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Executive Summary

+ Data movement between .memo(?//stora ge units and compute units is a major
contributor to execution time and energy consumption

. Processing-in—l\/\emory (PIM) is a paradigm that can tackle the data movement
bottlenec
- Though explored for +50 years, technology challenges prevented the successful materialization

* UPMEM has designed and fabricated the first publicly-available real-world PIM
architecture
- DDR4 chips embedding in-order multithreaded DRAM Processing Units (DPUs)

* Our work:
- Introduction to UPMEM programming model and PIM architecture
- Microbenchmark-based characterization of the DPU
- Benchmarking and workload suitability study

* Main contributions:
- Comprehensive characterization and analysis of the first commercially-available PIM architecture

- PrIM (Processing-In-Memory) benchmarks:
* 16 workloads that are memory-bound in conventional processor-centric systems
» Strong and weak scaling characteristics

- Comparison to state-of-the-art CPU and GPU

* Takeaways:
- Workload characteristics for PIM suitability

- Programming recommendations
- Suggestions and hints for hardware and architecture designers of future PIM systems
- PrIM: (a) programming samples, (b) evaluation and comparison of current and future PIM systems
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Data Movement in Computing Systems

* Data movement dominates performance and is a major system
energy bottleneck

 Total system energy: data movement accounts for
- 62%in consumer applications™®,
- 40% in scientific applications*,

- 35% in mobile applications*
Data Movement

. | €——>

l 1

<€ >
e [ | (e [T W,

*Boroumand et al., “Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks,” ASPLOS 2018
* Kestor et al., “Quantifying the Energy Cost of Data Movement in Scientific Applications,” ISWC 2013
* Pandiyan and Wu, “Quantifying the energy cost of data movement for emerging smart phone workloads on mobile platforms,” IISWC 2014
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Data Movement in Computing Systems

dominates IS @ major system
energy bottleneck

* Total system energy: data movement accounts for
- 62%in consumer applications™,

Compute systems should be more data-centric

Processing-In-Memory proposes
computing where it makes sense
(where data resides)

\ Video Video Audio Dlsp.lay
\ Encoder Decoder Engine V4

*Boroumand et al., “Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks,” ASPLOS 2018
* Kestor et al., “Quantifying the Energy Cost of Data Movement in Scientific Applications,” ISWC 2013
*Pandiyan and Wu, “Quantifying the energy cost of data movement for emerging smart phone workloads on mobile platforms,” lISWC 2014
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UPMEM Processing-in-DRAM Engine (2019)

Processing in DRAM Engine

Includes standard DIMM modules, with a large
number of DPU processors combined with DRAM chips.

Replaces standard DIMMs

o DDR4 R-DIMM modules

8GB+128 DPUs (16 PIM chips)
Standard 2x-nm DRAM process

o Large amounts of compute & memory bandW|dth

% 8GB/128xDPU PIM R-DIMM Module

C P U UPMEM UPMEM UPMEM UPMEN UPMEM LIPMEN UPMEM UPMEM
PIM PiNA PiM P PIM PIM PIM PI
(x86, ARM, RV...) chip aip chip ehip ehip e chip thip

https://www.anandtech.com/show/14750/hot-chips-31-analysis-inmemory-processing-by-upmem 5
https://www.upmem.com/video-upmem-presenting-its-true-processing-in-memory-solution-hot-chips-2019/
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Accelerator Model
s UPMEM DIMMs coexist with conventional DIMMs

* Integration of UPMEM DIMMs in a system follows an
accelerator model

* UPMEM DIMMs can be seen as a loosely coupled
accelerator

- Explicit data movement between the main processor (host
CPU) and the accelerator (UPMEM)

- Explicit kernel launch onto the UPMEM processors

* This resembles GPU computing

SAFARI



System Organization (1)

* Ina UPMEM-based PIM system UPMEM DIMMs coexist
with regular DDR4 DIMMs

Main Memory
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System Organization (II)

