedup over the PIM Hardware Baseline

PIM O MeglS W PIM O MeglS B
T 3 1
° r SSD-C : . SSD-P i
B VN - i
o4 2 [ i
= : :
I & : 5‘{
a | 1 [ |
n - : [ I :
N BN BN BH o I | W | W |

Low Med High GMean Low Med High GMean

Sample Genetic Diversity Sample Genetic Diversity

MeglS provides significant speedup over the PIM baseline
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Reduction in Energy Consumption

* On average across different input sets and SSDs Same
== \ / accuracy

[

©C = N W ~ U1 O
T

GeoMean Energy Reduction
(Higher is Better)

Perf-Opt PIM MeglS

MeglS provides significant energy reduction over

the Performance-Optimized, Accuracy-Optimized, and PIM baselines
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Accuracy, Area, and Power
Accuracy

* Same accuracy as the accuracy-optimized baseline

* Significantly higher accuracy than the performance-optimized and
PIM baselines

- 4.6 — 5.2x higher F1 score
- 3—-24% lower L1 norm error

Area and Power
Total for an 8-channel SSD:

* Area: 0.04 mm?
* Power: 7.658 mW
(Only 1.7% of the area and 4.6% of the power consumption

of three ARM Cortex R4 cores in an SSD controller)
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System Cost-Efficiency

* Cost-optimized system ($): With SSD-C and 64-GB DRAM
* Performance-optimized system ($$$): With SSD-P and 1-TB DRAM

20

=
192
]
—
—
—
—

GMean Speedup
=
o

[T
}_

Perf-Opt ($)  Acc-Opt($) Perf-Opt ($$5) Acc-Opt($$$)  MegIS($)

MeglS outperforms the baselines

even when running on a much less costly system
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System Cost-Efficiency

MegIS improves system cost-efficiency

and makes accurate metagenomics more accessible

for wider adoption

SAFARI
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More in the Paper

* MeglS's performance when running in-storage processing
operations on the cores existing in the SSD controller

* MeglS’s performance when using the same accelerators
outside SSD

* Sensitivity analysis with varying
- Database sizes
- Memory capacities
- #5SDs
- #Channels
- #Samples

* MeglS’s performance for abundance estimation
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More in the Paper

MeglS: High-Performance, Energy-Efficient, and Low-Cost
Metagenomic Analysis with In-Storage Processing

Nika Mansouri Ghiasi' Mohammad Sadrosadati’ Harun Mustafa'! Arvid Gollwitzer!
Can Firtina' Julien Eudine! Haiyu Mao! Joél Lindegger! Meryem Banu Cavlak!
Mohammed Alser! Jisung Park® Onur Mutlu!

'ETH Zirich ?POSTECH

https://arxiv.org/abs/2406.19113
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Conclusion

Metagenomic analysis suffers from
significant storage 1/O data movement overhead

MeglS

The first in-storage processing system for end-to-end metagenomic analysis
Leverages and orchestrates processing inside and outside the storage system

(N Improves performance
2.7x—-37.2x over performance-optimized software
6.9x—100.2x over accuracy-optimized software
1.5%-5.1x over hardware-accelerated PIM baseline

@ High accuracy

Same as accuracy-optimized
4.8x higher F1 score
over performance-optimized/PIM

\

S

Reduces energy consumption
5.4x over performance-optimized software
15.2x over accuracy-optimized software
1.9x over hardware-accelerated PIM baseline

® Small area/power

Area: 0.04 mm?2
Power: 7.658 m\W

N

SAFARI
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MeglS

High-Performance, Energy-Efficient, and Low-Cost

Metagenomic Analysis with In-Storage Processing
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GenStore

A High-Performance In-Storage Processing System
for Genome Sequence Analysis
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Genome Sequence Analysis

* Genome sequence analysis is critical for many applications
- Personalized medicine
- Outbreak tracing
- Evolutionary studies

* Genome sequencing machines extract smaller fragments of the original
DNA sequence, known as reads

/

SAFARI 103



Genome Sequence Analysis

. first key step in genome sequence analysis

- Aligns reads to potential matching locations in the reference genome
- For each matching location, the alignment step finds the degree of
similarity (alignment score)

N Reference Genome
...GCCCATATGGTTAAGCTTCCATGGAAATGGGCTTTCGCTTCCACAATG...

Differences Differences
[GCTTCCAGAATG

» Calculating the alignfiéftbedrefequires computationally-expensive
GCCCAAATGGT

approximate string matc%ﬁ%%% account for differences between
reads and the reference genome due to:

- Sequencing errors
- Genetic variation
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Genome Sequence Analysis

‘I Data Movement from Storage

Alignment
Computation
Storage Main Cache Unit
System Memory (CPU or
Accelerator)
x Computation overhead
x Data movement overhead
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Accelerating Genome Sequence Analysis

Heuristics Accelerators Filters

Computation
i Unit

Storage Main Cache ni

System Memory (CPU or
Accelerator)

\/ Computation overhead

x Data movement overhead
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Key Idea

Y Filter reads that do not require alignment
inside the storage system

AAQCGTTCCTTGGCA] Computation
[AAICCTTTGGGTCCA] Main Cache Unit
[GAATGGGGCCA|
[TTITCCCCGGGGCCA Memory (CPU or
GCTTCCAGAATG Accelerator)

Filtered Reads

Exactly-matching reads
Do not need expensive approximate string matching during alignment

Non-matching reads
Do not have potential matching locations and can skip alignment
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Challenges

Y Filter reads that do not require alignment
inside the storage system

Storage
System

Filtered Reads

Main
Memory

Cache

Computation
Unit
(CPU or
Accelerator)

Read mapping workloads can exhibit different behavior

There are limited hardware resources
In the storage system

SAFARI
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GenStore

Y Filter reads that do not require alignment
inside the storage system

Computation
GenStore-Enabled Main Unit
Storage M Cache CPU
System emory ( or
Accelerator)
\/ Computation overhead
\/ Data movement overhead

GenStore provides significant speedup (1.4x - 33.6x) and

energy reduction (3.9x - 29.2x) at low cost
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Reference [, THGCCrATATGGTT 4 PMTGGGCTTTCGCTTTG ...

