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Abstract

In this Professional Development Series session, you'll learn about
key aspects of High Bandwidth Memory (HBM): What is HBM, a
short history of HBM, why is HBM important right now, how Large
Language Models (LLMs) and Generative Al are driving demand for
HBM technology, comparison of HBM with other popular memory
types (DDR, LPDDR and GDDR), a high level view of HBM
architecture, PCB and package requirements to implement chips
deploying HBM, a view of the market for HBM and the chips that
use it, and a review of public information on the future
development of high bandwidth memories.
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Why are we here?
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Where we were vs where we're going

Please confirm your identity
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facial recognition
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https://youtu.be/2fAPgOCjToA?si=YtHCU1bytGEKhdwe

What is HBM used for?

High Bandwidth Memory (HBM) & DDR

* L4 cache
(picture at right)

S gazillions

S lots

e Streaming buffer in
networking
applications

It’s not either/or

It’s in addition to

e Al Accelerator

£

DDR

~ \ Source: Bill Gervasi, an hour or two ago
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Introduction to Al chips (more to come later)

* The chips that operate most of the big
server-based Al hardware are giant math
machines

 Parallelism, specialization and a shift in
the types of Al that they run has enabled
very large computing machines to be
developed

https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf
https://resources.nvidia.com/en-us-blackwell-architecture?ncid=no-ncid
https://www.flickr.com/photos/130561288 @N04/albums/72177720295479734/with/51867067870
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NVIDIA P100
2016

16nm

60 SM units
Quad HBM?2

21 TFLOPs (FP16)
700w TDP

NVIDIA Blackwell
2024

4dnm

144 SM units

576 Tensor Cores
Dual-quad HBM3E
2500 TFLOPs (FP16)
700w TDP


https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf
https://resources.nvidia.com/en-us-blackwell-architecture?ncid=no-ncid
https://www.flickr.com/photos/130561288@N04/albums/72177720295479734/with/51867067870

The compute demand for Al is insatiable

Retrodicting the size of the largest models today from GPT-3 Z EPOCHAI Memory bandwidth (Byte/s)

Training compute (FLOP)
26
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Figure 6: The historical trend for all and frontier models is used to extrapolate the training compute of GPT-3 to predict the compute of the largest models
today. Note that many record-breaking systems lie close to the extrapolated line, including Megatron-Turing NLG 540B, PaLM 540B, GPT-4, and Gemini Ultra.

P ‘ https://epochai.org/blog/training-compute-of-frontier-ai-models-grows-by-4-5x-per-year

— M S https://epochai.org/blog/trends-in-machine-learning-hardware
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https://epochai.org/blog/training-compute-of-frontier-ai-models-grows-by-4-5x-per-year
https://epochai.org/blog/trends-in-machine-learning-hardware

uuuuuuu

And it’s expensive

& ALPHAWAVE SEMI

February 6-
Santa Clara
ChipletSummit.co.

phawave Semi™. All Rights Reserved.

Tony Chan Carusone, Alphawave, Chiplet Summit Keynote 2024,
https://epochai.org/blog/how-much-does-it-cost-to-train-frontier-ai-models
x.com

Amortized hardware and energy cost to train frontier Al models over time Z EPOCHAI

Cost (2023 USD, log scale)
1B

—— Regression mean 95% Cl of mean

Using estimated cost of TPU

Gemini 1.0 Ultra
GPT-4 \

100M

PaLM (5408)
oM \
GPT-3175B (davinci)

AlphaGo Zero

™ - AlphaGo Master Inflection-2

AlphaZero
100k

10k -

2.4x/year

1000 ~

100

T T T T T T
2016 2017 2018 2019 2020 2021 2022 2023 2024

Publication date

. Sam Altman £
@sama

we will have to monetize it somehow at some point;
the compute costs are eye-watering

11:38 PM - Dec 4, 2022
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But memory bandwi
keeping up

Specification and unit

Growth rate

Doubling time

Datapoint of highest
performance

Metric prefix v

Computational

Performance

FLOP/s (FP32)

2x every 2.3 [2.1; 2.6] years

~90 TFLOP/s (NVIDIA L40)

~495 TFLOP/s (NVIDIA H100

NAlL

FLOP/s (tensor-FP32)

SXM)

~990 TFLOP/s (NVIDIA H100
FLOP/s (tensor-FP16) NA

SXM)

~1980 TOP/s (NVIDIA H100
OP/s (INT8) NA

SXM)

Computational price-

performance

FLOP per $ (FP32)

2x every 2.1 [1.6; 2.91] years

~4.2 exaFLOP per $ (AMD
Radeon RX 7900 XTX)

Computational energy-

efficiency

FLOP/s per Watt (FP32)

2x every 3.0 [2.7; 3.3] years

~302 GFLOP/s per W (NVIDIA
L40)

~128 GB (AMD Radeon Instinct

Memory capacit DRAM capacity (Byte 2x every 4 [3; 6] years 47
y capacity pacity (Byte) y4[3; 6]y MI250X)
Memory bandwidth DRAM bandwidth in Byte/s 2x every 4 [3; 5] years ~3.3TB/s (NVIDIA H100 SXM) | 47
Interconnect Chip-to-chip communication
) . NA ~900 GB/s (NVIDIA H100) 45
bandwidth bandwidth (Byte/s)

Table 1: Key performance trends. All estimates are computed only for ML hardware. Numbers in brackets refer to the [5; 95]-th percentile estimate from

bootstrapping with 1000 samples. OOM refers to order of magnitude, and N refers to the number of observations in our dataset. Note that performance figures
are for dense matrix multiplication performance.

https://epochai.org/blog/trends-in-machine-learning-hardware

©2024 Marc Greenberg Consulting, LLC
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dth and capacity are not

Note this is a
GDDR6-based card.
GPGPU vs Tensor is

important.

Note this is a
GDDR6-based card.
GPGPU vs Tensor is

important.



https://epochai.org/blog/trends-in-machine-learning-hardware

Amdahl’s [aw

Definition edi)

Amdahl's law can be formulated in the following way:*!

1
Slatency(s) =
(1-p)+%

where

* Siatency I8 the theoretical speedup of the execution of the whole task;
+ sis the speedup of the part of the task that benefits from improved system resources;
« pis the proportion of execution time that the part benefiting from improved resources originally occupied.

Furthermore,

Slatenc_v(s) < 1—p

1
lim S (s) = ——.
Sgﬂj latency (5) 1-p
shows that the theoretical speedup of the execution of the whole task increases with the improvement of the resources of the system
and that regardless of the magnitude of the improvement, the theoretical speedup is always limited by the part of the task that cannot

benefit from the improvement.

