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Quick

Background & Motivation



We Need Faster & Scalable Genome Analysis
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Predicting the presence and relative 
abundance of microbes in a sample

Understanding genetic variations, 
species, evolution, …

Rapid surveillance of disease outbreaks Developing personalized medicine

And, many, many other applications …



Genome Sequencers

… and more! All produce data with 
different properties.

Roche/454

Illumina HiSeq2000

Ion Torrent PGM
Ion Torrent Proton

AB SOLiD

Oxford Nanopore GridION

Oxford Nanopore MinION

Complete
Genomics

Illumina MiSeq

Pacific Biosciences RS
Illumina 
NovaSeq
6000



… and more! All produce data with different properties.

Illumina MiSeq

Oxford Nanopore MinION

Pacific Biosciences RS IIIllumina NovaSeq 6000

Oxford
Nanopore 
SmidgION

High-Throughput Sequencers
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Pacific 
Biosciences 
Sequel II

Oxford 
Nanopore 
PromethION



Newer Genome Sequencing Technologies
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Senol Cali+, “Nanopore Sequencing Technology and Tools for Genome 
Assembly: Computational Analysis of the Current State, Bottlenecks 
and Future Directions,” Briefings in Bioinformatics, 2018.
[Open arxiv.org version] [Slides (pptx) (pdf)] [Talk Video at AACBB 2019]

Oxford Nanopore MinION

https://arxiv.org/pdf/1711.08774.pdf
https://people.inf.ethz.ch/omutlu/pub/nanopore-sequencing-technology-and-tools-for-genome-assembly-AACBB18-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/nanopore-sequencing-technology-and-tools-for-genome-assembly-AACBB18-talk.pdf
https://www.youtube.com/watch?v=Zug8FonO8Vo


Genome Sequencing Cost Is Reducing

*From NIH (https://www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-Costs-Data)

https://www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-Costs-Data


Problems with (Genome) Analysis Today
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Special-Purpose Machine

for Data Generation

General-Purpose Machine

for Data Analysis

FAST                        SLOW

Slow and inefficient processing capability

This picture is similar for many “data generators & analyzers” today

Large amounts of data movement



Accelerating Genome Analysis [IEEE MICRO 2020]

◼ Mohammed Alser, Zulal Bingol, Damla Senol Cali, Jeremie Kim, Saugata Ghose, Can 
Alkan, and Onur Mutlu,
"Accelerating Genome Analysis: A Primer on an Ongoing Journey"
IEEE Micro (IEEE MICRO), Vol. 40, No. 5, pages 65-75, September/October 2020.
[Slides (pptx)(pdf)]

[Talk Video (1 hour 2 minutes)]
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https://people.inf.ethz.ch/omutlu/pub/AcceleratingGenomeAnalysis_ieeemicro20.pdf
http://www.computer.org/micro/
https://people.inf.ethz.ch/omutlu/pub/onur-AcceleratingGenomeAnalysis-AACBB-Keynote-Feb-16-2019-FINAL.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-AcceleratingGenomeAnalysis-AACBB-Keynote-Feb-16-2019-FINAL.pdf
https://www.youtube.com/watch?v=hPnSmfwu2-A


Accelerating Genome Analysis [DAC 2023]

◼ Onur Mutlu and Can Firtina,
"Accelerating Genome Analysis via Algorithm-Architecture 

Co-Design"
Invited Special Session Paper in Proceedings of the 60th Design 
Automation Conference (DAC), San Francisco, CA, USA, July 2023.
[arXiv version]

10https://arxiv.org/pdf/2305.00492.pdf 

https://people.inf.ethz.ch/omutlu/pub/AcceleratingGenomeAnalysis_dac23.pdf
https://people.inf.ethz.ch/omutlu/pub/AcceleratingGenomeAnalysis_dac23.pdf
https://www.dac.com/
https://www.dac.com/
https://arxiv.org/abs/2305.00492
https://arxiv.org/pdf/2305.00492.pdf


Simulating Storage: MQSim [FAST 2018] 

◼ Arash Tavakkol, Juan Gomez-Luna, Mohammad Sadrosadati, Saugata 
Ghose, and Onur Mutlu,
"MQSim: A Framework for Enabling Realistic Studies of Modern 
Multi-Queue SSD Devices"
Proceedings of the 16th USENIX Conference on File and Storage 
Technologies (FAST), Oakland, CA, USA, February 2018.
[Slides (pptx) (pdf)]
[Source Code]

https://github.com/CMU-SAFARI/MQSim 

https://people.inf.ethz.ch/omutlu/pub/MQSim-SSD-simulation-framework_fast18.pdf 

https://people.inf.ethz.ch/omutlu/pub/MQSim-SSD-simulation-framework_fast18.pdf
https://people.inf.ethz.ch/omutlu/pub/MQSim-SSD-simulation-framework_fast18.pdf
https://www.usenix.org/conference/fast18
https://www.usenix.org/conference/fast18
https://people.inf.ethz.ch/omutlu/pub/MQSim-SSD-simulation-framework_fast18-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/MQSim-SSD-simulation-framework_fast18-talk.pdf
https://github.com/CMU-SAFARI/MQSim
https://github.com/CMU-SAFARI/MQSim
https://people.inf.ethz.ch/omutlu/pub/MQSim-SSD-simulation-framework_fast18.pdf


Simulating Memory: Ramulator 2.0

◼ Haocong Luo, Yahya Can Tugrul, F. Nisa Bostanci, Ataberk Olgun, A. Giray 
Yaglikci, and Onur Mutlu,
"Ramulator 2.0: A Modern, Modular, and Extensible DRAM Simulator"
Preprint on arxiv, August 2023.
[arXiv version]
[Ramulator 2.0 Source Code]
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https://arxiv.org/pdf/2308.11030.pdf 

https://github.com/CMU-SAFARI/ramulator2 

https://people.inf.ethz.ch/omutlu/pub/Ramulator2_arxiv23.pdf
https://arxiv.org/abs/2308.11030
https://github.com/CMU-SAFARI/ramulator2
https://arxiv.org/pdf/2308.11030.pdf
https://github.com/CMU-SAFARI/ramulator2


Open Source Tools: SAFARI GitHub

13https://github.com/CMU-SAFARI/

https://github.com/CMU-SAFARI/


Genomics Course (Fall 2022)

◼ Fall 2022 Edition: 

❑ https://safari.ethz.ch/projects_and_seminars/fall2022/do
ku.php?id=bioinformatics 

◼ Spring 2022 Edition: 

❑ https://safari.ethz.ch/projects_and_seminars/spring2022
/doku.php?id=bioinformatics  

◼ Youtube Livestream (Fall 2022):

❑ https://www.youtube.com/watch?v=nA41964-
9r8&list=PL5Q2soXY2Zi8tFlQvdxOdizD_EhVAMVQV 

◼ Youtube Livestream (Spring 2022):

❑ https://www.youtube.com/watch?v=DEL_5A_Y3TI&list=
PL5Q2soXY2Zi8NrPDgOR1yRU_Cxxjw-u18 

◼ Project course

❑ Taken by Bachelor’s/Master’s students

❑ Genomics lectures

❑ Hands-on research exploration

❑ Many research readings
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https://www.youtube.com/onurmutlulectures 

https://safari.ethz.ch/projects_and_seminars/fall2022/doku.php?id=bioinformatics
https://safari.ethz.ch/projects_and_seminars/fall2022/doku.php?id=bioinformatics
https://safari.ethz.ch/projects_and_seminars/fall2022/doku.php?id=bioinformatics
https://safari.ethz.ch/projects_and_seminars/spring2022/doku.php?id=bioinformatics
https://safari.ethz.ch/projects_and_seminars/spring2022/doku.php?id=bioinformatics
https://safari.ethz.ch/projects_and_seminars/spring2022/doku.php?id=bioinformatics
https://www.youtube.com/watch?v=nA41964-9r8&list=PL5Q2soXY2Zi8tFlQvdxOdizD_EhVAMVQV
https://www.youtube.com/watch?v=nA41964-9r8&list=PL5Q2soXY2Zi8tFlQvdxOdizD_EhVAMVQV
https://www.youtube.com/watch?v=nA41964-9r8&list=PL5Q2soXY2Zi8tFlQvdxOdizD_EhVAMVQV
https://www.youtube.com/watch?v=DEL_5A_Y3TI&list=PL5Q2soXY2Zi8NrPDgOR1yRU_Cxxjw-u18
https://www.youtube.com/watch?v=DEL_5A_Y3TI&list=PL5Q2soXY2Zi8NrPDgOR1yRU_Cxxjw-u18
https://www.youtube.com/onurmutlulectures