K-mer Locatlio ns

Read [GCCCAAATGGTT] GO 7
c| 8
s
K-mers AAA | 32 | 201
CCA | 25 | 230 | 400

Index

Determine potential matching locations (seeds) in the

Seedin
J reference genome

Seed Filtering

o Prune some seeds in the reference genome
(e.g., Chaining)

Determine the exact differences between the read

Alighment
9 and the reference genome
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Motivation

* Case study on a real-world genomic read dataset
- Various read mapping systems
- Various state-of-the-art SSD configurations

The ideal in-storage filter significantly improves performance by

1) reducing the computation overhead

2) reducing the data movement overhead
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Motivation

* Case study on a real-world genomic read dataset
- Various read mapping systems
- Various state-of-the-art SSD configurations

Filtering outside SSD provides lower performance benefit since it

1) does not reduce the data movement overhead

2) must compete with read mapping for system resources

A HW accelerator reduces the computation bottleneck,
which makes 1/O a larger bottleneck in the system
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Our Goal

Design an in-storage filter for genome sequence analysis
in a cost-effective manner

Design Objectives:

| Performance I
Provide high in-storage filtering performance to overlap the

filtering with the read mapping of unfiltered data

| Applicability - - I
Support reads with 1) different properties and 2) different

degrees of genetic variation in the compared genomes

[ Low-cost ]_
Do not require significant hardware overhead
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GenStore

* Key idea: Filter reads that do not require alignment inside the
storage system

* Challenges
- Different behavior across read mapping workloads
- Limited hardware resources in the SSD

[ Host System )

Reads that need
substantial processing
Flash GenStore In-SSD DRAM

N,_L\ND N:_L\ND curl# | ACC FrL ||| L2p

Die#1 Die#4 . |_[ Core Mappings
Flash [ GenStore |

NAND| |NAND (||CtrL.#N ALEE AcC Metadata
Die#1 Die#4 : g

1€ 1€ SSD Controller

.
SAFARI
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Filtering Opportunities

* Sequencing machines produce one of two kinds of reads

- Short reads: highly accurate and short

- Long reads: less accurate and long
Reads that do not require the expensive alignment step:

[Exactly-matching reads ]_

Do not need expensive approximate string matching during alignment

* Low sequencing error rates (short reads) combined with
* Low genetic variation

[Non-matching reads ]_

Do not have potential matching locations, so they skip alignment

* High sequencing error rates (long reads) or
* High genetic variation (short or long reads)

SAFARI 118



GenStore

GenStore-EM for Exactly-Matching Reads

GenStore-NM for Non-Matching Reads
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GenStore

GenStore-EM for Exactly-Matching Reads
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GenStore-EM

* Efficient in-storage filter for reads with at least one exact
match in the reference genome

* Uses simple operations, without requiring alignment

* Challenge: large number of random accesses per read to
the reference genome and its index

Expensive random accesses to flash chips

Limited DRAM capacity inside the SSD
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GenStore-EM: Data Structures

* Read-sized k-mers: to reduce the number of accesses per
each read

R aanchr [GCCCAAATGGTT]

m
K-mers [ccc]
Only one index lookwp perread

e Sorted read-sized k-mers: to avoid random accesses to
the index

\/ Sequential scan of the read set and the index
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GenStore-EM: Data Structures

Sorted Read Table Sorted K-mer Index
Read K-mer
AAAAAAAAAA AAAAAAAAAA
AAAAAAAAAG AAAAAAAAAC

AAAAAAAACT AAAAAAAAAT

Read-sized
K-mers
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GenStore-EM: Finding a Match

Sorted Read Table Sorted K-mer Index
Read K-mer
AAAAAAAAAA AAAAAAAAAA
AAAAAAAAAG AAAAAAAAAC
AAAAAAAACT AAAAAAAAAT
Next ‘ — ‘ Next
Comparator |

Read = K-mer

Exact match = Filter the read
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GenStore-EM: Not Finding a Match

Sorted Read Table Sorted K-mer Index
Read K-mer
AAAAAAAAAA AAAAAAAAAA
AAAAAAAAAG AAAAAAAAAC
AAAAAAAACT AAAAAAAAAT

vy Next
Comparator J

Read > K-mer
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GenStore-EM: Not Finding a Match

Sorted Read Table

Read

AAAAAAAAAA

AAAAAAAAAG

Sorted K-mer Index

K-mer

AAAAAAAAAA

AAAAAAAACT

SAFARI

AAAAAAAAAC

AAAAAAAAAT

i

Next L Comparator

'

Read < K-mer

Not an exact match > Send to read mapper
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GenStore-EM: Not Finding a Match

\/ Avoids random accesses

\/ Simple low-cost logic
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GenStore-EM: Optimization

* Read-sized k-mer index takes up a large amount of space
(126 GB for human index) due to the larger number of

unique k-mers
Sorted K-mer Index

Strong Hash Value | LoOC.
1 1,8, ...
4 51
7 23,37
16

Using strong hash values instead of read-sized k-mers
reduces the size of the index by 3.9x
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GenStore-EM: Design

[ Host System

(GenStore-EnabIed SSD

@ Exact-match filtering

SRTable

Comparator

Batch#i-1

Batch#i

SKIndex

Batch#j-1

© Sequential Reads

NAND Flash Array

Batch#j

SSD Controller

} SRTable Buffer

} SKIndex Buffer
DRAM

During filtering, GenStore-EM sends the unfiltered reads

Steps 1 and 2 are pipelined.

to the host system.