Amdahl's law applies only to the cases where the problem size is fixed. In practice, as more computing resources become available,
they tend to get used on larger problems (larger datasets), and the time spent in the parallelizable part often grows much faster than
the inherently serial work. In this case, Gustafson's law gives a less pessimistic and more realistic assessment of the parallel
performance.[]

P \ https://en.wikipedia.org/wiki/Amdahl%27s_law

. ©2024 Marc Greenberg Consulting, LLC
v All Rights Reserved

* Translation: If you
increase the compute
without increasing the
memory bandwidth,
then the theoretical
speedup will be limited

by the memory
bandwidth



Generalized Neuron Behavior

Neural Network (section of larger network)
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Systolic Arrays: The efficient heart of a TPU

FCCM’96 -- IEEE Symposium on FPGAs for Custom Computing Machines

* The generalized term “Systolic Array” is Apil 17-19, 1996, Napa, CA
the technique used in almost all Tensor
Processing units

e Google “TPU”
* NVIDIA “Tensor Core”

e contained within “Streaming Multiprocessors” -
SM

e AMD CDNA “Matrix Cores”

e contained within “Accelerator Complex Dies” — _ )
XCDs Systolic arrays are not new... here’s one |

R “ . worked on 30 years ago.
Tenstorrent “Tensix™ Cores The name “Systolic Array” was coined in 1979

* etc but a WWII code-breaking machine used the

-~ ) same technique
M S ©2024 Marc Greenberg Consulting, LLC
v All Rights Reserved

Figure 5: Systolic Convolution Implementation



Generalized Neural Network Behavior

* Arrange all the inputs and weights into a matrix, then multiply and
accumulate the results using a systolic array

Systolic array (animated cartoon)

©2024 Marc Greenberg Consulting, LLC
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Scalar, Vector, Matrix, Tensor

Scalar Vector Matrix Tensor
0-way 1-way tensor 2-way tensor 3-way tensor 4-way tensor
Character  Word Page Book Bookshelf

1
. BE

|= M S 5-way 6-way

\ ©2024 Marc Greenberg Consulting, LLC Bookcase Library
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How matrix/tensor math is done by CPU

Compute Primitive

ENEE NEEE . IR TORENT .
= DEEE 8 EEEE NEEE Matrix multiplication: Tiled, B transposed
o m EEEE EEEE
- ENEE EEEE A s o B v 285 cathe @3 "
scalar vector tensor

Totals: mem:2307 cache hits:2080=90%

G Cu Cu S

D= G G Cu Cu
S Cor Cu G o x e - .
o e o = — e -

FP16 or FP32 FP16 FP16 or FP32

https://youtu.be/aMvCEEBIBto?si=20lAEufVXcVh8Kcl

©2024 Marc Greenberg Consulting, LLC
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https://youtu.be/aMvCEEBIBto?si=2olAEufVXcVh8Kc1

Vector math by GPU, Tensor math by TPU

Pascal = GPGPU doing vector

math PASCAL VOLTA TENSOR CORES

1 _Pw gt
Volta = GPGPU+Tensor unit, 8 : ”
tensor unit doing math '

Later animation is effect of
multi-precision (for inference)
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Tensor Math (again

TURING TENSOR CORES TURING TENSOR CORES TURING TENSOR CORES
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M S . https://www.youtube.com/watch?v=yyR0ZoCeBO8
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https://www.youtube.com/watch?v=yyR0ZoCeBO8

More TPU every generation

H100 FP16

A100 FP16
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Figure 5. H100 FP 16 Tensor Core has 3x throughput compared to A100 FP 16 Tensor Core

https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/

©2024 Marc Greenberg Consulting, LLC
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The magic of the TPU

* Table 4 compares key features of TPU v3 and TPU
v4. Manufactured in 7 nm instead of 16 nm, TPU v4
has twice the matrix multipliers (enabled by the
increased process density) and an 11% faster
clock—this drives the 2.2X gain in peak
performance. About 40% of the performance/Watt
improvement was from technology and the rest
was from design improvements (e.g., balancing the
pipeline, implementing clock gating). The HBM
memory bandwidth is 1.3x higher.

CPU (578) B
TPU v3 (128)

TPU w4 (128)

TPU w4 (128 - Emb
on CPU)

TPU w4 (182 - Emb
on Var. Server)

o 10 20 30
Perormance Relative to CPU

https://arxiv.org/pdf/2304.01433 source: Google

©2024 Marc Greenberg Consulting, LLC
All Rights Reserved

Table 4: TPU v4 and TPU v3 [26] features. Measured power is
for the ASIC and HBM running production applications.

Google TPUv4 TPUv3
Production deployment 2020 2018
Peak TFLOPS 275 (bf16 or int8) 123 (bf16)
Clock Rate 1050 MHz 940 MHz
Tech. node_ Die size 7nm_<600 mm2 | 16 nm_< 700 mm2
Transistor count 22 billion 10 billion
Chips per CPU host 4 8
TDP NA. NA.

Idle, min/mean/max
power

90, 121/170/192 W

123, 175/220/262 W

Inter Chip Interconnect

6 links (@ 50 GB/s

4 links (@ 70 GB/s

ILargest scale
configuration

4096 chips

1024 chips

Single Instruction

Single Instruction

On Chip Memory

32 MiB (VMEM) +
10 MiB (spMEM)

PProcessor Style 2D Data 2D Data

Processors / Chip 2 2

Threads / Core 1 1

SparseCores / Chip 4 2
128 (CMEM) +

32 MiB (VMEM) +
5 MiB (spMEM)

Register File Size

0.25 MiB

0.25 MiB

HBM2 capacity, BW

32 GiB, 1200 GB/s

32 GiB, 900 GB/s

Figure 9 below shows performance of an internal production

recommendation model (DLRMO, see Sections 7.8 and 7.9) across
the two TPU generations for 128 chips. The standalone CPU
configuration has 576 Skylake sockets (400 for learners and 176
for variable servers). The bottom two bars show TPU v4 without
8C, where the embeddings are placed in CPU memory. The “Emb
on CPU” bar places embeddings in CPU host memory and the
“Emb on Variable Server” bar places embeddings on 64 external
variable servers. TPU v3 is faster than CPUs by 9.8x. TPU v4
beats TPU v3 by 3.1x and CPUs by 30.1x. When embeddings are
placed in CPU memory for TPU v4, performance drops by 5x-7x,
with bottlenecks due to CPU memory bandwidth.