* AUPMEM DIMM contains 8 or 16 chips
- Thus, 1 or 2 ranks of 8 chips each

* Inside each PIM chip there are:

- 8 64MB banks per chip: Main RAM (MRAM) banks

- 8 DRAM Processing Units (DPUs) in each chip, 64 DPUs per
rank

Main Memory PIM Ch ip
= ye ~\
/ Control/Status Interface <—>[ DDR4 Interface ]
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( ) @ | | tip )\ Chip )\ chip )\ chip )| chip )\ chip )\ chip )| chip / A ‘
/
Chip || Chip || Chip || Chip || Chip || Chip || Chip || Chip \
/
/;M’ ( — r#\\\
Host )/ DISPATCH
FETCH1 _
CPU £ )/ Fercy )lap 23KB o
f T FETCH3 IRAM v
5[ > D cipns | OAMB
ﬁ Chip || Chip || Chip || Chip || Chip || Chip || Chip || Chip ) 4% - (READOP3 IE DRAM
chip )| chip || chip || chip || chip || chip || chip )| chip
4 P ek | |2 LEY
PIM-enabled Memory "~ _ T [aws WRAM 1
S 2 MERGEL _—37
(& ([ MERGE2 )’; %8
\_ J

SAFARI

11



2,560-DPU UPMEM PIM System

Main Memory
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« 20 UPMEM DIMMs of 16
chips each (40 ranks)

* Dual x86 socket
o UPMEM DIMMs coexist with
regular DDR4 DIMMs

- 2 memory controllers/socket
(3 channels each)

- 2 conventional DDR4 DIMMs
on one channel of one
controller

PI/

A

* There are some faulty DPUs in the system that we use in our 1 2
SA FA R’ experiments. Thus, the maximum number of DPUs we can use is 2,524
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Vector Addition (VA)

* Our first programming example

* We partition the input arrays across:
- DPUs
- Tasklets, i.e., software threads running on a DPU

SAFARI
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CPU-DPU/DPU-CPU Data Transfers

* CPU-DPU and DPU-CPU transfers
- Between host CPU’s main memory and DPUs’ MRAM banks

Main Memory

P
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.=
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e Serial CPU-DPU/DPU-CPU transfers:
- Asingle DPU (i.e., 1t MRAM bank)

* Parallel CPU-DPU/DPU-CPU transfers:
- Multiple DPUs (i.e., many MRAM banks)

* Broadcast CPU-DPU transfers:
- Multiple DPUs with a single buffer

SAFARI
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Inter-DPU Communication

* There is no direct communication channel between DPUs

Main Memory

P
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y =

y =
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PIM-enabled Memory

* Inter-DPU communication takes places via the host CPU using CPU-DPU
and DPU-CPU transfers

* Example communication patterns:

- Merging of partial results to obtain the final result
* Only DPU-CPU transfers

- Redistribution of intermediate results for further computation
* DPU-CPU transfers and CPU-DPU transfers

SAFARI 16
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How Fast are these Data Transfers?

* With a microbenchmark, we obtain the sustained
bandwidth of all types of CPU-DPU and DPU-CPU
transfers

* Two experiments:

- 1 DPU: variable CPU-DPU and DPU-CPU transfer size (8 bytes
to 32 MB)

- 1rank: 32 MB CPU-DPU and DPU-CPU transfers to/from a set
of 1 to 64 MRAM banks within the same rank

* Experiments with more than one rank
- Channel-level parallelism

SAFARI 17
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DRAM Processing Unit

PIM Chip

-

\_
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DPU Pipeline

* In-order pipeline

- Up to 425 MHz
* Fine-grain multithreaded

- 24 hardware threads
* 14 pipeline stages

: Thread selection
: Instruction fetch
- READOP: Register file
: Operand formatting

- ALU: Operation and WRAM
- MERGE: Result formatting

SAFARI
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Arithmetic Throughput: Microbenchmark

e Goal

- Measure the maximum arithmetic throughput for different
datatypes and operations

e Microbenchmark

- We stream over an array in WRAM and perform read-modify-write
operations

Experiments on one DPU

We vary the number of tasklets from 1 to 24
Arithmetic operations: add, subtract, multiply, divide
Datatypes: int32, int64, float, double