Data is evenly distributed between channels, dies, and planes
to leverage the full internal bandwidth of the SSD

SAFARI
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GenStore

GenStore-NM for Non-Matching Reads
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GenStore-NM

* Efficient chaining-based in-storage filter to prune most of the non-
matching reads

Seed Fllt?rl_ng Prune some seeds in the reference genome
(e.g., Chaining)

* Challenge: how to perform chaining inside the SSD

Costly dynamic programming on many seeds in each read

Particularly challenging for long reads with many seeds
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GenStore-NM: Mechanism

* GenStore-NM uses a light-weight chaining filter

- Selectively performs chaining only on reads with a small number of seeds

- Directly sends reads that require more complex chaining to the host system

ez ! - .
g %O 5 . . _/,i(:: High Alignment
e 2 ' / i Probability

E n:: O : | | | : | | | | |

0 16 32 48 64 80 96 112 128 144

Number of seeds per read
Reads with a sufficiently large number of seeds

are very likely to align to the reference genome

Filters many non-aligning reads without

costly hardware resources in the SSD
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GenStore-NM: Mechanism

* GenStore-NM uses a light-weight chaining filter

- Selectively performs chaining only on reads with a small number of seeds

- Directly sends reads that require more complex chaining to the host system

p—

1
A
/‘" | High Alignment
> Probability

Ll Pl

\
\

Probability

Alignment

=)
‘.\;.......

0 16 32 48 64 80 96 112 128 144

Number of seeds per read
Reads with a sufficiently large number of seeds
are very likely to align to the reference genome

Details on GenStore-NM'’s design are in the paper
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Evaluation Methodology
Read Mappers

* Base: state-of-the-art software or hardware read mappers
- Minimap2 [Bioinformatics'18]: software mapper for short and long reads
- GenCache [MICRO"19]: hardware mapper for short reads
- Darwin [ASPLOS'18]: hardware mapper for long reads

* GS: Base integrated with GenStore

SSD Configurations
» SSD-L: with SATA3 interface (0.5 GB/s sequential read bandwidth)

* SSD-M: with PCle Gen3 interface (3.5 GB/s sequential read bandwidth)

* SSD-H: with PCle Geny interface (7 GB/s sequential read bandwidth)
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Performance — GenStore-EM

For a read set with 80% exactly-matching reads
With the Software Mapper

X
-
[ 3

X
-
[<

5 200

S 150 f 5

GEJ 100 F o

5 50 |

g o

ﬁ Base| GS
SSD-L

Base| GS

SSD-M

Base| GS

SSD-H

ONPH OO

With the Hardware Mapper

X

2.1x - 2.5x speedup compared to the software Base

1.5x = 3.3x speedup compared to the hardware Base

SAFARI

On average 3.92x energy reduction

] 4 ™
3 o
| il N
Base| GS |Base| GS (Base| GS
SSD-L SSD-M SSD-H
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Performance — GenStore-NM

For a read set with 99.7% non-matching reads
With the Software Mapper

Exec. time [sec]
Log scale
[
- O
- (=) =)

e
[y

With the Hardware Mapper

V'

22.4

v

A
X
()]
N
|

X

=

I3

I ]
]

Base‘ GS
SSD-L

Base‘ GS
SSD-M

Base‘ GS
SSD-H

V'

<
19.2x

X

0

I I ]
I

X

%

I I 1
I

Base| GS
SSD-L

Base| GS
SSD-M

Base| GS
SSD-H

22.4x - 27.9x speedup compared to the software Base

6.8x —19.2x speedup compared to the hardware Base

SAFARI

On average 27.2x energy reduction
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Area and Power

* Based on Synthesis of GenStore accelerators using the Synopsys
Design Compiler @ 65nm technology node

Logic unit ‘ # of instances Area[mm2] | Power [mW]
Comparator 1 perSSD 0.0007 0.14
K -mer Window 2 per channel 0.0018 0.27
Hash Accelerator 2 perSSD 0.008 1.8
Location Buffer 1 per channel 0.00725 0.37375
Chaining Buffer 1 per channel 0.008 0.95
Chaining PE 1 per channel 0.004 0.98
Control 1 per SSD 0.0002 0.11
[ Total for an 8-channel SSD - 0.2 26.6 ]

Only 0.006% of a 14nm Intel Processor, less than 9.5% of the three
ARM processors in a SATA SSD controller
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More in the Paper

* Effect of read set features on performance
- Data size (up to 440 GB)

- Filter ratio

* Performance benefit of an implementation of GenStore

- In some cases, it provides performance benefits due more
efficient

- Provides compared to GenStore

* More detailed characterization of non-matching reads
across different read mapping use cases and species