https://arxiv.org/pdf/2304.01433

A rapid shift in capability (NVIDIA 2022

Introduction of
TPU

Accelerator Model

GPU

Bus

GDDRS5 or GDDR6/HBM2 Memory
Performance / Watt

F8 Efficiency (Gigaops/Watt)

INTS Efficiency (Gigaops/Watt)

FP16 TC, FP32 ACC Efficiency (Gigaflops/Watt)
FPI6 Efficiency (Gigaflops/Watt)
FP32/TF32 Efficiency (Gigaflops/Watt)
FP64 Efficiency (Gigaflops/Watt)

S / Performance

Street Price, Single Unit

S / FP8 Teraflops

S / INT8 Teraops

S / FP16 TC, FP32 ACC Teraflops

S / FP16 Teraflops

S / FP32/TF32 Teraflops

S / FP64 Teraflops

S / Performance / Watt

S / FP8 Teraops / Watt

S / INT8 Teraops / Watt

S / FP16 TC, FP32 ACC Teraflops / Watt
S / FP16 Teraflops / Watt

S / FP32/TF32 Teraflops / Wart

S / FP64 Teraflops / Watt

K80 P100
2*GK2I0B  GPI00
PCI-E3.0 PCI-E3.0
24GB 12GB
- 7438
291 372
9.7 18.8
>40 $600
= $32.09
$45.77 $64.52
S137.46 $127.66
£ $8.02
S13.73 S16.13
$4124 $3191

P100
GP100
PCI-E 3.0
16 GB

748
372
18.8

S17.65
$236.56
$468.09

$29.41
$59.14
$17.02

P100
GP100
SXM
16 GB

70.7
353
177

$1,100

$51.89
$103.77
$207.55

$15.57
$3113
$62.26

V100
GV100
PCI-E3.0
16/32 GB

2240

448.0

100.5
50.2
250

$7,500
$133.93
$66.96
$267.86
$597.13
$1,201.92

$33.48

$16.74

$74.64

$149.28
$300.48

V100
GV100
SXM2/3
16/32 GB

2093
416.7

1047
523

26.0

$2,500
$39.81
$20.00
$79.62
$159.24
$320.51

S11.94
$6.00
$23.89
$47.77
$96.15

Al100
GA100
PCI-E4.0
40GB

3120.0
1560.0
195.0
48.8
488

56,000
$4.81
$9.62

$76.92
$19.23
$307.69

$1.92

$3.85
$30.77
$123.08
$123.08

Al100
GAI00
SXM4
40GB

31200
1560.0
195.0
488
48.8

$12,500
$10.02
$20.03
$160.26
$40.06
$641.03

$4.01

$8.01
$64.10
$256.41
$256.41

Al100
GAI00
SXM4
80GB

31200
1560.0
195.0
488
48.8

515,000
$12.02
$24.04
$192.31
$48.08
$769.23

$4.81

$9.62
$76.92
$307.69
$307.69

HI100
GHI00
PCI-E5.0
80GB

91429
45714
2743
1371
55.7

$17.500
$5.47
$10.94
$182.29
$56.09

$897.44

S191
$3.83
$63.80
S127.60
$314.10

HI100
GHI00
SXM5
80GB

57143

28571
1714
85.7
279

519,500
$4.88

$9.75
$162.50
$62.50
$1,000.00

$3.41

$6.83
S13.75
$227.50
$700.00

Multiple X every generation

TPU with >10x cost efficiency
compared to GPU opterations

TPU with ~20X $/FLOPs/Watt

compared to GPU opterations

As usual items in bold red italics are estimations by The Next Platform.

https://www.nextplatform.com/2022/05/09/how-much-of-a-premium-will-nvidia-charge-for-hopper-gpus/

©2024 Marc Greenberg Consulting, LLC
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And growing fast (Google TPU example

Google TPU Compute Engines "Trillium" TPUv3 TPUv4 TPUv5p TPU v6
T P U TPU vl TPU v2 TPU v3 TPU v4 TPUvS5p TPUv6 Over Over Over Over
First Deployed Q22015 Q32017 Q42018 Q42021 Q42023 Q42024 TPUv2 TPUv3 TPUv4 TPU vSe
. TPUv2 ML Inference Yes Yes Yes Yes Yes Yes
S I Z e ML Training No Yes Yes Yes Yes Yes
Dmorcon Jocecrcon Chip Process 28 nm 16 nm 16 nm 7nm 5 nm 4 nm
Scalar || Vector Scalar || Vector Transistors 3B 9B 10B 31B 277 272 1 310 777 777
1 6 K S B Die Size 30mm’  625mm’  700mm’ 780 mm® 700mm® 790 mm® 112 m 0% 22
Mamory/ Matrx Matrix Mamoty) Clock Speed 700MHz =~ 700MHz = 940MHz 1,050 MHz 2,040 MHz 2,060 MHz 134 112 194 118
Milthacatca Mipppcat TensorCores Per Chip 1 2 2 2 2 2
MXU Marrix Size/Core 17256%256 1%128x128 2°128x128 4+128x128 4°128x128 £ *256x256 100 1.00 1.00 2.00 Growin g fast
Dataflow SparseCores = - = 4 4 4
On Chip Cache Memory 28 MB 32MB 32 MB 32MB 48 MB 777 1.00 1.00 150 277
TPUV3 Off Chip HBM Memory 8CB 16GB 32GB 32GB 95GB 32GB 200 100 297 200
HBM Memory Bandwidth 300 Gb/sec 700GB/sec 900 GB/sec 1,228 GB/sec 2.765GB/sec 1,640 TB/sec 129 136 2.25 2.00
TensorCore TensorCore INTS Peak Teraflops 92 - - 275 918 1852 - - 334 470
= o | | — e BF16 Peak Teraflops - 46 123 1375 459 926 2.67 112 334 470
High Unit Unit Unit Unit High Precision INT8 BFl6 BFl6 BFI6/INT8  BFI6/INT8 BFI6/INT8
3 2 K Ba:n:“u;dyth L o T = a;m.?;n ICI Links * Speed Gb/sec - 4749 47656 67448 6800 4°800 132 1.02 179 2.00
iplicati iplicati i Interconnect Topology = 2D Torus 2D Torus 3D Torus 3DTorus 2D Torus
L L Ut Unlt Chip Idle Watts 28 53 84 170 74 777
Max Measured Watts tedd tedd 262 192 77?7 77?7
Chip TDP Watts 75 280 450 300 777 777
TPU v4 Chips Per CPU Host 4 4 4 4 8 tedd
Max Chips Per Pod - 256 1,024 4,09 8960 256 400 400 219 1.00
Peak Petaflops Per Pod - 12 126 1126 8225 474 1070 894 7.30 470
' Virtual Core All-Reduce Bandwidth Per Pod - 120 TB/sec 340 TB/sec 1100 TB/sec 777 777 2.83 3.24 727 777
— — ! Bisection Bandwidth Per Pod - 2TB/sec  64TB/sec  24TB/sec 777 727 3.20 375 277 777
i i Pricing Per TPU Chip. Lowest US Region Pricing
: Scaler Vector | Scaar Vector ! Preempible Spor - 5045 5060 s0.97 5210 8125 133 161 217 2.08
64 K Banivan |+—»> = = ] bk Le—n- LU Preempible Spot For Three Months - $97200  SI296.00  S208656  S453600 $2.700.00 133 161 217 2.08
Memory E ‘Matrix Matrix Matrix Matrix E Memory = SL.46 050 072 065 0.44
M““ = — On Demand Per Hour - S150 5200 5322 5420 $2.50 133 161 130 2.08
| i e i i ! On Demand For Three Months - $3240.00 $432000 $695520  $9.07200 55.400.00 133 161 130 2.08
; : - $2.92 050 072 0.39 0.44
R ' 1 Year CUD Per Hour - 0.95 5126 5203 5294 S$1.75 133 161 145 2.08
1 Year CUD Cost - 5828387  SILO4506  SIZ78271  S25.772.04 $15.340.50 133 161 145 2.08
- $8.28 050 072 0.43 0.44
3 Year CUD Per Hour - 5068 50.90 145 5189 SL13 133 161 130 2.08
3 Year CUD Cost - S5.917.05 ~ S788940  SI270193  Sl656774 $9.86L.75 133 161 130 2.08