* We measure cycles with an accurate cycle counter that the
SDK provides

- We include WRAM accesses (including address calculation) and
arithmetic operation

SAFARI 21



Arithmetic Throughput: 11 Tasklets
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KEY OBSERVATION 1

The arithmetic
throughput of a DRAM
Processing Unit
saturates at 11 or more
tasklets.
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This observation is
consistent for different
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Arithmetic Throughput: Native Support

Arithmetic Throughput (MQP

Arithmetic Throughput (MQ

SN
1

w
1

(c) FLOAT (1 DPU)

A —A—ADD

/\ SUB
/\ =O-MUL
/'\ =0=DIV

SAFARI

Arithmetic Throughput (MQR

30 A

(b) INT64 (1 DPU)

#Tasklets

(d) DOUBLE (1 DPU)

KEY OBSERVATION 2

* DPUs provide native
hardware support for 32-
and 64-bit integer
addition and subtraction,
leading to high throughput
for these operations.

* DPUs do not natively

support 32- and 64-bit
multiplication and
division, and floating
point operations. These
operations are emulated by
the UPMEM runtime
library, leading to much
lower throughput.




DPU: WRAM Bandwidth

PIM Chip
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DPU: MRAM Latency and Bandwidth

PIM Chip
-
)
c
= 64-MB
Q) | 64 bits
- P DRAM
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MRAM Bandwidth

e Goal

- Measure MRAM bandwidth for different access patterns

e Microbenchmarks

* mram read();
e mram write();

- Latency of a single DMA transfer for different transfer sizes

]

AVl benchmark
« COPY, COPY-DMA
e ADD, SCALE, TRIAD

- Strided access pattern
* Coarse-grain strided access
* Fine-grain strided access

- Random access pattern (GUPS)

* We do include accesses to MRAM

SAFARI
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MRAM Read and Write Latency (1)
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We can model the MRAM latency with a linear expression

MRAM Latency (in cycles) = a + BXsize

In our measurements, f equals 0.5 cycles/byte.
Theoretical maximum MRAM bandwidth = 700 MB/s at 350 MHz

SAFARI
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MRAM Read and Write Latency (lI)
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KEY OBSERVATION 4

* The DPU’s Main memory (MRAM) bank access latency increases

linearly with the transfer size.
* The maximum theoretical MRAM bandwidth is 2 bytes per cycle.
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MRAM Bandwidth

* Goal
- Measure MRAM bandwidth for different access patterns

e Microbenchmarks

- Latency of a single DMA transfer for different transfer sizes
* mram read();
* mram write();

- COPY, COPY-DMA

- STREAM benchmark
« ADD, SCALE, TRIAD

- Strided access pattern
* Coarse-grain strided access
* Fine-grain strided access

- Random access pattern (GUPS)

* We do include accesses to MRAM

SAFARI
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STREAM Benchmark: Bandwidth Saturation

700 1 STREAM (MRAM, INT64, 1DPU)

S 600 -

< o

<3S 500 - ~0-COPY-DMA
2 =400 - ~0—-COPY

S 5 ~A-ADD

E = 300 - -C-SCALE

5 2 200 - TRIAD

%)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
HTasklets

KEY OBSERVATION 5

 When the access latency to an MRAM banKk for a streaming benchmark (COPY-
DMA, COPY, ADD) is larger than the pipeline latency (i.e., execution latency of
arithmetic operations and WRAM accesses), the performance of the DPU saturates at a

number of tasklets smaller than 11. This is a memory-bound workload.