SAFARI 139



More in the Paper

GenStore: A High-Performance and Energy-Efficient
In-Storage Computing System for Genome Sequence Analysis

Nika Mansouri Ghiasi' Jisung Park! Harun Mustafa’ Jeremie Kim' Ataberk Olgun!
Arvid Gollwitzer! Damla Senol Cali® Can Firtina! Haiyu Mao! Nour Almadhoun Alserr!
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Conclusion

* There has been significant effort into improving read mapping performance
through efficient heuristics, hardware acceleration, accurate filters

* Problem: while these approaches address the computation overhead, none of
them alleviate the data movement overhead from storage

* Goal: improve the performance of genome sequence analysis by effectively
reducing unnecessary data movement from the storage system

* Idea: filter reads that do not require the expensive alignment computation in
the storage system to fundamentally reduce the data movement overhead

* Challenges:
- Read mapping workloads can exhibit different behavior

- There are limited available hardware resources in the storage system

* GenStore: the first in-storage processing system designed for genome sequence
analysis to reduce both the computation and data movement overhead

» Key Results: GenStore provides significant speedup (1.4x - 33.6x) and energy
reduction (3.9x — 29.2x) at low cost
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GenStore Backup Slides
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End-to-End Workflow of Genome Sequence Analysis

* There are three key initial steps in a standard genome sequencing and analysis workflow
- Collection, preparation, and sequencing of a DNA sample in the laboratory
- Basecalling

- Read mapping

* Genomic read sets can be obtained by
- Sequencinga DNA sample and storing the generated read set into the SSD of a sequencing machine

- Downloading read sets from publicly available repositories and storing them into an SSD

* We focus on optimizing the performance of read mapping because sequencing and basecalling are
performed only once perread set, whereas read mapping can be performed many times

- Analyzing the differences between a reads from an individual and many reference genomes of other individuals

- Repeating the read mapping step many times to improve the outcome of read mapping

* Improving read mapping performance is critical in almost all genomic analyses that use sequencing
- 45% of the execution time when discovering sequence variants in cancer genomics studies

- 60% of the execution time when profiling the species composition of a multi-species (i.e., metagenomic) read
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Motivation

B ssp-L [] ssD-M [ | SSD-H DRAM

MMMMNNN

MMM

[09s] own) uonnoiaxy

Ideal-ISF+ACC

Ideal-ISF ACC

SW-filter

Base
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Motivation

5 @ SSD-L 0 SSD-H DRAM

2 100 —

GEJ 8o |

'S5 60

c

S 40 |

)

o 20 |

v

X o I |

Ll ittt Y ottt Tommme prmmmmmmm————

.__Base | | SW-ilter . Ideal-ISF ;

State-of-the-art software Base integrated with an
read mapper, Minimap2 ideal in-storage filter

Base integrated with a software filter
that prunes 80% of exactly-matching reads
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Motivation High-end SSD with PCle Geng

| interface (7 GB/s)
Lovy-end SSD with SATA3 Data preloaded in DRAM,
interface (0.5 GB/s) - /,with no 1/O overhead
o BSSD-L| | ISSD-H| | DRAM _
2 100
E 8o | ?
- — 60 -
c / %
Ll

Base SW-filter Ideal-ISF
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Benefits of Ideal In-Storage Filter

B SSD-L O0SSD-H DRAM

X
o
o

8o
60
40
20

Execution time [sec]

DN
DN

<
| Z
1

Base SW-filter Ideal-ISF

o

The ideal in-storage filter significantly improves performance by
1) Reducing computation overhead

2) Reducing data movement overhead
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Overheads of Software Mappers

Execution time [sec]

I/O has a significant impact on application performance

SAFARI
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which can be alleviated at the cost of
expensive storage devices and interfaces
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Overheads of Software Mappers

v @ SSD-L 0SSD-H DRAM
Q 100 g

g 8o | ? I

'S5 60
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e N 7

Lu Base SW-filter Ideal-ISF

SW-filter provides limited benefits compared to Base

The filtering process outside the SSD must compete
with the read mapping process for the resources in the system
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Overheads of Hardware Mappers

B SSD-L O SSD-H DRAM
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Accelerator Ideal-ISF

Even the high-end SSD does not fully alleviate the storage bottleneck

The ideal in-storage filter significantly improves performance
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ldeal-OSF

* Execution time of an ideal in-storage filter:

Tideal-1SF = TI/O-Ref + max {TI/O-Unﬁltereda TRM-Unﬁltered}

* Execution time of an ideal outside-storage filter:
* 60% slower than Ideal-ISF in our analysis

Tideal-0SF = T1/0-Ref + mMax {TI/O-AH-Reads= TRM-Unﬁltered}
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Comparison to PIM

* Even though read mapping applications could also benefit from other near-data,
in-storage processing can fundamentally address the data movement problem
by filtering large, low-reuse data where the data initially resides.

* Even if anideal accelerator achieved a zero execution time, there would still exist
the need to bring the data from storage to the accelerator.