128K  Trillium (Nextplatform prediction) : ' o0 __on__on _ou
A As usual items in bold red italics are estimations by The Next Platform.

https://www.nextplatform.com/wp- Inference-oriented TPUs removed for clarity

— tent/uploads/2022/10 le-t 4-v3-
con e.n /uploa .S/ /. /google-tpuva-v https://www.nextplatform.com/2024/06/10/lots-of-questions-on-googles-trillium-tpu-v6-a-few-answers/
I v2-chip-block-diagrams.jpg )
©2024 Marc Greenberg Consulting, LLC
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Generative Al Is Iterative

* To make things extra fun, LLMs are
iterative

 Demonstrative example:

* We're going to make a children’s story
about (subject 1) and (subject 2)

e Each of you is an LLM tasked with
adding one word to the end of the
story

Output embedding

I M E ©2024 Marc Greenberg Consulting, LLC
v All Rights Reserved



Section Summary

* The processors used in Al are powerful math machines

* Matrix Multiply-Accumulate (MAC) is the fastest growing part of most
Al / ML Chip Architectures

» often doubling from generation to generation

* Dramatic increase in math capability drives increase in memory
bandwidth demand

* Size of generative Al models and iteration drives increase in memory
capacity

* HBM is today’s solution for solving memory bandwidth challenges
(at.a cost, which we’ll talk about later)

—MS
——



Shameless Plug

* I’'m also VP Product for Cassia.ai

* We'’ve constructed a TPU that is 33% smaller and improves TOPS/w by
2.5x compared with traditional techniques by using our technology

* This could also mean 2.5x less power or 2.5x more TPU operations
within the same power envelope

e Ask me later



Chiplets
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The problems with really big monolithic chips

Chiplet vs. Monolithic Design Yield

e Vi |d -&- Monolithic Chip
YI e —4-2-Chiplet Design
3-Chiplet Design

=i~ 4-Chiplet Design

e Reticle limit o

— B
145
e Thermal $
T w0
o
. ° )]
* Scaling of different = .
. 1
parts of the chip S o
[ ] 2'0
e Cost per transistor
10
0
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 360
Die Area (mm?)
~ \ https://medium.com/@marcussl.chan/chiplets-why-it-can-solve-the-slowing-of-moores-law-651ed53f413d

. ©2024 Marc Greenberg Consulting, LLC
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Chiplet Economy

=
2
=1
o
c
3
w
>
a
Qo
=
©
O
)
©
o
&
<C
c
o
2
=

CHIPLET TECHNOLOGY

Limited and Divergent Scale Factors

ANALOG I/O

\\\& MEMORY

-

10nm 7nm S5nm

Density gains diminishing

Cost per yielded mm?

(<))

IS

N

Increasing Costs!!]

28nm 20nm 14/16nm

Costs Increasing

AMDA

together we advance_gaming

https://www.club386.com/amd-radeon-rx-7900-xtx-review-rise-of-the-chiplets/



Chiplet enables extreme integration
>1T

>500B

TRANSISTORS
e

>100B

TRANSISTORS

ELrE:

I
L
ol
|
|

3D Hetero.
Integration

10B EUV
Metal Oxide ESL
elf-Aligned Line w/ Flexible Space

18 MRR ® ow Damage/Hardening Low-K & Novel Cu Fill

Transistors,

O @

Multi-million lowR Baiae
Monolithic Transistors & Immersion @ Co CapiLiner
SiGe
® Cu/Low-K

Integration

N5/N4 N3/N3E N2/N2P A14 A10
Mass Production: 2020 2023 2025 2027 2030

~ \ TSMC slide from IEDM conference foresees advancements in packaging technologies. (Image credit: TSMC)
Source: https://www.tomshardware.com/tech-industry/manufacturing/tsmc-charts-a-course-to-trillion-transistor-chips-eyes-monolithic-chips-with-200-

billion-transistors-built-on-1Tnm-node
—MS |
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What is a chiplet?

Chiplet Architecture

Chiplet Design

o

Homogeneous Design /(

Benefits
= Smaller die - better yield
= Noreticle limit = build large systems

Used for

= Scalable architectures
= \erylarge compute systems

/

o~
/\. Heterogeneous Design A

CPU
5nm

Memory

10 FPGA
12 nm 5nm

Benefits
= Use mature process node - lower cost
= Use specialized process - higher performance

Used for

= Disaggregation by function

= Splitting analog/ digital

ODSA Business Overview white paper - https://drive.google.com/file/d/1UmNyyciEF_0JZZ35HOelL5X3g-gmP33YZ/view

©2024 Marc Greenberg Consulting, LLC
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What is a chiplet?