PIM Course (Fall 2022)

◼ Fall 2022 Edition: 

❑ https://safari.ethz.ch/projects_and_seminars/fall2022
/doku.php?id=processing_in_memory 

◼ Spring 2022 Edition: 

❑ https://safari.ethz.ch/projects_and_seminars/spring2
022/doku.php?id=processing_in_memory 

◼ Youtube Livestream (Fall 2022):

❑ https://www.youtube.com/watch?v=QLL0wQ9I4Dw&
list=PL5Q2soXY2Zi8KzG2CQYRNQOVD0GOBrnKy

◼ Youtube Livestream (Spring 2022):

❑ https://www.youtube.com/watch?v=9e4Chnwdovo&li
st=PL5Q2soXY2Zi-841fUYYUK9EsXKhQKRPyX 

◼ Project course

❑ Taken by Bachelor’s/Master’s students

❑ Processing-in-Memory lectures

❑ Hands-on research exploration

❑ Many research readings
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https://www.youtube.com/onurmutlulectures 

https://safari.ethz.ch/projects_and_seminars/fall2022/doku.php?id=processing_in_memory
https://safari.ethz.ch/projects_and_seminars/fall2022/doku.php?id=processing_in_memory
https://safari.ethz.ch/projects_and_seminars/fall2022/doku.php?id=processing_in_memory
https://safari.ethz.ch/architecture/fall2021/doku.php?id=schedule
https://safari.ethz.ch/projects_and_seminars/spring2022/doku.php?id=processing_in_memory
https://safari.ethz.ch/architecture/fall2021/doku.php?id=schedule
https://safari.ethz.ch/projects_and_seminars/spring2022/doku.php?id=processing_in_memory
https://safari.ethz.ch/projects_and_seminars/spring2022/doku.php?id=processing_in_memory
https://www.youtube.com/watch?v=QLL0wQ9I4Dw&list=PL5Q2soXY2Zi8KzG2CQYRNQOVD0GOBrnKy
https://www.youtube.com/watch?v=9e4Chnwdovo&list=PL5Q2soXY2Zi-841fUYYUK9EsXKhQKRPyX
https://www.youtube.com/watch?v=9e4Chnwdovo&list=PL5Q2soXY2Zi-841fUYYUK9EsXKhQKRPyX
https://www.youtube.com/watch?v=9e4Chnwdovo&list=PL5Q2soXY2Zi-841fUYYUK9EsXKhQKRPyX
https://www.youtube.com/watch?v=9e4Chnwdovo&list=PL5Q2soXY2Zi-841fUYYUK9EsXKhQKRPyX
https://www.youtube.com/onurmutlulectures


SSD Course (Spring 2023)

◼ Spring 2023 Edition: 

❑ https://safari.ethz.ch/projects_and_seminars/spring2023/
doku.php?id=modern_ssds

◼ Fall 2022 Edition: 

❑ https://safari.ethz.ch/projects_and_seminars/fall2022/do

ku.php?id=modern_ssds 

◼ Youtube Livestream (Spring 2023):

❑ https://www.youtube.com/watch?v=4VTwOMmsnJY&list
=PL5Q2soXY2Zi_8qOM5Icpp8hB2SHtm4z57&pp=iAQB

◼ Youtube Livestream (Fall 2022):

❑ https://www.youtube.com/watch?v=hqLrd-
Uj0aU&list=PL5Q2soXY2Zi9BJhenUq4JI5bwhAMpAp13&p
p=iAQB

◼ Project course

❑ Taken by Bachelor’s/Master’s students

❑ SSD Basics and Advanced Topics

❑ Hands-on research exploration

❑ Many research readings
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https://safari.ethz.ch/projects_and_seminars/spring2023/doku.php?id=modern_ssds
https://safari.ethz.ch/projects_and_seminars/spring2023/doku.php?id=modern_ssds
https://safari.ethz.ch/projects_and_seminars/spring2023/doku.php?id=modern_ssds
https://safari.ethz.ch/projects_and_seminars/fall2022/doku.php?id=modern_ssds
https://safari.ethz.ch/projects_and_seminars/fall2022/doku.php?id=modern_ssds
https://safari.ethz.ch/projects_and_seminars/fall2022/doku.php?id=modern_ssds
https://www.youtube.com/watch?v=4VTwOMmsnJY&list=PL5Q2soXY2Zi_8qOM5Icpp8hB2SHtm4z57&pp=iAQB
https://www.youtube.com/watch?v=4VTwOMmsnJY&list=PL5Q2soXY2Zi_8qOM5Icpp8hB2SHtm4z57&pp=iAQB
https://www.youtube.com/watch?v=4VTwOMmsnJY&list=PL5Q2soXY2Zi_8qOM5Icpp8hB2SHtm4z57&pp=iAQB
https://www.youtube.com/watch?v=_q4rm71DsY4&list=PL5Q2soXY2Zi8vabcse1kL22DEcgMl2RAq
https://www.youtube.com/watch?v=hqLrd-Uj0aU&list=PL5Q2soXY2Zi9BJhenUq4JI5bwhAMpAp13&pp=iAQB
https://www.youtube.com/watch?v=hqLrd-Uj0aU&list=PL5Q2soXY2Zi9BJhenUq4JI5bwhAMpAp13&pp=iAQB
https://www.youtube.com/watch?v=hqLrd-Uj0aU&list=PL5Q2soXY2Zi9BJhenUq4JI5bwhAMpAp13&pp=iAQB
https://www.youtube.com/watch?v=hqLrd-Uj0aU&list=PL5Q2soXY2Zi9BJhenUq4JI5bwhAMpAp13&pp=iAQB
https://www.youtube.com/onurmutlulectures


In-Storage 

Genomics & Metagenomics



In-Storage Genomic Data Filtering [ASPLOS 2022] 

◼ Nika Mansouri Ghiasi, Jisung Park, Harun Mustafa, Jeremie Kim, Ataberk Olgun, Arvid 

Gollwitzer, Damla Senol Cali, Can Firtina, Haiyu Mao, Nour Almadhoun Alserr, Rachata 
Ausavarungnirun, Nandita Vijaykumar, Mohammed Alser, and Onur Mutlu,

"GenStore: A High-Performance and Energy-Efficient In-Storage Computing 

System for Genome Sequence Analysis"
Proceedings of the 27th International Conference on Architectural Support for 
Programming Languages and Operating Systems (ASPLOS), Virtual, February-March 
2022.

