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● Library implementing S/W caching engine
○ Thread-safe API for insert/find/remove

○ DRAM/SSD-hybrid multi-level (L1/L2)

○ High performance and highly configurable

○ Written in C++

● Two forms of usage
○ In-process local cache

○ Core engine for distributed caching service

● Mainly for web or database caches

Distributed Caching Service

CacheLib: DRAM/SSD Software Caching Engine

Host/container Host/container Host/container



CacheLib: Usage at Meta

● CacheLib is widely adopted (~100s services) within Meta

Read-through 
KV Cache

Local
Disk Cache

Disaggregated
Disk Cache

Counting

DB
Local
Cache

Online 
Data Traffic

CDN 

Proxygen

Storage AI/ML

Ranking

Training

Misc.

Local
Disk Cache

Disagg
Disk Cache

DB
Local Cache

Data 
Analytics

Source 
Control

Stream 
Processing

Counting

Lookaside KV 
Cache

Social Graph



: Open Source Project @github.com

● Open sourced in 2021
○ CacheLib: plug-and-play cache engine for your cache services 
○ CacheBench: benchmarking tool with synthetic and real workloads on target platform
○ Workload traces: traces captured from large-scale cache services within Meta

● Adoption
○ Academic Research: 

■ Kangaroo: Caching billions of tiny objects on flash 
○ Companies using cachelib in their services 

■ Pinterest, NebulaGraph 
○ HW vendors optimizing for CacheLib or Benchmarking with CacheLib 

■ Samsung, Western Digital, Kioxia, Intel, etc.



Application

CacheLib

NVM Cache (Navy Engine)

EnginePair

DRAM Cache

CacheLib Architecture
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DRAM Cache

Memory Allocator

DRAM Cache
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● Cache memory is organized into
○ <Pool>.<Allocation Class>.<Slab>.<Chunk>

■ Pool: isolate/protect memory usage
■ Allocation Classes of discrete sizes (minimize frag.)

● Eviction Container
○ List to maintain the eviction/replacement order per 

allocation class
■ e.g., LRU, LRU2Q, TinyLFU

● Workers
○ Memory monitor

■ Release slabs voluntarily to prevent OOM
○ Pool rebalancer

■ Move slabs between ACs for load balancing
○ Pool optimizer/resizer

■ Resize pool dynamically or on request
○ Reaper

■ Evict items proactively to enforce TTL (Time To Live)Allocation
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DRAM/SSD Hybrid Layered Cache

SSD

● SSD is a cheaper option to achieve higher hit ratio
○ Tradeoffs with latency increase

● find() is asynchronous for NVM access
○ Notified via callback (folly::semifuture)
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NVM Cache
NVM Cache (Navy Engine)

● NVM admission policy
○ Determine whether to admit in NVM cache
○ E.g., reject those soon to be expired, reject first seen, within 

recency threshold, ML-based
● Write rate throttling (a.k.a., Navy admission policy)

○ Random reject for limiting the write rate for SSD endurance 
guarantee

● Engine pair and engine pair selector
○ Logical partitioning of SSD for isolating space usage
○ BigHash is for small item while BlockCache is for larger item

● Target cache storage
○ Block device (O_DIRECT), regular file, RAID0

○ Optional block encryptor/decryptor
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NVM Cache: BlockCache and BigHash
● BlockCache

○ Fully associative cache like full-page mapping FTL
■ Append to active clean region (16MB)

○ Reclaim for free region
■ Reinsert or evict based on reinsertion policy

○ Sparse hashmap for indexing
■ Relatively high mapping overhead (>20B per items)

● BigHash for small objects
○ Similar to n-way set associative cache

■ Set is of fixed size called bucket (4KB)
■ FIFO replacement for the collision within bucket

○ Bloom filter (4B) + linear search within bucket
■ Low memory overhead - good for smaller objects

○ High write amplification
■ 4K read-modify + random writes
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CacheBench: High Confidence Benchmarking Platform

Target Platform or Scaled Simulation Platform

CacheBench: High Confidence Benchmarking Platform

● Cache simulator to evaluate cache performance on the target hardware
○ Support for both real trace workloads and synthetic workloads

● Example usages
○ New hardware evaluation for caching workloads
○ Explore/research on eviction/admission policies
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Recent Innovations from Open Source
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Tiered Memory (intel, 2023): Power/Cost
- Heterogeneous byte-addressable memory support

Kangaroo (CMU, 2021): Performance/WAF
- Enhanced BigHash engine

CacheLib/FDP-SSD (Samsung, 2023): WAF/Cost 
- FDP-aware vertical optimization
- WAF ~1 at ~100% utilization

WAF = ~1



Useful Links

● Come talk to us at Cache Meetup (Early September) 
● More details at cachelib.org 

○ User guide 
○ Architecture guide 
○ CacheBench 

● Papers related to CacheLib 
○ https://www.usenix.org/system/files/osdi20-berg.pdf 
○ https://www.pdl.cmu.edu/PDL-FTP/NVM/McAllister-SOSP21.pdf

https://cachelib.org/
https://cachelib.org/docs/
https://cachelib.org/docs/Cache_Library_Architecture_Guide/overview_a_random_walk
https://cachelib.org/docs/Cache_Library_User_Guides/Cachebench_Overview
https://www.usenix.org/system/files/osdi20-berg.pdf
https://www.pdl.cmu.edu/PDL-FTP/NVM/McAllister-SOSP21.pdf