Packaging Choices

Single Chip
o

Substrate
Mu"i chlp - -
- [N 20
Substrate
EEEE--.-- -
Bridge

TSV
mterposer TN 2.50

Active

e
TSV
terposer NS 30

» Packaging and D2D interface are connected
= Bump pitch and escape pitch — via pad, L/S
* Depths of signal bumps — # of layers
= Needed insertion loss — dielectric choice
= Maximum distance between chiplets

g

g

z _ B Secalvr
T T BT — e

Total Aggregate Bandwidth
-

Laminate (12

ODSA Business Overview white paper - https://drive.google.com/file/d/1UmNyyciEF_0JZZ35HOelL5X3g-gmP33YZ/view

©2024 Marc Greenberg Consulting, LLC
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What is a chiplet?

Three Financial Benefits of Chiplets

-

Yield Advantage

* Smaller die have higher yield
* This can off-set higher package
and test cost for large systems

* Spe DDSA cost model

| =—BE(2) D=0.22/cm*2
| —BE(2) D=1.0/cme2

50%

Chip Yield
7

Chip Area, cm?

- N
Design Cost Advantage

» Newer processes are more
expensive to design on
» Shifting some functions to

older nodes reduces cost

Design cost

Fstakws Costwih conl ke 63 nm beisg 1n

#nm 40w 2Bnm FFem Eem 10 nm Tam Snm

-

Progarss Tachasiogy

/

-

Early Entry Advantage
* Chiplet reuse accelerates TTM

* This can improve returns by:
* Higher market share
* Longer product life-cycle

= Higher profit margin

S Revenue/Week

—
Mccelersted Entry

Time

ODSA Business Overview white paper - https://drive.google.com/file/d/1UmNyyciEF_0JZZ35HOelL5X3g-gmP33YZ/view

©2024 Marc Greenberg Consulting, LLC
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There are many ways of doing chiplets

The Wild West of Semiconductor Packaging
100s of ways to package devices

Fegusua ™ PV
Virwoso* VS
LPA (DRC#)

Virtuose® Multl Tech v
Schemal XL ) ADE Explorer Luy EXL

Substrate Based Multi-Tech Substrates Substrate-less

E :
e Organic, Ceramic, Silicon (Heterogeneous Substrates) @ WLCSP, FOWLP & 3D IC

Codence PYaPepIA

~ \ cadence

I_ M S John Park, Cadence, EETimes Chiplet Conference 2024
©2024 Marc Greenberg Consulting, LLC
v All Rights Reserved



History of 2.5D/3D Stacked DRAMs

Wioming test chip program

* First standards-based Same SoC f
DRAM on Logic Chip: addressing

several

WiO m i ng USi ng 1St ge n schemes of Wide 1O demonstrator: | 3 DietoDe 3 Wide memory data
Wid e I O 3D infegrafjon DRAM on Wioming Q Face to Back _————

0 TSV middie (:: :;gg::;mg‘w
. vioming NG ENOro-DUmMps 23 Multi-channel 2 3D rout
* WidelO Goal: Reduce
power, InCrease :

memeory controfier (signal & power)

= Test for 3D Memory 23D Test

interconnect ——
3D NoC d . 3 Die to De 33D NoC router ap by
pe rfo rma nce) red u Ce PCB \'Ji(u?\ing;?),rr:?gis;rr:?itr(\)(: SEauats Ren 30 swrisl Nk DT:::\:IM -
I Q TSV middie 3 Test for 3D NoC analysis
a re a 0 Cu Pilar bumps interconnect
,\H:'!i', speed and micro-bumps sDc'rrs’\YI‘:au" Tolerance
i W h at a Ct u a | |y h a p p e n e d : g "1;):.:};;,71':-'m'r. \Lu\ 3 Layer demonstrator: Combination of all above techniques
2000 TSVs —\/ DRAM on' W C
Package-on-package of
LPDDRXx T
A Three-Lavers SOmiC Seack mawamg W ana onvoe 5 cadence” 0 LedE %% 2licsson
A https://www.ieee-edps.com/archives/2012/c/1800greenberg.pdf

Marc Greenberg of Cadence Design Systems — at 49t DAC, June 2012

©2024 Marc Greenberg Consulting, LLC
v All Rights Reserved

— M S Enough Talk! Practical Approaches to 3-D IC — TSV/Silicon Interposer and Wide |/O Implementation from People Who Have Been There and Done That, presented by Frank Lee of TSMC and



History of 2.5D/3D Stacked DRAMs

Wide 10 SME architecture overview
° FI rSt Sta n d a rd S ba Sed e Wide IO Memory Controller (Cadence DENALI)
D R A IVI O n Log I C C h I p - Sggg(li:a(r;;ft;vgi.;DM?Wvaihéldsé%égj’f;%ation for Wide 10 from
W I O m I n g u SI n g 1St ge n - H.igh per.'formance, and ad\:fanc.:ed low-power features

- First deliveries to 3D-IC Wioming

W I d e I O ST-Ericsson/LET]I project w"°°'::f.'.“.'.'_’f;‘__,_

* Wide 10 PHY Interface
. - 200MHz,128 bit ,SDR
i WIdEIO Goal REduce - ~1200 TSVs, pbuffers and pbumps
- Also integrates ESD protections for DRAM
power, Increase .

¢ Specific Design for Wide 10 Testability Integration

p e rfo r m a n Ce re d u Ce P C B - Boundary scan, direct access, stuck-at, memory

bist, PLL test
dared ¢ Smart Memory Engine

- Data transfer handling between Wide 10, SRAM and Reference cock [l i

* What aCtua”y happened - fr\llt\le(:;?ationwithinANOC ‘ o
PaCkage On paCkage Of - Up to 3.2GB/s data bandwidth
LPDDRX

. Input clock

RTI Conference - 13th Dec 2011 = ° = goe ST
A Three-Layers 3D-IC Stack including WidelO and 3D NoC 14 Eﬂde nee G0 Ietl .".. ERICSSON

A https://www.ieee-edps.com/archives/2012/c/1800greenberg.pdf

S Enough Talk! Practical Approaches to 3-D IC — TSV/Silicon Interposer and Wide 1/0 Implementation from People Who Have Been There and Done That, presented by Frank Lee of TSMC and
M S Marc Greenberg of Cadence Design Systems — at 49th DAC, June 2012

©2024 Marc Greenberg Consulting, LLC
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Why not just put the memory on top?