- 2.15x slower than the execution time that Ideal-ISF+ACC provides in our
motivational analysis

In-storage filter can be integrated with any read mapping accelerator,

including PIM accelerators, to alleviate their data movement overhead.
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Long Read Use Cases

Size Align
Use case Input read set (Short/Long) [GB] Reference (%]
. ERR3988483 (L) [157] 54 47.4
Sequencing errors | yynno ONT 20200204 (L) [158] | 371 e 69.3
Rapidly evolving SRR5413248 (L) [157] 1.69 | NZ NJEX02 [159] | 60.0
samples SRR12423642 (S) [157] 0.466 | NC 045512.2 [160] 23.1
SRR6767727 (L) [157] 12.4 0.35
No reference SRR9953689 (L) [157] 15.9 NZ NJEX02 [159] 37.0
Contamination SRR9953689 (L) [157] 15.9 hg38 [144] 1.0
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FTL

( Host System ]
_ 7'y
@ Start analysis @ Unfiltered data
(GenStore-Enabled SSD A
Flash || CH-LV |__[ GenStore || | DRAM
NAND| NAND |lictrl.#1[| ACC#1 FTL =
Die#1| " |Die#4 I y LzP iy = @
: : @Filtering Core L appings ~ ]
(3) Full-bandwidth read | ) 3
Flash || CH-LV GenStore ‘_g §.
NAND | |NAND (||Ctrl.#N|| ACC#N Metadata 2 9
Die#1 Die#4 GenStore SSD Controller \ y
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FTL: Metadata

* GenStore metadata includes the mapping information of
the data structures necessary for read mapping
acceleration

*In accelerator mode, GenStore also keepsininternal
DRAM other metadata structures of the reqular FTL

- Examplesinclude the page status table and block read counts
which need to be updated during the filtering process

* We carefully design GenStore to only sequentially access
the underlying NAND flash chips while operating as an
accelerator

- Requires only a small amount of metadata to access the stored
data
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FTL: Data Placement

* GenStore needs to properly place its data structures to
enable the full utilization of the internal SSD bandwidth

* When each data structure is initially written to the SSD,
GenStore sequentially and evenly distributes it across
NAND flash chips

» GenStore can specify the physical location of a 30-GB
data structure by maintaining only the list of 1,250 (30
GB/24 MB) physical block addresses

* It significantly reduces the size of the necessary mapping
information from 300 MB (with conventional 4-KiB page

mapping) to only 5 KB (1,250 4 bytes)
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FTL: SSD Management Tasks

* In accelerator mode, GenStore only reads data structures to
perform filtering, and does not write any new data

- GenStore does not require any write-related SSD-management
tasks such as garbage collection and wear-leveling

* The other tasks necessary for ensuring data reliability can be done
before or after the filtering process

- GenStore significantly limits the amount of data whose retention
age would exceed the manufacturer-specified threshold since
GenStore’s filtering process takes a short time.

- GenStore-FTL can easily avoid read disturbance errors for data
with high read counts since GenStore sequentially reads NAND
flash blocks only once during filtering
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Data Sizes

* Conventional k-merindex in Minimap2 + reference genome: 7 GB
(k =15)

* Read-sized k-mer index before optimization: 126 GB (k= 150)

* Read-sized k-mer index after optimization: 32 GB (k = 150)
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SSD Specs

* SSD-L: SATA3 interface (0.5 GB/s sequential read)

- 1.2 GB/s per channel bandwidth
- 8 channels

* SSD-L: PCle Gen3 M.z interface (3.5 GB/s sequential
read)
- 1.2 GB/s per channel bandwidth
- 16 channels

* SSD-L: PCle Geny interface (7 GB/s sequential read)
- 1.2 GB/s per channel bandwidth
- 16 channels
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Evaluation Methodology

* Performance modeling
- Ramulator for DRAM timing
- MQSim for SSD timing

- We model the end-to-end throughput of GenStore based on the
throughput of each GenStore pipeline stage

* Accessing NAND flash chips

* Accessing internal DRAM

* Accelerator computation

* Transferring unfiltered data to the host

* Real system results
- AMD EPYC7742CPU
- 1TB DDR4 DRAM
- AMD pProf
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GenStore-NM

[ Host System
/GenStore-Enabled SSD # of Seeds = N High chaining score A
i
Input @ €) Seed Finder © Chaining-Based Filter
Read Set LTS K-mer Window (Filters low-score reads)
Flash Al‘l'ay ‘@ K-mers fMS # OfSeedS <N
@ Query Hash Acc. 9 Seed Count-Based Filter
KmerIndex (Filters if # of Seeds < M)
@ Seeds "' Location Buffer
DRAM SSD Controller
NG ~/
SAFARI
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Chaining Processing Element

SAFARI
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GenStore-EM
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SSD-M SSD-H SSD-L SSD-M SSD-H

GS-Ext provides significant performance improvements

over both Base and SIMD in SSD-M and SSD-H.

GS-Ext provides limited benefits over SIMD in SSD-L

due to low external I/O bandwidth.
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GenStore-NM
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GS-Ext performs significantly slower than Base (2.28x - 1.91x)
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Effect of Inputs on GenStore-EM

SizeRef + SiZ€ReqdSet

DM_Saving =
= 1
S £ 08
'7'; = 0.6
gJ 04
5 % 02
z® 0
Exact match:|(75%|85%
Read set size: 1x

SAFARI
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Effect of Inputs on GenStore-NM

DM_Saving =

Read set size:

SAFARI
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MegIS Backup Slides



Motivational Analysis

Database access patterns
(@Q)Random Query
(b)Streaming Query

BSSD-C O SSD-P ONo-1/0
L (a) (b)

0.3 0.6 0.7 1.4
Database Size (Terabyte) Database Size (Terabyte)

Normalized
Throughput
COCOL

SN &N =
T
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Overview of MeglS’s Steps