[Lightning Talk Slides (pptx) (pdf)]

[Lightning Talk Video (90 seconds)]
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https://arxiv.org/abs/2202.10400 

https://people.inf.ethz.ch/omutlu/pub/GenStore_asplos22-arxiv.pdf
https://people.inf.ethz.ch/omutlu/pub/GenStore_asplos22-arxiv.pdf
https://asplos-conference.org/
https://asplos-conference.org/
https://people.inf.ethz.ch/omutlu/pub/GenStore_asplos22-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/GenStore_asplos22-lightning-talk.pdf
https://www.youtube.com/watch?v=Vi1af8KY0g8
https://arxiv.org/abs/2202.10400
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GenStore

https://arxiv.org/abs/2202.10400

https://arxiv.org/abs/2202.10400


In-Storage Metagenomics [ISCA 2024] 

◼ Nika Mansouri Ghiasi, Mohammad Sadrosadati, Harun Mustafa, Arvid Gollwitzer, 
Can Firtina, Julien Eudine, Haiyu Mao, Joel Lindegger, Meryem Banu Cavlak, 
Mohammed Alser, Jisung Park, and Onur Mutlu,
"MegIS: High-Performance and Low-Cost Metagenomic Analysis with 
In-Storage Processing"
Proceedings of the 51st Annual International Symposium on Computer 
Architecture (ISCA), Buenos Aires, Argentina, July 2024.
[Slides (pptx) (pdf)]
[arXiv version]
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https://arxiv.org/pdf/2406.19113 

https://arxiv.org/pdf/2406.19113
https://arxiv.org/pdf/2406.19113
https://iscaconf.org/isca2024/
https://iscaconf.org/isca2024/
https://safari.ethz.ch/wp-content/uploads/MegIS-ISCA24-V6.pptx
https://safari.ethz.ch/wp-content/uploads/MegIS-ISCA24-V6.pdf
https://arxiv.org/abs/2406.19113
https://arxiv.org/pdf/2406.19113
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MegIS

https://arxiv.org/abs/2406.19113

https://arxiv.org/abs/2406.19113


GenStore
A High-Performance In-Storage Processing System

for Genome Sequence Analysis

Nika Mansouri Ghiasi, Jisung Park, Harun Mustafa, Jeremie Kim, Ataberk Olgun, 

Arvid Gollwitzer, Damla Senol Cali, Can Firtina, Haiyu Mao, Nour Almadhoun Alserr, 

Rachata Ausavarungnirun, Nandita Vijaykumar, Mohammed Alser, and Onur Mutlu
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Genome Sequence Analysis
• Genome sequence analysis is critical for many applications

- Personalized medicine

- Outbreak tracing

- Evolutionary studies

•  Genome sequencing machines extract smaller fragments of the original 
DNA sequence, known as reads

AAGCTTCCATGG

AAATGGGCTTTC

GCCCAAATGGTT

GCTTCCAGAATG
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Genome Sequence Analysis
• Read mapping: first key step in genome sequence analysis

…GCCCATATGGTTAAGCTTCCATGGAAATGGGCTTTCGCTTCCACAATG…

- Aligns reads to potential matching locations in the reference genome

Reference Genome

Differences Differences

- For each matching location, the alignment step finds the degree of 
similarity (alignment score)

AAGCTTCCATGG

GCCCAAATGGTT

GCTTCCAGAATG

AAATGGGCTTTC
• Calculating the alignment score requires computationally-expensive 

approximate string matching (ASM) to account for differences between 
reads and the reference genome due to:

- Sequencing errors

- Genetic variation
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Genome Sequence Analysis

Computation overhead
 

Data movement overhead 

Computation 
Unit

(CPU or 
Accelerator)

Cache
Main 

Memory

AAGCTTCCATGG

AAAATTCCATGG

TTTTTTCCAAAA
GCTTCCAGAATG

GGGCCAGAATG

GAATGGGGCCA
TCCCCGGGGCCA

CCTTTGGGTCCA

CGTTCCTTGGCA

Alignment

Data Movement from Storage

Storage
System
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Heuristics Accelerators Filters

 Computation overhead
 

AAGCTTCCATGG

AAAATTCCATGG

TTTTTTCCAAAA
GCTTCCAGAATG

GGGCCAGAATG

GAATGGGGCCA
TCCCCGGGGCCA

CCTTTGGGTCCA

CGTTCCTTGGCA Computation 
Unit

(CPU or 
Accelerator)

Cache
Main 

Memory
Storage
System

Data movement overhead 

✓

Accelerating Genome Sequence Analysis



27

Storage
System

Key Idea

Non-matching reads
Do not have potential matching locations and can skip alignment

Filter reads that do not require alignment
inside the storage system

AAGCTTCCATGG

AAAATTCCATGG

TTTTTTCCAAAA
GCTTCCAGAATG

GGGCCAGAATG

GAATGGGGCCA
TCCCCGGGGCCA

CCTTTGGGTCCA

CGTTCCTTGGCA

Filtered Reads

Computation 
Unit

(CPU or 
Accelerator)

Cache
Main 

Memory

Exactly-matching reads
Do not need expensive approximate string matching during alignment



28

Challenges

Read mapping workloads can exhibit different behavior

There are limited hardware resources 
in the storage system

Filter reads that do not require alignment
inside the storage system

AAGCTTCCATGG

AAAATTCCATGG

TTTTTTCCAAAA
GCTTCCAGAATG

GGGCCAGAATG

GAATGGGGCCA
TCCCCGGGGCCA

CCTTTGGGTCCA

CGTTCCTTGGCA

Filtered Reads

Computation 
Unit

(CPU or 
Accelerator)

Cache
Main 

Memory
Storage
System
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GenStore

Computation overhead
 

Data movement overhead 

GenStore provides significant speedup (1.4x - 33.6x) and  
energy reduction (3.9x – 29.2x) at low cost

Filter reads that do not require alignment
inside the storage system

Computation 
Unit

(CPU or 
Accelerator)

Cache
Main 

Memory

GenStore-Enabled
Storage
System

✓
✓
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GenStore

SSD Controller

CoreCoreCore

In-SSD DRAM

L2P
Mappings

Flash
Ctrl.#1

Flash
Ctrl.#N

⋯

NAND
Die#4

NAND
Die#1 ⋯

NAND
Die#4

NAND
Die#1

⋯

Host System

FTL

ACC

ACC

ACC GenStore
Metadata  

GenStore
FTL

Reads that need 
substantial processing

• Key idea: Filter reads that do not require alignment inside the 
storage system

• Challenges
- Different behavior across read mapping workloads
- Limited hardware resources in the SSD
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Filtering Opportunities

• Sequencing machines produce one of two kinds of reads 

- Short reads: highly accurate and short

- Long reads: less accurate and long

• High sequencing error rates (long reads) or
• High genetic variation (short or long reads)

Non-matching reads
Do not have potential matching locations, so they skip alignment

• Low sequencing error rates (short reads) combined with
• Low genetic variation

Exactly-matching reads
Do not need expensive approximate string matching during alignment

Reads that do not require the expensive alignment step:
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GenStore

GenStore-EM for Exactly-Matching Reads

GenStore-NM for Non-Matching Reads
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GenStore-EM 

• Efficient in-storage filter for reads with at least one exact 
match in the reference genome

• Uses simple operations, without requiring alignment

• Challenge: large number of random accesses per read to 
the reference genome and its index

Expensive random accesses to flash chips

Limited DRAM capacity inside the SSD
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GenStore-EM: Data Structures

GCCCAAATGGTTRead
GCC

CCC
…

K-mers

K-mer

• Read-sized k-mers: to reduce the number of accesses per 

each read

Only one index lookup per read

• Sorted read-sized k-mers: to avoid random accesses to 

the index

Sequential scan of the read set and the index✓

✓
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GenStore-EM: Data Structures

K-mer Loc.
AAAAAAAAAA 1, 8, …
AAAAAAAAAC 51
AAAAAAAAAT 23, 37

… …

Sorted Read Table

ID Read
873 AAAAAAAAAA

232 AAAAAAAAAG

17 AAAAAAAACT

… …

Sorted K-mer Index

S
o

rte
d

Read-sized
 K-mers

Read
AAAAAAAAAA
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GenStore-EM: Finding a Match