3D vs. 2D/2.5D Interconnects to Solve Al Bottlenecks

3D 3D

/AN

o BB RAN HBM DRAM HBM DRAM

High Compute XPU (2nm) High Compute XPU (2nm)

SRAM/NoC/IO (4nm) SRAM/NoC/I0 (4nm) |0/Low Compute (4nm)
Substrate Substrate

3D Interconnects 2D/2.5D Interconnects 207250
* Highest D2D bandwidth * High enough D2D bandwidth for most applications
* XPU uses most advanced/expensive node at * Base die uses cheaper N-1/N-2 FinFET node, but
highest compute density advanced enough for most logic functions
* Heat limits compute density under DRAM * Easier thermal management
* Wastes valuable XPU silicon area (e.g. 2nm) * Best use of valuable XPU silicon area

3D & 2D/2.5D all necessary to develop the optimal solutions

— M S =] i'\*’&’ll’] 10
I ©2024 Marc Greenberg Consulting, LLC
v All Rights Reserved



First HBM Chip: AMD Fiji (2014 production)

e 28nm
* 506mm?22

* 1011mm?2 interposer
e 4x HBM (1)
e 512GB/s

©2024 Marc Greenberg Consulting, LLC
v All Rights Reserved



... and what it took to build it

e “>15 Prototypes over 8.5 years” starting ~2008

“Fiji” Chip | I T

HBM DRAM Die

IT TOOK >15 PROTOTYPES OVER 8.5 YEARS AMDA1

HBM'DRAM Die

HIGH-BANDWIDTH HewoRAmDIe' | |
MEMORY

First Time Out Primary Learning Product Readiness

592mm? ASIC

s 1011mm? IP
usmoravpie' ' ') 345mm2ASIC  502mm?2 ASIC ]

= IRRE 500mm? P 818mm? IP
Logic Die y -

Initiated with several DRAM partners 7 years ago A —
SKhynix is in production supporting “Fiji”
Benefits

- 4096-bit memory interface with four stacks creating
512GB/s of bandwidth

- 60% higher memory bandwidth® for 60% less power’
than GDDRS

- 4X Bandwidth per watt improvement from Radeon™ R9
290X

Also required functional prototyping

- e e

CPU + D3 Mech. Mission mode

HBM bringup

dGPU + G3 PwrCyc | uBump EM | TSV EM/SM

|
[ Component reliability: TC | uHAST | HTS i

Power Efficiency (GB/s Bandwidth per watt)

(100’s of samples) (<5000 of samples)
10 | THE ROAD TO THE AMD “FII" GPU | ECTC2016 | MAY 2015

—_— https://www.ectc.net/files/66/5/66thECTC_Panel_BlackAMD.pdf
—MS

N—

(>5000 samples)




AMD continues in the chiplet direction

AMD Instinct MI300A Accelerated Processing Unit

https://www.amd.com/en/technologies/cdna.html

©2024 Marc Greenberg Consulting, LLC
All Rights Reserved

AMD Instinct MI300X Accelerator

Memory Capacity and
Bandwidth

192 GB HBM3 memory and ~5.3 TB/s
memory bandwidth?




Mix and match, partitioning

AMD Instinct™ MI300A Memory System AMD Instinct™ MI300X Memory Systgm”

13 chiplets as a single APU 3 ; ! 12 chiplets as a single device
» Four IOD, Three CCD and Six XCD 0 e . X e i + Four IOD and Eight XCD
+ Infinity Fabric AP and 3D packaging : o - * Infinity Fabric AP and 3D packaging

128 Ch Fine-grained Interleaved | oV M } , e 1 128 Ch Fine-grained Interleaved

AMD Infinity Cache™ o e AMD Infinity Cache™
256 MB at 17 TB/s peak BW ‘ 256 MB at 17 TB/s peak BW
XCD Bandwidth amplification - ; s XCD Bandwidth amplification
HBM power reduction | B : . HBM power reduction
Multi-XCD and CCD cache coherence -l 4 i Multi-XCD cache coherence
Prefetcher for CPU memory latency A .

Unified HBM and Infinity Cache
+ CCD and XCD data sharing

* Reduced data movement

+ Simplified programming

CHITECTURE BRIEFING | UNDER EMBARGO UNTIL DECEMBER 6, 202: together we advance together we advance.

https://www.club386.com/amd-instinct-mi300-architecture-speaks-to-massive-ai-performance/

©2024 Marc Greenberg Consulting, LLC

v All Rights Reserved



HBM Isn’t easy

Micro open Delamination

Tech Industry > Artificial Intelligence

ICETSI - Us and HBM3 memory

caused half of failures during Assumptions:
training — one failure every three hours for é%ﬁ?\j ggrUGSPU
M1 6,384 GPU training cluster 8Gbps per pin
m By Anton Shilov published July 27, 2024 1024 pins per HBM
ButUESRknows how to mitigate the issues. =8%10"17bps * 10800s

=1 error per 8.6%10721 bits
r ‘ https://www.tomshardware.com/
—MS .
©2024 Marc Greenberg Consulting, LLC
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Gratuitous Die Photos

Intel Ponte Vecchio AMD EPYC

A Intel Sapphire Rapids AMD MI350
©2024 Marc Greenberg Consulting, LLC
v All Rights Reserved
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HBM Cross-section

Optional HBM HBM DRAM Die TSV
DRAM Dies‘ HBM DRAM Die

\ """ Silicon interposer

Optional multiple
logic dies

HBMDRAMDie

HBM DRAM Die
MBumps
Base Die

C4 Cu Bumps

Standard
Package Trace

Package Package Substrate
FET—2 0 Q0O M 0QQOWN 000000000 WS O C

Circuit Board

Short Wires

— https://en.wikichip.org/wiki/tsmc/cowos
©2024 Marc Greenberg Consulting, LLC
V All Rights Reserved



Some disassembled HBM photos

M S https://www.flickr.com/photos/130561288@N04/albums/72177720295479734/with/52207241684

©2024 Marc Greenberg Consulting, LLC
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AMD MI300 Chiplet stackup

AMD Instinct™ MI300 Family

3D Hybrid Bonded
Architecture compute 53
density and perf/W

Carrier Si
mlmllmu»-ll—[lw HBM
— it £SO

Silicon Interposer

2.5D Architecture for
IOD-10D and HBM3
integration

|
\
L

XCD/CCD
Large module on

substrate

AMDA

AMD INSTINCT™ MI300 ARCHITECTURE BRIEFING | UNDER EMBARGO UNTIL DECEMBER 6, 2023 together we advance_

https://www.servethehome.com/amd-instinct-mi300x-gpu-and-mi300a-apus-launched-for-ai-era/amd-instinct-mi300-family-architecture-chip-stack/