* When the pipeline latency for a streaming benchmark (SCALE, TRIAD) is larger
than the MRAM access latency, the performance of a DPU saturates at 11 tasklets.
This is a compute-bound workload.
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MRAM Bandwidth

* Goal
- Measure MRAM bandwidth for different access patterns

* Microbenchmarks
- Latency of a single DMA transfer for different transfer sizes
* mram read();
e mram write();
- STREAM benchmark
 COPY, COPY-DMA
* ADD, SCALE, TRIAD

(- Strided access pattern )
* Coarse-grain strided access
* Fine-grain strided access
.- Random access pattern (GUPS) D
* We do include accesses to MRAM
SAFARI 31



DPU: Arithmetic Throughput vs. Operational Intensity
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Arithmetic Throughput vs. Operational Intensity (1)

e Goal

- Characterize memory-bound regions and compute-bound regions for
different datatypes and operations

 Microbenchmark

- We load one chunk of an MRAM array into WRAM
- Perform a variable number of operations on the data
- Write back to MRAM

* The experiment is inspired by the Roofline model*

* We define operational intensity (Ol) as the number of
arithmetic ogerations performed per byte accessed from
MRAM (OP/B)

* The pipeline latency changes with the operational intensity,
but the MRAM access latency is fixed

SA FA Rl *S. Williams et al., “Roofline: An Insightful Visual Performance Model for Multi-core Architectures,” CACM, 2009



Arithmetic Throughput vs. Operational Intensity (II)
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(a) INT32, ADD (1 DPU)
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region, the arithmetic
throughput is flat at its
Operational Intensity (OP/B) K maXimum )
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\the memory-bound region and the compute-bound region happens

The throughput saturation point is the operational intensity
where the transition between

v

The throughput saturation point is as low as ¥ OP/B,

i.e., 1integer addition per every 32-bit element fetched
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PriM Benchmarks

e Goal

- A common set of workloads that can be used to
e evaluate the UPMEM PIM architecture,
* compare software improvements and compilers,
* compare future PIM architectures and hardware

* Two key selection criteria:
- Selected workloads from different application domains
- Memory-bound workloads on processor-centric architectures

* 14 different workloads, 16 different benchmarks*

SA FARI *There are two versions for two of the workloads (HST, SCAN). 3 6



PrIM Benchmarks: Application Domains

Domain Benchmark Short name
Vector Addition VA
Dense linear algebra
Matrix-Vector Multiply GEMV
Sparse linear algebra Sparse Matrix-Vector Multiply SpMV
Select SEL
Databases
Unique UNI
Binary Search BS
Data analytics
Time Series Analysis TS
Graph processing Breadth-First Search BFS
Neural networks Multilayer Perceptron MLP
Bioinformatics Needleman-Wunsch NW
Image histogram (short) HST-S
Image processing
Image histogram (large) HST-L
Reduction RED
Prefix sum (scan-scan-add) SCAN-SSA
Parallel primitives
Prefix sum (reduce-scan-scan) SCAN-RSS
Matrix transposition TRNS

SAFARI
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Roofline Model

* Intel Advisor on an Intel Xeon E3-1225 v6 CPU

16 - - 7 Peak compute performance

5 g / G- MLP /
S, 7 Gemvy  ew
@ 13
= = BS~@Q/(§HST
e 2 o~ UNI G NW
g 1 V—g G TRNS
S © % _GRED
€ 05 A e BFS
& X SCAN

0.25 —&

0.125 . |

0.01 0.1 1 10

Arithmetic Intensity (OP/B)

[ All workloads fall in the memory-bound area of the Roofline ]
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Evaluation Methodology

* We evaluate the 16 PrIM benchmarks on two UPMEM-
based systems:
- 2,556-DPU system
- 640-DPU system

* Strong and weak scaling experiments on the 2,556-DPU
system
- 1 DPU with different numbers of tasklets
- 1rank (strong and weak)
- Up to 32 ranks

* Comparison of both UPMEM-based PIM systems to
state-of-the-art CPU and GPU

- Intel Xeon E3-1240 CPU
- NVIDIA TitanV GPU

SAFARI 40



Strong Scaling: 1 DPU (1)

* Strong scaling
experiments on 1 DPU

- We set the number
of tasklets to 1, 2, 4,
8,and 16

- We show the
breakdown of
execution time:

* DPU: Execution
time on the DPU

* |nter-DPU: Time for
inter-DPU

communication via
the host CPU

 CPU-DPU:Time for
CPU to DPU
transfer of input
data

e DPU-CPU: Time for
DPU to CPU
transfer of final
results

- Speedup over 1
tasklet
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Strong Scaling: 1 DPU (lI)

3DPU-CPU ZZ3DPU-CPU

ESNCPU-DPU [ - [ 10000 - [ [E=3CPU-DPU

1200

8
1000 D I nter-DPU | _ - " :ggg - _ I nter-DPU 7 (VA, GEMV, SpMV’ SEL, UNI, TS’ \
S wo < 5 e :o| | MLP, NW, HST-S, RED, SCAN-SSA
= = I~ = °
5 5 5 o 5 oo . (Scan kernel), SCAN-RSS (both
g o I A | : g 0 g o . kernels), and TRNS (Step 2 kernel),
- S =IE i o . the best performing number of
0 0 0 0
#tasklets per DPU IG i UaSklets IS 16 )

#tasklets per DPU #tasklets per DPU #tasklets per DPU

8 140000
= D Inter-DPU L7 120000
77 ==y Z oooo : Speedups 1.5-2.0x as we double the
o 3 LE a0ooo 3 number of tasklets from 1to 8.
5 4 & 60000 4
S w0 2o S o 49 Speedups 1.2-1.5x from 8 to 16,
o 200 L % 20000 2 since the pipeline throughput
UNI o e e g A e saturates at 11 tasklets
#tasklets per DPU #tasklets per DPU k J
12 s 1600 ggﬂj;gg
1400 I | nter-DPU
B | 2 12 KEY OBSERVATION 10
'E 800 6 'g '§ 'E 1222
R E A number of tasklets
] 400 g o 400
“ 200 2 “ “ 200

greater than 11 is a good
choice for most real-

- N < 0 ©
—

MLP - N < © ©

=
=3

#tasklets per DPU #tasklets per DPU
ety Ry . . 2 T —
ooy | e = world workloads we
| — Speedup (Add) 7 —) p2 - 12
E 2000
= s s |
£ 150 £ i | ° tested (16 kernels out of 19
lii € 1500 4 _ch £ 1500 I _g,
= = |
. . 3l | kernels from 16
¢ 0 E e B .
g | 2 benchmarks), as it fully
0 0 0 0 + 0
RED = & ¥ o g9 CAN-SSA = N ¥ @ g SCAN-RSS ™ l h U’ pp l
#tasklets per DPU #tasklets per DPU #tasklets per DPU #tasklets per DPU utl lzeS t e DP S l e lne'

SAFARI



Strong Scaling: 1 Rank

* Strong scaling
experiments on 1 rank

- We set the number of
tasklets to the best
performing one

- The number of DPUs
is1, 4,16, 64

- We show the
breakdown of
execution time:

* DPU: Execution time
on the DPU

* Inter-DPU: Time for
inter-DPU
communication via
the host CPU

* (CPU-DPU: Time for
CPU to DPU transfer
of input data

* DPU-CPU: Time for
DPU to CPU transfer
of final results

- Speedup over 1 DPU
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Weak Scaling: 1 Rank
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Strong Scaling: 32 Ranks

* Strong scaling
experiments on 32

rank

- We set the number
of tasklets to the
best performing one

- The number of DPUs
is 256, 512, 1024,
2048

- We show the

breakdown of
execution time:

DPU: Execution
time on the DPU
Inter-DPU: Time for
inter-DPU

communication via
the host CPU

We do not show
CPU-DPU/DPU-CPU
transfer times
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CPU/GPU: Evaluation Methodology