K-mer Loc.
AAAAAAAAAA 1, 8, …
AAAAAAAAAC 51
AAAAAAAAAT 23, 37

… …

Sorted Read Table

ID Read
873 AAAAAAAAAA

232 AAAAAAAAAG

17 AAAAAAAACT

… …

Sorted K-mer Index

Comparator

Read = K-mer

Next

Exact match → Filter the read

Next
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GenStore-EM: Not Finding a Match

K-mer Loc.
AAAAAAAAAA 1, 8, …
AAAAAAAAAC 51
AAAAAAAAAT 23, 37

… …

Sorted Read Table

ID Read
873 AAAAAAAAAA

232 AAAAAAAAAG

17 AAAAAAAACT

… …

Sorted K-mer Index

Next
Comparator

Read > K-mer
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Next

GenStore-EM: Not Finding a Match

K-mer Loc.
AAAAAAAAAA 1, 8, …
AAAAAAAAAC 51
AAAAAAAAAT 23, 37

… …

Sorted Read Table

ID Read
873 AAAAAAAAAA

232 AAAAAAAAAG

17 AAAAAAAACT

… …

Sorted K-mer Index

Comparator

Read < K-mer

Not an exact match → Send to read mapper
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Next

GenStore-EM: Not Finding a Match

K-mer Loc.
AAAAAAAAAA 1, 8, …
AAAAAAAAAC 51
AAAAAAAAAT 23, 37

… …

Sorted Read Table

ID Read
873 AAAAAAAAAA

232 AAAAAAAAAG

17 AAAAAAAACT

… …

Sorted K-mer Index

Comparator

Read < K-mer

Not an exact match → Send to read mapper

Avoids random accesses

Simple low-cost logic✓
✓
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GenStore-EM: Optimization

• Read-sized k-mer index takes up a large amount of space 
(126 GB for human index) due to the larger number of 
unique k-mers

K-mer Loc.
AAAAAAAAAA 1, 8, …
AAAAAAAAAC 51
AAAAAAAAAT 23, 37

… …

Sorted K-mer Index

Strong Hash Value

1
4

7
16

Using strong hash values instead of read-sized k-mers 
reduces the size of the index by 3.9x 
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GenStore-EM: Design

GenStore-Enabled SSD

Host System

Die#1

Plane#1 Plane#2

Die#4

P#1 P#2

⋯

Die#1

P#1 P#2

Die#4

P#1 P#2

⋯

Die#1

P#1 P#2

Die#4

P#1 P#2

⋯⋯

Channel#1 Channel#2 Channel#N

❷ Exact-match filtering

SSD ControllerNAND Flash Array

SRTable

SKIndex
❶ Sequential Reads

DRAM

Batch#i-1

Batch#i

Batch#j-1

Batch#j

Comparator SRTable Buffer

SKIndex Buffer

Data is evenly distributed between channels, dies, and planes 
to leverage the full internal bandwidth of the SSD

Steps 1 and 2 are pipelined. 
During filtering, GenStore-EM sends the unfiltered reads 

to the host system.
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Evaluation Methodology

Read Mappers

• Base: state-of-the-art software or hardware read mappers

- Minimap2 [Bioinformatics’18]: software mapper for short and long reads

- GenCache [MICRO’19]: hardware mapper for short reads

- Darwin [ASPLOS’18]: hardware mapper for long reads

• GS: Base integrated with GenStore

SSD Configurations

• SSD-L: with SATA3 interface (0.5 GB/s sequential read bandwidth)

• SSD-M: with PCIe Gen3 interface (3.5 GB/s sequential read bandwidth)

• SSD-H: with PCIe Gen4 interface (7 GB/s sequential read bandwidth)



43

For a read set with 80% exactly-matching reads

Performance – GenStore-EM

0
50

100
150
200
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For a read set with 99.7% non-matching reads

Performance – GenStore-NM
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Area and Power

• Based on Synthesis of GenStore accelerators using the Synopsys 
Design Compiler @ 65nm technology node

Logic unit # of instances Area [mm2] Power [mW]

Comparator 1 per SSD 0.0007 0.14

K -mer Window 2 per channel 0.0018 0.27

Hash Accelerator 2 per SSD 0.008 1.8

Location Buffer 1 per channel 0.00725 0.37375

Chaining Buffer 1 per channel 0.008 0.95

Chaining PE 1 per channel 0.004 0.98

Control 1 per SSD 0.0002 0.11

Total for an 8-channel SSD - 0.2 26.6

Only 0.006% of a 14nm Intel Processor, less than 9.5% of the three 

ARM processors in a SATA SSD controller
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What is Metagenomics?
• Metagenomics: Study of genome sequences of diverse organisms
   within a shared environment (e.g., blood, ocean, soil)

• Overcomes the limitations of traditional genomics
- Bypasses the need for analyzing individual species in isolation
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What is Metagenomics?

Has led to groundbreaking advances

• Precision medicine

• Understanding microbial diversity of an environment

• Discovering early warnings of communicable diseases 

• Metagenomics: Study of genome sequences of diverse organisms
   within a shared environment (e.g., blood, ocean, soil)
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Metagenomic Analysis

A large database 
containing information

on many species 

Metagenomic sample
with species that 

are not known in advance

Preparation 
of Input Queries Q

ue
ry
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(e.g., > 100 TBs in emerging databases)
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Motivation
• Case study of the performance of metagenomic analysis tools

• With various state-of-the-art SSD configurations
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Motivation
• Case study on the throughput of metagenomic analysis tools

• With Various state-of-the-art SSD configurations
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I/O becomes an even larger overhead (by 2.7x)

in systems where other bottlenecks are alleviated
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I/O Overhead is Hard to Avoid

I/O overhead due to accessing large, low-reuse data is hard to avoid

Sampling techniques to shrink database sizes

Keeping all data required by metagenomic analysis 
completely and always resident in main memory

Reduce accuracy to levels unacceptable for many use cases

Energy inefficient, costly, unscalable, and unsustainable

• Database sizes increase rapidly (doubling every few months)

• Different analyses need different databases

[Wood+, Genome Biology’19], [Ounit+, BMC Genomics’15], [Kim+, Genome Research’16], …
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Our Goal

Improve metagenomic analysis performance 

by reducing large data movement overhead

from the storage system 

in a cost-effective manner and with high accuracy
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Challenges of In-Storage Processing

No metagenomic analysis tool can run in-storage due to SSD limits

- Long latency of NAND flash chips

- Limited DRAM capacity inside the SSD

- Limited DRAM bandwidth inside the SSD

SSD DRAM
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SSD 
ControllerCoresFTL

⋯

S
S

D
 

CntrlCntrl

Channel#NChannel#1
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MegIS: Metagenomics In-Storage

• First in-storage system for end-to-end metagenomic analysis

• Idea: Cooperative in-storage processing for metagenomic analysis

- Hardware/software co-design between the storage system and host system
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MegIS’s Steps
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MegIS Hardware-Software Co-Design
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MegIS Hardware-Software Co-Design
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Task partitioning and mapping
•  Each step executes 

in its most suitable system 

Step 2 Step 3
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MegIS Hardware-Software Co-Design
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Data/computation flow coordination
• Reduce communication overhead

• Reduce #writes to flash chips

Step 1 Step 2 Step 3

Task partitioning and mapping
•  Each step executes 

in its most suitable system 
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MegIS Hardware-Software Co-Design
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Storage-aware algorithms
• Enable efficient 

access patterns to the SSD 

Step 1 Step 2 Step 3

Data/computation flow coordination
• Reduce communication overhead

• Reduce #writes to flash chips

Task partitioning and mapping
•  Each step executes 

in its most suitable system 
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MegIS Hardware-Software Co-Design
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Lightweight in-storage accelerators 
• Minimize SRAM/DRAM buffer spaces 

needed inside the SSD

Step 1 Step 2 Step 3

Storage-aware algorithms
• Enable efficient 

access patterns to the SSD 

Data/computation flow coordination
• Reduce communication overhead

• Reduce #writes to flash chips

Task partitioning and mapping
•  Each step executes 

in its most suitable system 
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MegIS Hardware-Software Co-Design
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Data mapping scheme and Flash Translation Layer (FTL) 
• Specialize to the characteristics of metagenomic analysis