Fundamentals of HBM Operation

f
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Fig. 1: Organization of DRAM (left) and HBM devices (right).

https://www.ece.mcmaster.ca/faculty/hassan/assets/publications/hbm_iccad2021.pdf

Channel i
Poeisde Charnel Mods

©2024 Marc Greenberg Consulting, LLC
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HBM3 Banks and Channels/Pseudochannels

e 8 DWORD channels for data

e 128 bits wide, divided into
2 64-bit Pseudochannels

* Total 1024 Data pins

* AWORD for
Command/Address

* BL2
* 64 banks per channel

https://www.2cm.com.tw/2cm/zh-tw/tech/7C42130C5D1645C8884E53E62E27533E

Massively Parallel Memory Architecture

M ©2024 Marc Greenberg Consulting, LLC
v All Rights Reserved



HBM3 RAS Features

* Parity

* Redundancy and remapping
* LANE_REPAIR
« SOFT_LANE_REPAIR
* HARD_LANE_REPAIR

* Loopback

e ECC / On-die ECC (Symbol based — SEV signal gives ECC status)
* Auto ECS

* Test (IEEE 1500)
—MS
N—



Summary Section



Financial Math

Technical Research Study | High-Bandwidth Memory (HBM) Architecture CPU Revolutionizes High-Performance Computing (HPC)

Table 7 | Equivalent node costs (rounded to nearest dollar)

e 2022 cost analysis

Node Component

25 Intel® Xeon® Max Series Processor with
Zero DIMMs

25 AMD EPYC™ 7773X Processor with 32 GB
DIMM

e HPC Data center cost

H B IVI VS D D R5 B. Equivalent nodes (from Table 6)

A. Total server (node) cost (from Table 2) $31,400 524,136
33 100

C. Equivalent node cost (C=A x B) $1,036,200 $2,413,600
57% less =

This comparison tells us that the cost of a 100-node server cluster powered by Intel Xeon Max Series processors will be 57
percent less than the cost of a 100-node server cluster run by AMD EPYC 7773X processors. However, it will still deliver the same

° A d H B M performance. The performance of the Intel Xeon Max Series processors helps significantly lower TCO at scale because so many
WO r O n fewer servers are needed.
L]
ECO n O I I I I CS . The biggest assumption in our analysis was the equivalent nodes of 100 to 33. Even if the equivalent nodes were 100 to 50 or 100 to

75, it would still cost less to run a server cluster powered by Intel Xeon Max Series processors, as compared to a server cluster run by

o |f you assemble a AMD EPYC 7773X processors.
module with HBM,
the HBM inventory

_—=night be yours
—MS

©2024 Marc Greenberg Consulting, LLC
v All Rights Reserved

https://www.prowesscorp.com/wp-content/uploads/2022/12/220126-Intel-HBM-Architecture-CPU-Revolutionizes-HPC-technical-research-study.pdf




GDDR vs LPDDR vs HBM
rovey Lvows__Lvowe_vows_Lowae_Lcoow oo isoonse oors_

Max capacity per 36-64GB 36GB 24GB 16GB 16GB 2048GB
stack, chip or module
Data Transfer Rate 6.4GT/s 8.8GT/s 6.4GT/s 3.6GT/s 32GT/s 24GT/s 9.6GT/s 8.4GT/s
Max stack 16 12 12 8 1* 1* 8 8-16
Interface Width 2048 1024 1024 1024 32 32 32-64 64
Signaling Undisclosed NRZ NRZ NRZ PAM3 NRZ NRZ NRZ
|/O Voltage 1.1v 1.1v 1.2v 1.2v 1.2- 0.4v 1.1v
1.35v
Bandwidth per stack, 1500- 1200GB/s 819GB/s 406GB/s 128GB/s 96GB/s 77GB/s 67GB/s
chip or module 2000GB/s
A * Designed for clamshell implementation on PCB generating a virtual 2-stack
I= M S Mostly derived from https://www.embedded.com/wp-content/uploads/sites/2/2024/01/memory-bandwidth-table-2023-002.jpg

) ©2024 Marc Greenberg Consulting, LLC
v All Rights Reserved



2023-2029 graphlcs & AI DRAM mlx of technology

GPU memory mix e D i e G2 024, Yol hgnce e 224

* Forecast rapid growth of
HBM4

* Bit split evenly between
GDDR and HBM

Graphics bits (%)

2023 2024 2025 2026 2027 2028 2029
mGDDRS wGDDR6 wmGDDR7 mHBM2 mHBM3 mHBM4

https://www.yolegroup.com/product/monitor/dram-market-monitor/

©2024 Marc Greenberg Consulting, LLC
V All Rights Reserved



Supply Challenges

Al demand means SK hynix has X o

c 25 theregister.com/2024/05/02/sk_hynix_hbm_sold/ L& Incognito New Chrome available &

8 SIGNINIUP “Iea,negistel'p Q =

STORAGE 1

SK hynix's high bandwidth memory buffet fully booked till
2025

Micron also riding the Al wave with 128 GB DDR5 RDIMMs

A Dan Robinson Thu 2 May 2024  13:31 UTC

Memory chipmaker SK hynix has already sold all the high bandwidth memory (HBM) it will manufacture this year
and most of its expected 2025 production, citing increased demand driven by the Al craze. Micron is also getting in
on the act with availability of 128 GB DDR5 RDIMMSs for servers.

SK hynix told a news conference at its Icheon headquarters in South Korea that it is set to expand its output of
memory chips, predicting that global demand is set to increase over the long term thanks to applications such as
Al

©2024 Marc Greenberg Consulting, LLC
v All Rights Reserved

= . P wiccrtech

News Hardware Gaming Mobile Finance Software Deals Reviews How To
Everything changes €D & Texas Children's
for new mothers‘ Pavilion for Women

TSMC's Entire CoWoS Supply Reportedly Reserved By
NVIDIA & AMD Until 2025

Muhammad Zuhair - May 6, 2024 12:30 PM EDT + Copy Shortlink o 996

NN _NEE |
| 0|

AMD and NVIDIA have reportedly reserved TSMC's entire CoWoS production for the next two
years as both firms aggressively compete in the Al race.