* Comparison of both UPMEM-based PIM systems to
state-of-the-art CPU and GPU

- Intel Xeon E3-1240 CPU
- NVIDIA TitanV GPU

* We use state-of-the-art CPU and GPU counterparts of
PriM benchmarks

- https://github.com/CMU-SAFARI/prim-benchmarks

* We use the largest dataset that we can fit in the GPU
memory

* We show overall execution time, including DPU kernel
time and inter DPU communication
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CPU/GPU: Performance Comparison (1)

< 1024.000
'©  256.000
(%]

w 64.000
S 16.000
>  4.000
S 1.000
S 0.250
3  0.063
2 0.016
g 0.004
L  0.001
(Y]

OCPU 1 GPU 640 DPUs 2556 DPUs
_ 1 1
- 1 p— p— p— !
& B 1 . 1
n 1 1
_ N : : N . 1 1
N \ My =] _\ r N My I 1
Py A A & I M Iy : :
THH NFHN AD N R W . .
N NN OHN AD N R M | |
. N A \ a N I y o 1 y i
N A N N Iy by N k) 1 B y 1
A Py A 1 [ 1 N
TIA YN TN R I .. : - ~
k A y M Iy A 1 N ! A Ny ! :
. N 1 \ o N M y M i N \ 1 \
N & \ b M M y Iy 1 M N 1 \
| M W ™ Y & M h A 1 & iy 1 N
N N N i Iy M N N 1 4 b 1
A N I \ A W & N 1 A P 1 y
1 M N M N A A & N 1 by Py 1 |
N y . N y N \ ! N N . ! M
<iglzla|2(=z|als|gle| |zl|z|elelslz| |22
v | D Sl hle|lon|c| & a|ls|z — | = | <
\ ] = w o 2 2 —
T | T z| =z GH K% < | < | 2
Al A S| 2
O O
More PIM-suitable workloads (1) Less PIM-suitable workloads (2)

The 2,556-DPU and the 640-DPU systems outperform the CPU for

all benchmarks except SpMV, BFS, and NW

The 2,556-DPU and the 640-DPU are, respectively, 93.0x and 27.9x

faster than the CPU for 13 of the PrIM benchmarks
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CPU/GPU: Performance Comparison (Il)

More PIM-suitable workloads (1)

Less PIM-suitable workloads (2)

The 2,556-DPU outperforms the GPU
for 10 PriIM benchmarks with an average of 2.54x

The performance of the 640-DPU is within 65%
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CPU/GPU: Performance Comparison (lI)
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KEY OBSERVATION 19

The UPMEM-based PIM system can outperform a state-of-the-art GPU
on workloads with three key characteristics:
1. Streaming memory accesses

GMEAN

2. No or little inter-DPU synchronization

3. No or little use of integer multiplication, integer division, or floating
point operations

These three key characteristics make a workload potentially suitable to

the UPMEM PIM architecture.
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Outline

(« Introduction b
- Accelerator Model

. - UPMEM-based PIM System Overview )

(¢ UPMEM PIM Programming )
- Vector Addition
- CPU-DPU Data Transfers
- Inter-DPU Communication

| - CPU-DPU/DPU-CPU Transfer Bandwidth )

(» DRAM Processing Unit h
- Arithmetic Throughput

. - WRAM and MRAM Bandwidth y

(¢ PrIM Benchmarks R
- Roofline Model

. - Benchmark Diversity )

(+ Evaluation b
- Strong and Weak Scaling

- Comparison to CPU and GPU Y

* Key Takeaways
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Key Takeaway 1
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KEY TAKEAWAY 1

NV X D

The throughput
saturation point is as low
as ¥a OP/B,

i.e., 1integer addition per
every 32-bit element
fetched

The UPMEM PIM architecture is fundamentally compute bound.

As aresult, the most suitable workloads are memory-bound.
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Key Takeaway 2
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KEY TAKEAWAY 2
The most well-suited workloads for the UPMEM PIM architecture

use no arithmetic operations or use only simple operations (e.g.,
bitwise operations and integer addition/subtraction).