R

€@ start

st

| o

—t
O send

Processed
Queries

—
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Data for
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Input Queries

|

|

SAFARI

MeglS-Enabled SSD
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FTL Cores Cntrl Standard
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More Details on Step 1

Host CPU =1 © Partition to Buckets Host DRAM
Read [ACGTTACGATTAG ' Buckets Plnnedlto Host DRAM |
i
» | ASGTT) @ Extract ||| ACGTT| |g[CSTTA| | [GTTAC e 5
&4 [CGTTA| K-mers 2 . S & g€
1 Q Q =7, Q AN
o = = ) =
IGTTAC & A 2 =
O Read ./I'AAA CAA) [CAA, CTT) [GCC, TCA) [TCA, TTT]
e Bucket’s R O Store the Bucket
Queries ucket's Range

MeglS-Enabled SSD
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K-mer Sketch Data Structures

€) Baseline K-mer Sketch Tables

4-mer ID
AAAA j [
AATC 2,3

SAFARI
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() Ternary Search Tree
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AAT 2.3 5

@ K-mer Sketch Streaming Tables
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K-mer Sketch Streaming Hardware Design

SSD Controller € Send Tax IDs
v ¥ ||| Intersection
Intersect Intersect | AGTTT |
} € Intersect 5-mers @ Intersect 4-mers4 L
Curr. Register Move ¢ Curr. Register
AAAA 6 ove to AALAA —
| ¢ _1c] Idx. | Next 4-mer | L |
Next Register Gen AATC Next Register Internal
[ aaTcc [2] | 2aTC | 3| DRAM
| |
i N
3* 5-mer | 5-merID 3t 4-merID MeglS-
S | AAAAA 1 o -
= =
S [ _AATCC 2 S SSD
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Index Generation in Step 3

K-mer | Loc.
ATT 14
CCA 9
GCT 5

Reference Index

Organism A

SAFARI
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AAG 2
CCA Al
TGC 4

Merge

Reference Index
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Unified
Reference Index

K-mer Loc.
AAG 1002
ATT 14
CCA 9,1021
GCT 5
TGC 1004
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MeglS FTL

€ MeglS L2P

(i) Start Addresses
73 = 32 (Page 0)

(i) Database Size: S

(iii) Sequence of Blocks
Ch#0: 32>56-> ...

Ch#1:73->87->...

Logical Page Address Physical Block Address ,Sequential access
PBA: 32 PBA: 73 { PBA: 232
LPA: 73 DPO DPO DP1 DPN-1
74 [DP; DPy DPy.; DPoxy
75 | DP; DP2y DP2n+1 DP31E1
k+73 | DPyg » PBA: 56 PBA: 87 PBA:256
k+74 | DPri1 DPy DPy.q DPk-w-l
k+75 | DPg42 DPy+N DPyin+1 DPy42N-1
DPg.2N DPy.2n+1 DPk-l-’SN-l
Database Page
€@ Database : 5
(S Pages) Channel#0 Channel#1

SAFARI

Ch#:(N-l) C}:l#N—l: 2322256->...

@ Physical Layout
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Multi-Sample Analysis

Base-S ks

B
e

Base-M P12 e
Opt-M B K-mer Extraction
| Wbz )| Sorting + K-mer Exclusion
I Intersection Finding
MS-M | B [C] Tax ID Retrieval
i B B Transfer
Time >
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SSD Configurations

Specification| SSD-C | SSD-P
General 48-WL-layer 3D TLC NAND flash-based SSD
cnera 4 TB capacity, 4 GB internal LPDDR4 DRAM [226]
600 MB/s interface BW 8 GB/s interface BW
Bandwidth (SATA3); (4-lane PCle Gen4);
(BW) 560 MB/s sequential-read BW 7 GB/s sequential-read BW
1.2-GB/s channel I/O rate 1.2-GB/s channel I/O rate
8 channels, 8 dies/channel, 16 channels, 8 dies/channel,
NAND 4 planes/dies, 2,048 blocks/plane, 2 planes/dies, 2,048 blocks/plane,
Config 196 WLs/block, 16 KiB/page 196 WLs/block, 16 KiB/page
(4/8/16 channels in Fig. 17) (8/16/32 channels in Fig. 17)
Latencies Read (tR): 52.5 us, Program (tPROG): 700 ps
Enéb:r(i(sled 3 ARM Cortex-R4 cores [86] 4 ARM Cortex-R4 cores [86]
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Impact of Different Optimizations
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Impact of Different Optimizations

POyt |
O |
= ' |
& A-0pt+KSS | T | |
Ms- NOL.] | | s
' Time [sec] 1694
P-opt |
5~ Aop |
2 A-Opt+KsS I | ™ Poet
= B K-mer Extraction
MS-NOL |

MS

SAFARI

3 Sorting + K-mer Exclusion + (Transfer)
@ Intersection Finding
O Tax ID Retrieval

v

Time [sec]

401

180



Speedup with Different Database Sizes

-~

P-OptE  A-OptE  A-Opt+kss @ MS-NOLO  MsO

CO=DNW

1x 2% 3Ix
Database Size Scale Database Size Scale
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Speedup with Different #SSDs

P-OptE A-OptE A-Opt+kss @  MS-NOLOI MSC]
10
_10 ¢ . =
'g i
Q -
& -.rl—ﬂ
0
Count|] 1x 2% 4 x 8x 1% 2x 4 x 8x
Type SSD-C SSD-P
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Speedup with Different Main Memory Capacities