• Leverage the SSD’s full internal bandwidth

Step 1 Step 2 Step 3

Storage-aware algorithms
• Enable efficient 

access patterns to the SSD 

Lightweight in-storage accelerators 
• Minimize SRAM/DRAM buffer spaces 

needed inside the SSD

Data/computation flow coordination
• Reduce communication overhead

• Reduce #writes to flash chips

Task partitioning and mapping
•  Each step executes 

in its most suitable system 

ACCACC
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Step 1 Overview
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Step 1 Overview
MegIS employs sorted data structures

   to avoid expensive random accesses to the SSD

- Extract k-mers from the sample

- Sort the k-mers (database is sorted offline) 

Preparation 
of Input Queries Q
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MegIS executes Step 1 in the host system

- Benefits from larger DRAM and more powerful computation

- Incurs fewer writes to NAND flash chips (than processing this step in the SSD) 

- Enables overlapping Step 1 with Step 2

To execute Step 1 efficiently in the host system, MegIS needs to:

- Avoid significant overhead due to data transfer time between the steps

- Minimize performance and lifetime overheads even when host DRAM cannot 
hold all query k-mers
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Step 1 Design

Divide k-mers into independent partitions by their alphabetical range

        Can overlap operations on different partitions

Host DRAMHost CPU
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and Step 2’s In-storage operations
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Step 2 Overview
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Step 2 Overview

- Identify the common k-mers 
between the query k-mers 

    and the database k-mers

- Retrieve the species IDs 

    of the common k-mers

MegIS executes Step 2 in the SSD

- Accesses large data with low reuse

- Involves lightweight computation

To execute Step 2 efficiently in the SSD, MegIS needs to:

- Leverage internal bandwidth efficiently

- Not require expensive hardware inside the SSD

    (e.g., large DRAM bandwidth/capacity and costly logic units)
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Identification

V. cholerae
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SARS-CoV-2
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Step 2 Design: Identifying the Common K-mers

• Challenge: Limited internal DRAM bandwidth
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Step 2 Design: Identifying the Common K-mers

• Challenge: Limited internal DRAM bandwidth
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Compute directly on the flash data streams

Reduce buffer size based on application features

K-mer Register

K-mer Register

K-mer Register

K-mer Register

Write to DRAM

Common
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[Zou+, MICRO’22]
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Space-Inefficient

Step 2 Design: Retrieving the Species ID

• MegIS retrieves the species IDs of the common k-mers by looking 
up a sketch database

K-mer ID
AAAAA 1,5

AAAAC 6

AATCC 2, 9

… …

Space-Efficient

A A A/8 A A/1

C/6

T/5 C/3 C/2

Slow inside the SSD 
due to long 

NAND flash latency 
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Space-Inefficient

Step 2 Design: Retrieving the Species ID

• MegIS retrieves the species IDs of the common k-mers by looking 
up a sketch database

K-mer ID
AAAAA 1,5

AAAAC 6

AATCC 2, 9

… …

Space-Efficient

A A A/8 A A/1

C/6

T/5 C/3 C/2

7.5x Smaller 2.1× Larger

K-mer Sketch Streaming

K-mer Sketch Streaming is much more suitable for in-storage processing
 due to its streaming accesses
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Space-Inefficient

Step 2 Design: Retrieving the Species ID

• MegIS retrieves the species IDs of the common k-mers by looking 
up a sketch database

K-mer ID
AAAAA 1,5

AAAAC 6

AATCC 2, 9

… …

Space-Efficient

A A A/8 A A/1

C/6

T/5 C/3 C/2

7.5x Smaller 2.1× Larger

K-mer Sketch Streaming

K-mer Sketch Streaming is much more suitable for in-storage processing
 due to its streaming accesses

Design details are in the paper
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Step 3
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Step 3

MegIS performs additional analysis on 
species identified in the sample to 

estimate their abundance

MegIS can flexibly integrate with different approaches

1. Lightweight statistical approaches: Directly uses the output of Step 2 

2. More accurate and costly read mapping: MegIS facilitates integration by 
preparing mapping indexes in the SSD 

Abundance
Estimation

Step 3 and MegIS FTL are in the paper
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Evaluation Methodology Overview (I)
Performance, Energy, and Power Analysis

Baseline Comparison Points

• Performance-optimized software, Kraken2 [Genome Biology’19]

• Accuracy-optimized software, Metalign [Genome Biology’20]

• PIM hardware-accelerated tool (using processing-in-memory), Sieve [ISCA’21]

SSD Configurations

• SSD-C: with SATA3 interface (0.5 GB/s sequential read bandwidth)

• SSD-P: with PCIe Gen4 interface (7 GB/s sequential read bandwidth)

Hardware Components

• Synthesized Verilog model for the in-storage accelerators

• MQSim [Tavakkol+, FAST’18] for SSD’s internal operations

• Ramulator [Kim+, CAL’15] for SSD’s internal DRAM

Software Components

Measure on a real system: 

• AMD® EPYC® CPU with 
128 physical cores

• 1-TB DRAM 
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Evaluation Methodology Overview (II)

Metagenomic Analysis Task

• Finding species present in the sample

• Analysis of the abundance estimation task is in the paper

Metagenomic Samples

• With varying degrees of genetic diversity

- Low

- Medium

- High
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Speedup over Software (with Cost-Optimized SSD)

MegIS provides significant speedup over both 

Performance-Optimized and Accuracy-Optimized baselines
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MegIS provides significant speedup over both 

Performance-Optimized and Accuracy-Optimized baselines
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MegIS improves performance on both 

cost-optimized and performance-optimized SSDs

Speedup over Software (with Performance-Optimized SSD)
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• On average across different input sets and SSDs
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Accuracy, Area, and Power
Accuracy

• Same accuracy as the accuracy-optimized baseline

• Significantly higher accuracy than the performance-optimized and 
PIM baselines

- 4.6 – 5.2× higher F1 score

- 3 – 24% lower L1 norm error

Area and Power

Total for an 8-channel SSD:

• Area: 0.04 mm2 

• Power: 7.658 mW

(Only 1.7% of the area and 4.6% of the power consumption 

of three ARM Cortex R4 cores in an SSD controller)
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System Cost-Efficiency
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System Cost-Efficiency
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More in the Paper
• MegIS’s performance when running in-storage processing 

operations on the cores existing in the SSD controller

• MegIS’s performance when using the same accelerators 
outside SSD

• Sensitivity analysis with varying 

- Database sizes

- Memory capacities

- #SSDs

- #Channels

- #Samples

• MegIS’s performance for abundance estimation
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More in the Paper

• MegIS’s performance with the cores in the SSD controller

• MegIS’s performance outside SSD

• Sensitivity analysis with varying 

- Database sizes

- Memory capacities

- #SSDs

- #Channels

- #Samples

• MegIS’s performance for abundance estimation
https://arxiv.org/abs/2406.19113

https://arxiv.org/abs/2406.19113
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Metagenomic analysis suffers from 
significant storage I/O data movement overhead 

Conclusion

The first in-storage processing system for end-to-end metagenomic analysis

Leverages and orchestrates processing inside and outside the storage system

MegIS

Improves performance
2.7×–37.2× over performance-optimized software 

6.9×–100.2×  over accuracy-optimized software

1.5×–5.1× over hardware-accelerated PIM baseline

Small area/power
Area: 0.04 mm2  

Power: 7.658 mW

Reduces energy consumption
5.4× over performance-optimized software 

15.2×  over accuracy-optimized software

1.9× over hardware-accelerated PIM baseline

High accuracy
Same as accuracy-optimized

4.8× higher F1 score

 over performance-optimized/PIM
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Genome Sequence Analysis
• Genome sequence analysis is critical for many applications