TSMC Expects To Increase CoWoS Output Tremendously,

¢ Next-Gen SolC Standard In Works As Well With Entire Supply

Reserved By NVIDIA And AMD Treuding Storles

https://wccftech.com/tsmc-entire-cowos-supply-reserved-by-nvidia-amd-until-2025/



HBM market size

2022-2025 High Bandwidth M

* \ y | - MO
nnnnnn = LIKAIVI £UL9G— 70 (=] L7 LKA

Bit shipments (in millions of GB) 2000
~150%
o late YoY growth
= HBM bit shipments (M GB) O 1000
CAGR:;.55 ~90% =
500 —
HBM share of DRAM market (%) . | 478 1182
2022 2023 2024
Revenue (in billion US$) 56
s HBM revenue ($M) 20 >150%
@ YoY growth
CAGCR2.25 ~94% A =
HBM share of DRAM market (%) 10 $141
o E— -
2022 2023 2024

©2024 Marc Greenberg Consulting, LLC
All Rights Reserved

mory (HBM) market evolutio

1,696
2025

$199

2025

N

8%
6%
4%
2%

0%

21%

14%

7%

0%

5% of bits shipped

15-20% of revenue



IP Availability

* |P availability
generally in nodes
from 7nm to =<3nm

* Multiple suppliers

* |P Vendors
 ASIC vendors

HBM3E PHY at 8.4Gbps Write Eye Diagram
Industry’s fastest HBM3E

HBM3E 8.6Gbps Write Eye Testchip 2.5D Module

_HBMB3E DRAM
Cadence Test Chip rZ L
PHY/Controller

A BN B B
I AD_C

Write eye captured with PRBS like random pattern!

+ HBM3E 8.4Gbps at core voltage — No Overdrive needed
» Full 2.5D stack design by Cadence with reference design for customers

cadence

Example: Cadence, used with permission

©2024 Marc Greenberg Consulting, LLC
All Rights Reserved



JEDEC Approaches Finalization of HBM4 Standard,
Eyes Future Innovations

| | B I\/l 4 ARLINGTON, Va., USA - July 10, 2024 - JEDEC Solid State Technology Association, the global

leader in the development of standards for the microelectronics industry, today announced it is
nearing completion of the next version of its highly anticipated High Bandwidth Memory (HBM)
DRAM standard: HBM4. Designed as an evolutionary step beyond the currently published HBM3

° An n O u n Ced Sta n d a rd C h a nges : standard, HBM4 aims to further enhance data processing rates while maintaining essential features
such as higher bandwidth, lower power consumption, and increased capacity per die and/or stack.
These advancements are vital for applications that require efficient handling of large datasets and

* 2x channels ot are via pHons that requir . .
complex calculations, including generative artificial intelligence (Al), high-performance computing,

. high-end graphics cards, and servers.
* 24Gb and 32Gb die
. . HBM4 is set to introduce a doubled channel count per stack compared to HBM3, with a larger
CO nfl g u rat I O n S physical footprint. To support device compatibility, the standard ensures that a single controller
. can work with both HBM3 and HBM4 if needed. Different configurations will require various
¢ 4; 8; 12; a n d 16 h Igh TSV interposers to accommodate the differing footprints. HBM4 will specify 24 Gb and 32 Gb layers,
with options for supporting 4-high, 8-high, 12-high and 16-high TSV stacks. The committee has
stacks

initial agreement on speeds bins up to 6.4 Gbps with discussion ongoing for higher frequencies.

¢ S peed pl n S U p tO 6 .4G b pS JEDEC encourages companies to join and help shape the future of JEDEC standards. Membership
. . . . grants access to pre-publication proposals and provides early insights into active projects like
Wlth d ISCUSSIO n OngOI ng fo r HBM4. Discover the benefits of membership and join today.
M e r fre q u e n C I eS JEDEC standards are subject to change during and after the development process, including disapproval by the

JEDEC Board of Directors.
I_ M S https://www.jedec.org/news/pressreleases/jedec-approaches-finalization-hbm4-standard-eyes-future-innovations
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What could be in the future: different I/0O

JEDEC PHY for HBM4 =>
PHY + MC Area ~26mm?

HBM4 JEDEC
PHY+MC
HBM4 JEDEC
PHY+MC

UCle PHY for HBM4 =>
Area ~13mm?

UMI PHY for HBM4 =
Area ~7mm?

UMI PHY for HBM4 >
Area ~13mm?

L0 L L R B0 R L L
L AL AL L AL B N N J

A . https://www.nextplatform.com/2024/03/28/how-to-build-a-better-blackwell-gpu-than-nvidia-did/
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What could be in the future: PIM

(a) CPU-Only time (b) CPU + PIM
: . cPU Memaory CPU Pint
AiM Concept « AiM Subsystem and Software Stack H » - .
The Accelerator-in-Memory (AiM) is a GDDR6-based Processing-in- ";Z:;;U m"xm":s::;::;wm (2 cH/Cip) = E +.+ 32-bit matrix . | 32-bit matrix J
Memory device designed to accelerate memory-intensive Machine Application 3 = o_.—k-'.‘ . . .
Learning applications in memory. 5 g — H o . :
g app y ; g E find r'm_n,.fmax - ; : find min/max
rnel Space 2 :; - ( " * . -
Conventional System vs. AiM System . e || 3 = | | quantize each - . : quantize each
: o | |matrix elemen E : matrix element
= s e .l m = = : o -
CPU/GPU o E_hit I'I'Ial'.l'i:l{ -E:I % E . e '__| B—h|t matrix J
g £ £ . run Conv2D .
= run Conv2D P » to filter a .
~Elerenen:~wmemd - Element-wise Add tﬂ fi |tE ra 'E . OO I utiﬂn :
Compute on CPU Compute on.GPU co n'l.l'ﬁluti'ljn = :

layer of CNN

el

layer of CNN -,

g
!
H

H
i

i~ :

L & - —_——— :

E " run Conv2D | fonli

2 : on the next quantize each

& | Muantize each : convolution matrix element

S | |matrix element . layer of CNN | -

F _ : LIS [gbitresult matrid

v i - Y - H
https://hc34.hotchips.org/assets/program/posters/hc34.SKhynix.YongkeeKwon.v03.pdf Figure 8. Quantizatinn on (ﬂ} CPU vs. (h] PIM.

https://www.pdl.cmu.edu/PDL-FTP/associated/asplos18-pim-final.pdf
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summary

* HBM, Chiplet, Al technology are intrinsically linked
* A robust ecosystem for all the components is available
* A roadmap for higher levels of memory bandwidth is assured

e Questions? marc@marcgreenberg.com
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