P-OptH A-OptE A-Opt+Kss @  MS-NOLO MSLC]
12 30
D-C _
_qg) 3 SS 20 SSD-P
x X
s P _rrﬂ '
= 0 0 : :
1TB 128GB 64GB 32GB 1TB 128GB 64GB 32GB
DRAM Capacity DRAM Capacity
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Speedup with Varying SSD Internal Bandwidth

16
14
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Speedup
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Speedup of Abundance Estimation

P-OptH A- Opt O MS-NIdxO MS O]
SSD-P i

CAMI-L CAMI CAMIH GMean CAMI-L CAMI-M CAMI-H GMean

Speedup
O N B O
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Multi-Sample Use Case

P-Opt H A-Opt = A-Opt+Kss @3 MS-Pipe ] MS ]

15 50 — .
- L SSD-C Tx I . SSD-P I
Fo b L i OH - I
QL B A = E o
8_, B
25 | 10 | ‘

0 :.=-— ] :-J_ (I |_ 0 E——-:I:L.-—J_ | | e
1 4 8 16 1 4 8 16
# Samples (each 100M reads) # Samples (each 100M reads)
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Area and Power

* Based on synthesis of MeglS accelerators using the
Synopsys Design Compiler @ 65nm technology node

Logic Unit # of instances  Area [mm?2] Power [mMW]
Intersect (120-bit) 1 per channel 0.001361 0.284
k-mer Reqgisters (2 x 120-bit) 1 per channel 0.002821 0.645
Index Generator (64-bit) 1 per channel 0.000272 0.025
Control Unit 1 per SSD 0.000188 0.026
Total for an 8-channel SSD - 0.04 7.658

Only 1.7% of the area of three 28-nm ARM Cortex R4 cores
in @ SATA SSD controller