- Personalized medicine

- Outbreak tracing

- Evolutionary studies

•  Genome sequencing machines extract smaller fragments of the original 
DNA sequence, known as reads

AAGCTTCCATGG

AAATGGGCTTTC

GCCCAAATGGTT

GCTTCCAGAATG
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Genome Sequence Analysis
• Read mapping: first key step in genome sequence analysis

…GCCCATATGGTTAAGCTTCCATGGAAATGGGCTTTCGCTTCCACAATG…

- Aligns reads to potential matching locations in the reference genome

Reference Genome

Differences Differences

- For each matching location, the alignment step finds the degree of 
similarity (alignment score)

AAGCTTCCATGG

GCCCAAATGGTT

GCTTCCAGAATG

AAATGGGCTTTC
• Calculating the alignment score requires computationally-expensive 

approximate string matching (ASM) to account for differences between 
reads and the reference genome due to:

- Sequencing errors

- Genetic variation
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Genome Sequence Analysis

Computation overhead
 

Data movement overhead 

Computation 
Unit

(CPU or 
Accelerator)

Cache
Main 

Memory

AAGCTTCCATGG

AAAATTCCATGG

TTTTTTCCAAAA
GCTTCCAGAATG

GGGCCAGAATG

GAATGGGGCCA
TCCCCGGGGCCA

CCTTTGGGTCCA

CGTTCCTTGGCA

Alignment

Data Movement from Storage

Storage
System
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Heuristics Accelerators Filters

 Computation overhead
 

AAGCTTCCATGG

AAAATTCCATGG

TTTTTTCCAAAA
GCTTCCAGAATG

GGGCCAGAATG

GAATGGGGCCA
TCCCCGGGGCCA

CCTTTGGGTCCA

CGTTCCTTGGCA Computation 
Unit

(CPU or 
Accelerator)

Cache
Main 

Memory
Storage
System

Data movement overhead 

✓

Accelerating Genome Sequence Analysis
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Storage
System

Key Idea

Non-matching reads
Do not have potential matching locations and can skip alignment

Filter reads that do not require alignment
inside the storage system

AAGCTTCCATGG

AAAATTCCATGG

TTTTTTCCAAAA
GCTTCCAGAATG

GGGCCAGAATG

GAATGGGGCCA
TCCCCGGGGCCA

CCTTTGGGTCCA

CGTTCCTTGGCA

Filtered Reads

Computation 
Unit

(CPU or 
Accelerator)

Cache
Main 

Memory

Exactly-matching reads
Do not need expensive approximate string matching during alignment
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Challenges

Read mapping workloads can exhibit different behavior

There are limited hardware resources 
in the storage system

Filter reads that do not require alignment
inside the storage system

AAGCTTCCATGG

AAAATTCCATGG

TTTTTTCCAAAA
GCTTCCAGAATG

GGGCCAGAATG

GAATGGGGCCA
TCCCCGGGGCCA

CCTTTGGGTCCA

CGTTCCTTGGCA

Filtered Reads

Computation 
Unit

(CPU or 
Accelerator)

Cache
Main 

Memory
Storage
System
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GenStore

Computation overhead
 

Data movement overhead 

GenStore provides significant speedup (1.4x - 33.6x) and  
energy reduction (3.9x – 29.2x) at low cost

Filter reads that do not require alignment
inside the storage system

Computation 
Unit

(CPU or 
Accelerator)

Cache
Main 

Memory

GenStore-Enabled
Storage
System

✓
✓
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Conclusions

Background

Motivation and Goal

GenStore

Evaluation

Outline
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GCC 7
CCC 8
CAA 1
AAA 31 101
CCA 25 230 400

… … … …

Read Mapping Process

…CAATTTGCCCATATGGTTAAGCTTCCATGGAAATGGGCTTTCGCTTTG…Reference

> 3 billion characters

Index

K-mer Locations

GCCCAAATGGTTRead
GCC

CCC
…

K-mers

Determine potential matching locations (seeds) in the 
reference genome 

Prune some seeds in the reference genome

Determine the exact differences between the read 
and the reference genome

Seeding

Seed Filtering
(e.g., Chaining)

Alignment

Seeds

…
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Conclusions

Background

Motivation and Goal

GenStore

Evaluation

Outline
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Motivation

• Case study on a real-world genomic read dataset 
- Various read mapping systems

- Various state-of-the-art SSD configurations

The ideal in-storage filter significantly improves performance by

1) reducing the computation overhead

2) reducing the data movement overhead
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Motivation

• Case study on a real-world genomic read dataset 
- Various read mapping systems

- Various state-of-the-art SSD configurations

Filtering outside SSD provides lower performance benefit since it 

1) does not reduce the data movement overhead

2) must compete with read mapping for system resources

A HW accelerator reduces the computation bottleneck,

which makes I/O a larger bottleneck in the system
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Our Goal

Design Objectives:

Design an in-storage filter for genome sequence analysis 

in a cost-effective manner

Provide high in-storage filtering performance to overlap the 
filtering with the read mapping of unfiltered data

Performance

Support reads with 1) different properties and 2) different 
degrees of genetic variation in the compared genomes

Applicability

Do not require significant hardware overhead
Low-cost
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Conclusions

Background

Motivation and Goal

GenStore

Evaluation

Outline
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GenStore

SSD Controller

CoreCoreCore

In-SSD DRAM

L2P
Mappings

Flash
Ctrl.#1

Flash
Ctrl.#N

⋯

NAND
Die#4

NAND
Die#1 ⋯

NAND
Die#4

NAND
Die#1

⋯

Host System

FTL

ACC

ACC

ACC GenStore
Metadata  

GenStore
FTL

Reads that need 
substantial processing

• Key idea: Filter reads that do not require alignment inside the 
storage system

• Challenges
- Different behavior across read mapping workloads
- Limited hardware resources in the SSD
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Filtering Opportunities

• Sequencing machines produce one of two kinds of reads 

- Short reads: highly accurate and short

- Long reads: less accurate and long

• High sequencing error rates (long reads) or
• High genetic variation (short or long reads)

Non-matching reads
Do not have potential matching locations, so they skip alignment

• Low sequencing error rates (short reads) combined with
• Low genetic variation

Exactly-matching reads
Do not need expensive approximate string matching during alignment

Reads that do not require the expensive alignment step:
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GenStore

GenStore-EM for Exactly-Matching Reads

GenStore-NM for Non-Matching Reads
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GenStore

GenStore-EM for Exactly-Matching Reads

GenStore-NM for Non-Matching Reads
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GenStore-EM 

• Efficient in-storage filter for reads with at least one exact 
match in the reference genome

• Uses simple operations, without requiring alignment

• Challenge: large number of random accesses per read to 
the reference genome and its index

Expensive random accesses to flash chips

Limited DRAM capacity inside the SSD
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GenStore-EM: Data Structures

GCCCAAATGGTTRead
GCC

CCC
…

K-mers

K-mer

• Read-sized k-mers: to reduce the number of accesses per 

each read

Only one index lookup per read

• Sorted read-sized k-mers: to avoid random accesses to 

the index

Sequential scan of the read set and the index✓

✓
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GenStore-EM: Data Structures

K-mer Loc.
AAAAAAAAAA 1, 8, …
AAAAAAAAAC 51
AAAAAAAAAT 23, 37

… …

Sorted Read Table

ID Read
873 AAAAAAAAAA

232 AAAAAAAAAG

17 AAAAAAAACT

… …

Sorted K-mer Index

S
o

rte
d

Read-sized
 K-mers

Read
AAAAAAAAAA
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GenStore-EM: Finding a Match

