The Next Frontier of Scaling Memory is Space

Paul Armijo George Williams

Datacenters On Fire!

tom's HAT?DWARE

Al industry needs to earn \$600 billion per year to pay for massive hardware spend

tom's HATRDWARE

Al industry needs to earn \$600 billion per year to pay for massive hardware spend

AI Model Training Costs Skyrocket

tom's HAT?DWARE

Al industry needs to earn \$600 billion per year to pay for massive hardware spend

AI Model Training Costs Skyrocket

US Datacenters Will Represent ~10% of Total US Energy Demand By 2030

Data center power demand

0 01 1 01

1.0....

"The only way to get more computing capacity today is to build bigger, more energy-consuming machines. If we're in an *AI arms race* with our adversaries, it could have a dramatically bad *impact on climate*."

Nigrating Harver of the second second

Space

Power Generation & Consumption

- Every day the sun emits 44 Quadrillion (4.4x 10¹⁶) Watts of Power, while a large electric power plan produces about 1 Billion (1 x 10⁹) Watts of Power. ⁽¹⁾
- About 30% of the solar energy that reaches the Earth is reflected back into space and the majority of the rest is absorbed by the Earth's atmosphere.

Power Generation & Consumption

- Capture and Harness that energy for use in space systems
- Strategically plan constellations timing and use of that power
- Enable focused payloads with different type of memory and processors optimized for the type of sensor
- Transmit back and forth from specialized data centers rapidly and securely via laser communication

Fabrication and Material Science

• Ultimately with low-g fabrication in space down the line further opens the door for substantial use of wafer-level packaging of memories and processors that are a challenge today for mechanical/structural reasons as well as thermally to cool the product.

Interconnect With Photon Lasers

- Chip to Chip Silicon Photonic Interconnect
- Board to Board Photonic Interconnect
- System to System Photonic Interconnect
- Satellite to Satellite Photon Laser Comm
- Satellite to Ground Photon Laser Comm

Cybersecurity

- Physical Security Space Is Still Hard to Get To !!!
- Limited Entry Points to the Satellites via RF Ground Station Enterprises
- Extremely Limited Entry Points to the Satellite via Laser Communication Terminals to the Ground
- Additional Air-gap of Space Infrastructure with some satellites only making use of space-to-space laser communication, no satellite to ground connections.

Challenges of Scaling in Space

Space Junk

SpaceX: 50K Collision Avoidance Maneuvers In The Past Year!

Space Environment Challenges

- Radiation
 - Total Ionizing Dose TID Gamma Rays Cumulative Effect
 - Single Event Effects Upsets, Transients, Latchup, Flip bits, Stuck Bits, Burnout, Gate Rupture – Cosmic Rays – Heav Ions & Protons
- Plasma
 - Charging (exterior of satellite)
- Neutral Gas Particles
 - Drag, Surface Erosion, Structural Integrity Degradation

- Ultraviolet & X-ray
 - Surface Erosion & Structural Integrity Degradation
- Micro-Meteoroids & Orbital Debris
 - Structural damage decompression

Construction and Supply Chain

- Traditional Satellite & Constellations Route
 - Full Satellite Bus Off-The-Shelf
 - Full Payloads Off-The-Shelf
- Space Stations
 - International Space Station
 - Lunar Gateway
 - Axiom Space
 - Orbital Reef
 - Blue Origin, Sierra Space, Redwire Space,
 - Starlab

• Airbus, Voyager Space/Nanoracks,

- Space Worthy Resilience By:
 - RadHard Component Design
 - System Architecture
 - Component Redundancy
 - Constellation Satellite Redundancy
 - System Redundancy
 - Cold/Hot Spare
 - Triple Modular Redundancy
 - Quadruple Modular Redundancy
 - Error Detection And Correction

Cost/Investment Examples

- CHIPS Act Aug' 22- \$52.7B
 - American Semiconductor Research, Development, Manufacturing and Workforce Development
- Air Force Research Lab STAR-FISH Space Technology Advanced Research-Fast-tracking Innovative Software and Hardware
 - ANGTRM Advanced Next Generation Strategic Radiation Hardened Memory Program
 - \$35M Award to Western Digital in Nov' 23 Contract provides for the evaluation development of strategic radiation hardened non-volatile memory devices with near-commercial state-of-the-art performance for space and strategic systems.

Summary

• Scaling datacenters for next generation AI will face many *terrestrial* challenges

• Extending datacenters into space offers many advantages and opportunities for the microelectronics industry

• The hurdles are both technical and monetary, but there is a path...

The End

-

