
Open Source High Performance DRAM/SSD 
Hybrid Caching Engine

https://github.com/facebook/CacheLib 
https://cachelib.org/docs/ 

Jaesoo Lee
Software Engineer, Meta

https://github.com/facebook/CacheLib
https://cachelib.org/docs/


Agenda

01 Introduction

02 CacheLib Architecture

a DRAM Cache

b NVM Cache

03 CacheBench and Workloads

04 Recent Open Source Innovations



● Library implementing S/W caching engine
○ Thread-safe API for insert/find/remove

○ DRAM/SSD-hybrid multi-level (L1/L2)

○ High performance and highly configurable

○ Written in C++

● Two forms of usage
○ In-process local cache

○ Core engine for distributed caching service

● Mainly for web or database caches

Distributed Caching Service

CacheLib: DRAM/SSD Software Caching Engine

Host/container Host/container Host/container



CacheLib: Usage at Meta

● CacheLib is widely adopted (~100s services) within Meta

Read-through 
KV Cache

Local
Disk Cache

Disaggregated
Disk Cache

Counting

DB
Local
Cache

Online 
Data Traffic

CDN 

Proxygen

Storage AI/ML

Ranking

Training

Misc.

Local
Disk Cache

Disagg
Disk Cache

DB
Local Cache

Data 
Analytics

Source 
Control

Stream 
Processing

Counting

Lookaside KV 
Cache

Social Graph



: Open Source Project @github.com

● Open sourced in 2021
○ CacheLib: plug-and-play cache engine for your cache services 
○ CacheBench: benchmarking tool with synthetic and real workloads on target platform
○ Workload traces: traces captured from large-scale cache services within Meta

● Adoption
○ Academic Research: 

■ Kangaroo: Caching billions of tiny objects on flash 
○ Companies using cachelib in their services 

■ Pinterest, NebulaGraph 
○ HW vendors optimizing for CacheLib or Benchmarking with CacheLib 

■ Samsung, Western Digital, Kioxia, Intel, etc.



Application

CacheLib

NVM Cache (Navy Engine)

EnginePair

DRAM Cache

CacheLib Architecture

Access 
Container

Access 
Container
Access 

Container
Eviction

Container

Access 
Container
Access 

ContainerWorkers

Memory Allocator

BlockCache
(large item)

BigHash
(small)

Block
Device

File
Device RAID0

CacheLib API (i.e., allocate/insert/find/remove)

Access ContainerAccess ContainerCallbacksAccess ContainerAccess ContainerPoliciesConfigs



DRAM Cache

Memory Allocator

DRAM Cache

Access Container
(Chained 

HashTable)

reaper pool 
optimizer

pool 
rebalancer

memory 
monitor

Pool #0

Allocation
Class

Eviction 
Container

Pool #n

Allocation
Class

Eviction 
Container

1:1 1:1

● Cache memory is organized into
○ <Pool>.<Allocation Class>.<Slab>.<Chunk>

■ Pool: isolate/protect memory usage
■ Allocation Classes of discrete sizes (minimize frag.)

● Eviction Container
○ List to maintain the eviction/replacement order per 

allocation class
■ e.g., LRU, LRU2Q, TinyLFU

● Workers
○ Memory monitor

■ Release slabs voluntarily to prevent OOM
○ Pool rebalancer

■ Move slabs between ACs for load balancing
○ Pool optimizer/resizer

■ Resize pool dynamically or on request
○ Reaper

■ Evict items proactively to enforce TTL (Time To Live)Allocation
Class

Slab #z
(k bytes chunk)

AC #y

Slab 
(4MB)

Pool #x



DRAM/SSD Hybrid Layered Cache

SSD

● SSD is a cheaper option to achieve higher hit ratio
○ Tradeoffs with latency increase

● find() is asynchronous for NVM access
○ Notified via callback (folly::semifuture)

NVM Cache (Navy Engine)