SAFARI

187



	Slide 1: Storage-Centric Computing  for Genomics and Metagenomics
	Slide 2: Quick Background & Motivation
	Slide 3: We Need Faster & Scalable Genome Analysis
	Slide 4
	Slide 5: High-Throughput Sequencers
	Slide 6: Newer Genome Sequencing Technologies
	Slide 7: Genome Sequencing Cost Is Reducing
	Slide 8:  Problems with (Genome) Analysis Today
	Slide 9: Accelerating Genome Analysis [IEEE MICRO 2020]
	Slide 10: Accelerating Genome Analysis [DAC 2023]
	Slide 11: Simulating Storage: MQSim [FAST 2018] 
	Slide 12: Simulating Memory: Ramulator 2.0
	Slide 13: Open Source Tools: SAFARI GitHub
	Slide 14: Genomics Course (Fall 2022)
	Slide 15: PIM Course (Fall 2022)
	Slide 16: SSD Course (Spring 2023)
	Slide 17: In-Storage  Genomics & Metagenomics
	Slide 18: In-Storage Genomic Data Filtering [ASPLOS 2022] 
	Slide 19: GenStore
	Slide 20: In-Storage Metagenomics [ISCA 2024] 
	Slide 21: MegIS
	Slide 22: GenStore A High-Performance In-Storage Processing System for Genome Sequence Analysis
	Slide 23: Genome Sequence Analysis
	Slide 24: Genome Sequence Analysis
	Slide 25: Genome Sequence Analysis
	Slide 26: Accelerating Genome Sequence Analysis
	Slide 27: Key Idea
	Slide 28: Challenges
	Slide 29: GenStore
	Slide 30: GenStore
	Slide 31: Filtering Opportunities
	Slide 32: GenStore
	Slide 33: GenStore-EM 
	Slide 34: GenStore-EM: Data Structures
	Slide 35: GenStore-EM: Data Structures
	Slide 36: GenStore-EM: Finding a Match
	Slide 37: GenStore-EM: Not Finding a Match
	Slide 38: GenStore-EM: Not Finding a Match
	Slide 39: GenStore-EM: Not Finding a Match
	Slide 40: GenStore-EM: Optimization
	Slide 41: GenStore-EM: Design
	Slide 42: Evaluation Methodology
	Slide 43: Performance – GenStore-EM
	Slide 44: Performance – GenStore-NM
	Slide 45: Area and Power
	Slide 46: GenStore Paper, Slides, Video [ASPLOS 2022] 
	Slide 47: GenStore
	Slide 48: GenStore A High-Performance In-Storage Processing System for Genome Sequence Analysis
	Slide 49: In-Storage Metagenomics [ISCA 2024] 
	Slide 50: MegIS
	Slide 51: MegIS  High-Performance, Energy-Efficient, and Low-Cost Metagenomic Analysis with In-Storage Processing
	Slide 52: Outline
	Slide 53: What is Metagenomics?
	Slide 54: What is Metagenomics?
	Slide 55: Metagenomic Analysis
	Slide 56: Outline
	Slide 57: Motivation
	Slide 58: Motivation
	Slide 59: I/O Overhead is Hard to Avoid
	Slide 60: Our Goal
	Slide 61: Challenges of In-Storage Processing
	Slide 62: Outline
	Slide 63: MegIS: Metagenomics In-Storage
	Slide 64: MegIS’s Steps
	Slide 65: MegIS Hardware-Software Co-Design
	Slide 66: MegIS Hardware-Software Co-Design
	Slide 67: MegIS Hardware-Software Co-Design
	Slide 68: MegIS Hardware-Software Co-Design
	Slide 69: MegIS Hardware-Software Co-Design
	Slide 70: MegIS Hardware-Software Co-Design
	Slide 71: Step 1 Overview
	Slide 72: Step 1 Overview
	Slide 73: Step 1 Design
	Slide 74: Step 2 Overview
	Slide 75: Step 2 Overview
	Slide 76: Step 2 Design: Identifying the Common K-mers
	Slide 77: Step 2 Design: Identifying the Common K-mers
	Slide 78: Step 2 Design: Retrieving the Species ID
	Slide 79: Step 2 Design: Retrieving the Species ID
	Slide 80: Step 2 Design: Retrieving the Species ID
	Slide 81: Step 3
	Slide 82: Step 3
	Slide 83: Outline
	Slide 84: Evaluation Methodology Overview (I)
	Slide 85: Evaluation Methodology Overview (II)
	Slide 86: Speedup over Software (with Cost-Optimized SSD)
	Slide 87: Speedup over Software (with Performance-Optimized SSD)
	Slide 88: Speedup over the PIM Hardware Baseline
	Slide 89: Reduction in Energy Consumption
	Slide 90: Accuracy, Area, and Power
	Slide 91: System Cost-Efficiency
	Slide 92: System Cost-Efficiency
	Slide 93: More in the Paper
	Slide 94: More in the Paper
	Slide 95: Outline
	Slide 96: Conclusion
	Slide 97: MegIS  High-Performance, Energy-Efficient, and Low-Cost Metagenomic Analysis with In-Storage Processing
	Slide 98: In-Storage Metagenomics [ISCA 2024] 
	Slide 99: MegIS
	Slide 100: Storage-Centric Computing  for Genomics and Metagenomics
	Slide 101: Backup Slides
	Slide 102: GenStore A High-Performance In-Storage Processing System for Genome Sequence Analysis
	Slide 103: Genome Sequence Analysis
	Slide 104: Genome Sequence Analysis
	Slide 105: Genome Sequence Analysis
	Slide 106: Accelerating Genome Sequence Analysis
	Slide 107: Key Idea
	Slide 108: Challenges
	Slide 109: GenStore
	Slide 110: Outline
	Slide 111: Read Mapping Process
	Slide 112: Outline
	Slide 113: Motivation
	Slide 114: Motivation
	Slide 115: Our Goal
	Slide 116: Outline
	Slide 117: GenStore
	Slide 118: Filtering Opportunities
	Slide 119: GenStore
	Slide 120: GenStore
	Slide 121: GenStore-EM 
	Slide 122: GenStore-EM: Data Structures
	Slide 123: GenStore-EM: Data Structures
	Slide 124: GenStore-EM: Finding a Match
	Slide 125: GenStore-EM: Not Finding a Match
	Slide 126: GenStore-EM: Not Finding a Match
	Slide 127: GenStore-EM: Not Finding a Match
	Slide 128: GenStore-EM: Optimization
	Slide 129: GenStore-EM: Design
	Slide 130: GenStore
	Slide 131: GenStore-NM
	Slide 132: GenStore-NM: Mechanism
	Slide 133: GenStore-NM: Mechanism
	Slide 134: Outline
	Slide 135: Evaluation Methodology
	Slide 136: Performance – GenStore-EM
	Slide 137: Performance – GenStore-NM
	Slide 138: Area and Power
	Slide 139: More in the Paper
	Slide 140: More in the Paper
	Slide 141: Outline
	Slide 142: Conclusion
	Slide 143: GenStore A High-Performance In-Storage Processing System for Genome Sequence Analysis
	Slide 144: GenStore Backup Slides
	Slide 145: End-to-End Workflow of Genome Sequence Analysis
	Slide 146: Motivation
	Slide 147: Motivation
	Slide 148: Motivation
	Slide 149: Benefits of Ideal In-Storage Filter
	Slide 150: Overheads of Software Mappers
	Slide 151: Overheads of Software Mappers
	Slide 152: Overheads of Hardware Mappers
	Slide 153: Ideal-OSF
	Slide 154: Comparison to PIM
	Slide 155: Long Read Use Cases
	Slide 156: FTL
	Slide 157: FTL: Metadata
	Slide 158: FTL: Data Placement
	Slide 159: FTL: SSD Management Tasks
	Slide 160: Data Sizes
	Slide 161: SSD Specs
	Slide 162: Evaluation Methodology
	Slide 163: GenStore-NM
	Slide 164: Chaining Processing Element
	Slide 165: GenStore-EM
	Slide 166: GenStore-NM
	Slide 167: Effect of Inputs on GenStore-EM 
	Slide 168: Effect of Inputs on GenStore-NM 
	Slide 169
	Slide 170: Motivational Analysis
	Slide 171: Overview of MegIS’s Steps
	Slide 172: More Details on Step 1
	Slide 173: K-mer Sketch Data Structures
	Slide 174: K-mer Sketch Streaming Hardware Design
	Slide 175: Index Generation in Step 3
	Slide 176: MegIS FTL
	Slide 177: Multi-Sample Analysis
	Slide 178: SSD Configurations
	Slide 179: Impact of Different Optimizations
	Slide 180: Impact of Different Optimizations
	Slide 181: Speedup with Different Database Sizes
	Slide 182: Speedup with Different #SSDs
	Slide 183: Speedup with Different Main Memory Capacities
	Slide 184: Speedup with Varying SSD Internal Bandwidth
	Slide 185: Speedup of Abundance Estimation
	Slide 186: Multi-Sample Use Case
	Slide 187: Area and Power