K-mer Loc.
AAAAAAAAAA 1, 8, …
AAAAAAAAAC 51
AAAAAAAAAT 23, 37

… …

Sorted Read Table

ID Read
873 AAAAAAAAAA

232 AAAAAAAAAG

17 AAAAAAAACT

… …

Sorted K-mer Index

Comparator

Read = K-mer

Next

Exact match → Filter the read

Next
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GenStore-EM: Not Finding a Match

K-mer Loc.
AAAAAAAAAA 1, 8, …
AAAAAAAAAC 51
AAAAAAAAAT 23, 37

… …

Sorted Read Table

ID Read
873 AAAAAAAAAA

232 AAAAAAAAAG

17 AAAAAAAACT

… …

Sorted K-mer Index

Next
Comparator

Read > K-mer
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Next

GenStore-EM: Not Finding a Match

K-mer Loc.
AAAAAAAAAA 1, 8, …
AAAAAAAAAC 51
AAAAAAAAAT 23, 37

… …

Sorted Read Table

ID Read
873 AAAAAAAAAA

232 AAAAAAAAAG

17 AAAAAAAACT

… …

Sorted K-mer Index

Comparator

Read < K-mer

Not an exact match → Send to read mapper
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Next

GenStore-EM: Not Finding a Match

K-mer Loc.
AAAAAAAAAA 1, 8, …
AAAAAAAAAC 51
AAAAAAAAAT 23, 37

… …

Sorted Read Table

ID Read
873 AAAAAAAAAA

232 AAAAAAAAAG

17 AAAAAAAACT

… …

Sorted K-mer Index

Comparator

Read < K-mer

Not an exact match → Send to read mapper

Avoids random accesses

Simple low-cost logic✓
✓
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GenStore-EM: Optimization

• Read-sized k-mer index takes up a large amount of space 
(126 GB for human index) due to the larger number of 
unique k-mers

K-mer Loc.
AAAAAAAAAA 1, 8, …
AAAAAAAAAC 51
AAAAAAAAAT 23, 37

… …

Sorted K-mer Index

Strong Hash Value

1
4

7
16

Using strong hash values instead of read-sized k-mers 
reduces the size of the index by 3.9x 
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GenStore-EM: Design

GenStore-Enabled SSD

Host System

Die#1

Plane#1 Plane#2

Die#4

P#1 P#2

⋯

Die#1

P#1 P#2

Die#4

P#1 P#2

⋯

Die#1

P#1 P#2

Die#4

P#1 P#2

⋯⋯

Channel#1 Channel#2 Channel#N

❷ Exact-match filtering

SSD ControllerNAND Flash Array

SRTable

SKIndex
❶ Sequential Reads

DRAM

Batch#i-1

Batch#i

Batch#j-1

Batch#j

Comparator SRTable Buffer

SKIndex Buffer

Data is evenly distributed between channels, dies, and planes 
to leverage the full internal bandwidth of the SSD

Steps 1 and 2 are pipelined. 
During filtering, GenStore-EM sends the unfiltered reads 

to the host system.
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GenStore

GenStore-EM for Exactly-Matching Reads

GenStore-NM for Non-Matching Reads
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GenStore-NM

• Efficient chaining-based in-storage filter to prune most of the non-
matching reads

• Challenge: how to perform chaining inside the SSD

- For a read with Seeds 𝑆1 to 𝑆𝑁, the chaining score for 𝑆1 …  𝑆𝑖  can be calculated as

𝐦𝐚𝐱{𝐦𝐚𝐱 𝑺𝒄𝒐𝒓𝒆 𝑺𝒋 + 𝑴𝒂𝒕𝒄𝒉_𝑺𝒄𝒐𝒓𝒆 𝑺𝒊 , 𝑺𝒋 −  𝑮𝒂𝒑_𝑷𝒆𝒏𝒂𝒍𝒕𝒚(𝑺𝒊 , 𝑺𝒋) , 𝒘}
i > j > 1

Costly dynamic programming on many seeds in each read

Particularly challenging for long reads with many seeds

Determine potential matching locations (seeds) in the 
reference genome 

Prune some seeds in the reference genome

Determine the exact differences between the read 
and the reference genome

Seeding

Seed Filtering
(e.g., Chaining)

Alignment
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GenStore-NM: Mechanism

Filters many non-aligning reads without 
costly hardware resources in the SSD

P
ro

b
a

b
il

it
y

0

0.5

1

0 16 32 48 64 80 96 112 128 144

Number of seeds per read

High Alignment
Probability 

A
li

g
n

m
e

n
t

Reads with a sufficiently large number of seeds 

are very likely to align to the reference genome

• GenStore-NM uses a light-weight chaining filter

- Selectively performs chaining only on reads with a small number of seeds

- Directly sends reads that require more complex chaining to the host system

✓
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GenStore-NM: Mechanism

Can filter many non-aligning reads without 
costly hardware resources in the SSD

P
ro

b
a

b
il

it
y

0

0.5

1

0 16 32 48 64 80 96 112 128 144

Number of seeds per read

High Alignment
Probability 

A
li

g
n

m
e

n
t

Reads with a sufficiently large number of seeds 

are very likely to align to the reference genome

• GenStore-NM uses a light-weight chaining filter

- Selectively performs chaining only on reads with a small number of seeds

- Directly sends reads that require more complex chaining to the host system

Details on GenStore-NM’s design are in the paper



134

Conclusions

Background

Motivation and Goal

GenStore

Evaluation

Outline



135

Evaluation Methodology

Read Mappers

• Base: state-of-the-art software or hardware read mappers

- Minimap2 [Bioinformatics’18]: software mapper for short and long reads

- GenCache [MICRO’19]: hardware mapper for short reads

- Darwin [ASPLOS’18]: hardware mapper for long reads

• GS: Base integrated with GenStore

SSD Configurations

• SSD-L: with SATA3 interface (0.5 GB/s sequential read bandwidth)

• SSD-M: with PCIe Gen3 interface (3.5 GB/s sequential read bandwidth)

• SSD-H: with PCIe Gen4 interface (7 GB/s sequential read bandwidth)
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For a read set with 80% exactly-matching reads

Performance – GenStore-EM
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For a read set with 99.7% non-matching reads

Performance – GenStore-NM
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With the Software Mapper With the Hardware Mapper

22.4× – 27.9× speedup compared to the software Base

6.8× – 19.2× speedup compared to the hardware Base

On average 27.2× energy reduction
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Area and Power

• Based on Synthesis of GenStore accelerators using the Synopsys 
Design Compiler @ 65nm technology node

Logic unit # of instances Area [mm2] Power [mW]

Comparator 1 per SSD 0.0007 0.14

K -mer Window 2 per channel 0.0018 0.27

Hash Accelerator 2 per SSD 0.008 1.8

Location Buffer 1 per channel 0.00725 0.37375

Chaining Buffer 1 per channel 0.008 0.95

Chaining PE 1 per channel 0.004 0.98

Control 1 per SSD 0.0002 0.11

Total for an 8-channel SSD - 0.2 26.6

Only 0.006% of a 14nm Intel Processor, less than 9.5% of the three 

ARM processors in a SATA SSD controller
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More in the Paper

• Effect of read set features on performance

- Data size (up to 440 GB)

- Filter ratio

• Performance benefit of an implementation of GenStore 
outside the SSD

- In some cases, it provides performance benefits due more 
efficient streaming accesses 

- Provides significantly lower benefit compared to GenStore

• More detailed characterization of non-matching reads 
across different read mapping use cases and species
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More in the Paper

• Effect of read set features on performance

- Data size (up to 440 GB)

- Filter ratio

• Performance benefit of an implementation of GenStore 
outside the SSD

- In some cases, it provides performance benefits due more 
efficient streaming accesses 

- Provides significantly lower benefit compared to GenStore

• More detailed characterization of non-matching reads 
across different read mapping use cases and specieshttps://arxiv.org/abs/2202.10400

https://arxiv.org/abs/2202.10400
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Conclusion
• There has been significant effort into improving read mapping performance 

through efficient heuristics, hardware acceleration, accurate filters 

• Problem: while these approaches address the computation overhead, none of 
them alleviate the data movement overhead from storage