DRAM Cache
eviction queue

admission 
policy

evicted

nvm hit

insert



NVM Cache
NVM Cache (Navy Engine)

● NVM admission policy
○ Determine whether to admit in NVM cache
○ E.g., reject those soon to be expired, reject first seen, within 

recency threshold, ML-based
● Write rate throttling (a.k.a., Navy admission policy)

○ Random reject for limiting the write rate for SSD endurance 
guarantee

● Engine pair and engine pair selector
○ Logical partitioning of SSD for isolating space usage
○ BigHash is for small item while BlockCache is for larger item

● Target cache storage
○ Block device (O_DIRECT), regular file, RAID0

○ Optional block encryptor/decryptor

EnginePair

BlockCache
(large item)

BigHash
(small item)

Write Rate 
Throttling

bloomfilter hashtable

reclaim

Admission Policy

Job Scheduler

Block
Device

File
Device RAID0

Encryptor/decryptor



NVM Cache: BlockCache and BigHash
● BlockCache

○ Fully associative cache like full-page mapping FTL
■ Append to active clean region (16MB)

○ Reclaim for free region
■ Reinsert or evict based on reinsertion policy

○ Sparse hashmap for indexing
■ Relatively high mapping overhead (>20B per items)

● BigHash for small objects
○ Similar to n-way set associative cache

■ Set is of fixed size called bucket (4KB)
■ FIFO replacement for the collision within bucket

○ Bloom filter (4B) + linear search within bucket
■ Low memory overhead - good for smaller objects

○ High write amplification
■ 4K read-modify + random writes

bucket
(4KB)

region
(16MB)

bloom filter +
linear search

FIFO
(insertion order)

sparse hashmap

FIFO, LRU,
Segmented FIFO

indexing

replacement

hashing append

engine pair

BlockCacheBigHash

item size
small large

engine pair

Engine Pair Selector
(user provided)



CacheBench: High Confidence Benchmarking Platform

Target Platform or Scaled Simulation Platform

CacheBench: High Confidence Benchmarking Platform

● Cache simulator to evaluate cache performance on the target hardware
○ Support for both real trace workloads and synthetic workloads

● Example usages
○ New hardware evaluation for caching workloads
○ Explore/research on eviction/admission policies

key-value 
cache

production system

CDN

social 
graph

distributed
storage

workload trace

synthetic model

cachebench

replay
generator

synthetic
generator

CacheLibTrace Analyzer

SSD
(cache)

Results
(stats)

<<alternative>>

sampling



Recent Innovations from Open Source

NVM Cache

io_uring

FDP/NVMe SSD

DRAM
(tier1)

CXL
(tier2)

SSD

background
migration

eviction &
promotion

DRAM Cache

SSD

NVM Cache

BigHash BlockCache

BigHash BlockCache

RUH/stream 
#0

RUH/stream 
#1

Tiered Memory (intel, 2023): Power/Cost
- Heterogeneous byte-addressable memory support

Kangaroo (CMU, 2021): Performance/WAF
- Enhanced BigHash engine

CacheLib/FDP-SSD (Samsung, 2023): WAF/Cost 
- FDP-aware vertical optimization
- WAF ~1 at ~100% utilization

WAF = ~1



Useful Links

● Come talk to us at Cache Meetup (Early September) 
● More details at cachelib.org 

○ User guide 
○ Architecture guide 
○ CacheBench 

● Papers related to CacheLib 
○ https://www.usenix.org/system/files/osdi20-berg.pdf 
○ https://www.pdl.cmu.edu/PDL-FTP/NVM/McAllister-SOSP21.pdf

https://cachelib.org/
https://cachelib.org/docs/
https://cachelib.org/docs/Cache_Library_Architecture_Guide/overview_a_random_walk
https://cachelib.org/docs/Cache_Library_User_Guides/Cachebench_Overview
https://www.usenix.org/system/files/osdi20-berg.pdf
https://www.pdl.cmu.edu/PDL-FTP/NVM/McAllister-SOSP21.pdf