• Goal: improve the performance of genome sequence analysis by effectively 
reducing unnecessary data movement from the storage system

• Idea: filter reads that do not require the expensive alignment computation in 
the storage system to fundamentally reduce the data movement overhead

• Challenges: 

- Read mapping workloads can exhibit different behavior

- There are limited available hardware resources in the storage system

• GenStore: the first in-storage processing system designed for genome sequence 
analysis to reduce both the computation and data movement overhead

• Key Results: GenStore provides significant speedup (1.4x - 33.6x) and energy 
reduction (3.9x – 29.2x) at low cost
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GenStore Backup Slides
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End-to-End Workflow of Genome Sequence Analysis

• There are three key initial steps in a standard genome sequencing and analysis workflow

- Collection, preparation, and sequencing of a DNA sample in the laboratory

- Basecalling

- Read mapping

• Genomic read sets can be obtained by

- Sequencing a DNA sample and storing the generated read set into the SSD of a sequencing machine

- Downloading read sets from publicly available repositories and storing them into an SSD

• We focus on optimizing the performance of read mapping because sequencing and basecalling are 
performed only once per read set, whereas read mapping can be performed many times 

- Analyzing the differences between a reads from an individual and many reference genomes of other individuals

- Repeating the read mapping step many times to improve the outcome of read mapping

• Improving read mapping performance is critical in almost all genomic analyses that use sequencing

- 45% of the execution time when discovering sequence variants in cancer genomics studies

- 60% of the execution time when profiling the species composition of a multi-species (i.e., metagenomic) read
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Motivation
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State-of-the-art software 
read mapper, Minimap2

Motivation
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Base integrated with a software filter 
that prunes 80% of exactly-matching reads

Base integrated with an
ideal in-storage filter

N
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Motivation
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with no I/O overhead

N
/A



149

Benefits of Ideal In-Storage Filter
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The ideal in-storage filter significantly improves performance by

1) Reducing computation overhead

2) Reducing data movement overhead
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Overheads of Software Mappers
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Overheads of Software Mappers
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SW-filter provides limited benefits compared to Base
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The filtering process outside the SSD must compete 
with the read mapping process for the resources in the system
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Overheads of Hardware Mappers
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Ideal-OSF

• Execution time of an ideal in-storage filter:

• Execution time of an ideal outside-storage filter:
• 60% slower than Ideal-ISF in our analysis
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Comparison to PIM

• Even though read mapping applications could also benefit from other near-data, 
in-storage processing can fundamentally address the data movement problem 
by filtering large, low-reuse data where the data initially resides. 

• Even if an ideal accelerator achieved a zero execution time, there would still exist 
the need to bring the data from storage to the accelerator. 

- 2.15x slower than the execution time that Ideal-ISF+ACC provides  in our 
motivational analysis

In-storage filter can be integrated with any read mapping accelerator, 

including PIM accelerators, to alleviate their data movement overhead.
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Long Read Use Cases
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FTL

GenStore-Enabled SSD
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FTL: Metadata

• GenStore metadata includes the mapping information of 
the data structures necessary for read mapping 
acceleration

• In accelerator mode, GenStore also keeps in internal 
DRAM other metadata structures of the regular FTL
- Examples include the page status table and block read counts 

which need to be updated during the filtering process

• We carefully design GenStore to only sequentially access 
the underlying NAND flash chips while operating as an 
accelerator
- Requires only a small amount of metadata to access the stored 

data
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FTL: Data Placement

• GenStore needs to properly place its data structures to 
enable the full utilization of the internal SSD bandwidth

• When each data structure is initially written to the SSD, 
GenStore sequentially and evenly distributes it across 
NAND flash chips

• GenStore can specify the physical location of a 30-GB 
data structure by maintaining only the list of 1,250 (30 
GB/24 MB) physical block addresses

• It significantly reduces the size of the necessary mapping 
information from 300 MB (with conventional 4-KiB page 
mapping) to only 5 KB (1,250 4 bytes)
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FTL: SSD Management Tasks

• In accelerator mode, GenStore only reads data structures to 
perform filtering, and does not write any new data

- GenStore does not require any write-related SSD-management 
tasks such as garbage collection and wear-leveling

• The other tasks necessary for ensuring data reliability can be done 
before or after the filtering process

- GenStore significantly limits the amount of data whose retention 
age would exceed the manufacturer-specified threshold since 
GenStore’s filtering process takes a short time.

- GenStore-FTL can easily avoid read disturbance errors for data 
with high read counts since GenStore sequentially reads NAND 
flash blocks only once during filtering
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Data Sizes

• Conventional k-mer index in Minimap2 + reference genome: 7 GB 
(k = 15)

• Read-sized k-mer index before optimization: 126 GB (k= 150)

• Read-sized k-mer index after optimization: 32 GB (k = 150)
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SSD Specs

• SSD-L: SATA3 interface (0.5 GB/s sequential read)
- 1.2 GB/s per channel bandwidth

- 8 channels

• SSD-L: PCIe Gen3 M.2 interface (3.5 GB/s sequential 
read)
- 1.2 GB/s per channel bandwidth

- 16 channels

• SSD-L: PCIe Gen4 interface (7 GB/s sequential read)
- 1.2 GB/s per channel bandwidth

- 16 channels
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Evaluation Methodology

• Performance modeling
- Ramulator for DRAM timing

- MQSim for SSD timing

- We model the end-to-end throughput of GenStore based on the 
throughput of each GenStore pipeline stage

• Accessing NAND flash chips

• Accessing internal DRAM

• Accelerator computation

• Transferring unfiltered data to the host

• Real system results
- AMD  EPYC 7742 CPU

- 1TB DDR4 DRAM

- AMD μProf
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GenStore-NM

GenStore-Enabled SSD
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Chaining Processing Element
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GenStore-EM
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GS-Ext provides limited benefits over SIMD in SSD-L 

due to low external I/O bandwidth.
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GenStore-NM

0.1

1

10

100

B
a

se G
S

B
a

se G
S

B
a

se G
S

SSD-L SSD-M SSD-H

B
as

e

G
S

-E
x

t

G
S

B
as

e

G
S

-E
x

t

G
S

B
as

e

G
S

-E
x

t

G
S

SSD-L SSD-M SSD-H

GS-Ext performs significantly slower than Base (2.28x - 1.91x) 

on all systems.



167

Effect of Inputs on GenStore-EM 
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Effect of Inputs on GenStore-NM 
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MegIS Backup Slides
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Motivational Analysis

Database access patterns

(a)Random Query

(b)Streaming Query
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Overview of MegIS’s Steps
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More Details on Step 1



173

K-mer Sketch Data Structures
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K-mer Sketch Streaming Hardware Design
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Index Generation in Step 3
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MegIS FTL
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Multi-Sample Analysis
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SSD Configurations
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Impact of Different Optimizations
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Impact of Different Optimizations



181

Speedup with Different Database Sizes
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Speedup with Different #SSDs
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Speedup with Different Main Memory Capacities
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Speedup with Varying SSD Internal Bandwidth
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Speedup of Abundance Estimation
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Multi-Sample Use Case
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Area and Power

• Based on synthesis of MegIS accelerators using the 
Synopsys Design Compiler @ 65nm technology node

Only 1.7% of the area of three 28-nm ARM Cortex R4 cores 

in a SATA SSD controller

Logic Unit # of instances Area [mm2] Power [mW]

Intersect (120-bit) 1 per channel 0.001361 0.284

k-mer Registers (2 x 120-bit) 1 per channel 0.002821 0.645

Index Generator (64-bit) 1 per channel 0.000272 0.025

Control Unit 1 per SSD 0.000188 0.026

Total for an 8-channel SSD - 0.04 7.658
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