SAFARI

GEMV
SpMV
TS
BFS
MLP
NW

Less PIM-suitable workloads (2)

GMEAN (1)

GMEAN (2)

GMEAN
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Key Takeaway 3
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Key Takeaway 4

KEY TAKEAWAY 4

e UPMEM-based PIM systems outperform state-of-the-art CPUs
in terms of performance (by 23.2x on 2,556 DPUs for 16 PrIM
benchmarks) and energy efficiency on most of PriM
benchmarks.

e UPMEM-based PIM systems outperform state-of-the-art GPUs

on a majority of PrIM benchmarks (by 2.54x on 2,556 DPUs for
10 PrIM benchmarks), and the outlook is even more positive for
future PIM systems.

e UPMEM-based PIM systems are more energy-efficient than
state-of-the-art CPUs and GPUs on workloads that they provide
performance improvements over the CPUs and the GPUs.
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Executive Summary

+ Data movement between .memo(?//stora ge units and compute units is a major
contributor to execution time and energy consumption

. Processing-in—l\/\emory (PIM) is a paradigm that can tackle the data movement
bottlenec
- Though explored for +50 years, technology challenges prevented the successful materialization

* UPMEM has designed and fabricated the first publicly-available real-world PIM
architecture
- DDR4 chips embedding in-order multithreaded DRAM Processing Units (DPUs)

* Our work:
- Introduction to UPMEM programming model and PIM architecture
- Microbenchmark-based characterization of the DPU
- Benchmarking and workload suitability study

* Main contributions:
- Comprehensive characterization and analysis of the first commercially-available PIM architecture

- PrIM (Processing-In-Memory) benchmarks:
* 16 workloads that are memory-bound in conventional processor-centric systems
» Strong and weak scaling characteristics

- Comparison to state-of-the-art CPU and GPU

* Takeaways:
- Workload characteristics for PIM suitability

- Programming recommendations
- Suggestions and hints for hardware and architecture designers of future PIM systems
- PrIM: (a) programming samples, (b) evaluation and comparison of current and future PIM systems
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Short Paper Version

Benchmarking Memory-Centric Computing Systems:
Analysis of Real Processing-in-Memory Hardware

Juan Gémez-Luna Izzat El Hajj Ivan Fernandez Christina Giannoula Geraldo F. Oliveira Onur Mutlu
ETH Ziirich American University University National Technical ETH Ziirich ETH Ziirich
of Beirut of Malaga University of Athens

https://doi.org/10.1109/1GSC54211.2021.9651614
https://arxiv.org/pdf/2110.01709.pdf
https://github.com/CMU-SAFARI/prim-benchmarks
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Long Paper Version

Benchmarking a New Paradigm: An Experimental Analysis
of a Real Processing-in-Memory Architecture

Juan Gémez-Luna®! Izzat El Hajj? Ivan Fernandez!:®> Christina Giannoula®*
Geraldo F. Oliveira! Onur Mutlu!

IETH Ziirich  2American University of Beirut  *University of Malaga  *National Technical University of Athens

https://doi.org/10.1109/ACCESS.2022.3174101
https://arxiv.org/pdf/2105.03814.pdf
https://github.com/CMU-SAFARI/prim-benchmarks
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Understanding a Modern PIM Architecture

Understanding a Modern
Processing-in-Memory Architecture:
Benchmarking and Experimental Characterization

Juan Gémez Luna, Izzat El Hajj,
Ivan Fernandez, Christina Giannoula,
Geraldo F. Oliveira, Onur Mutlu

https://arxiv.org/pdf/2105.03814.pdf
https://github.com/CMU-SAFARI/prim-benchmarks

| Ziirich

SAFARI Live Seminar: Understanding a Modern Processing-in-Memory Architecture

2,579 views * Streamed live on Jul 12, 2021 e 93 CP 0 > SHARE =+ SAVE
@ Onur Mutlu‘Lectures SUBSCRIBED D,
&> 18.7K subscribers =

S A FA R l https://www.youtube.com/watch?v=D8Hjy2iU9I4&list=PL5Q2s0XY2Zi tOTAYm--dYByNPL7JhwR9
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PrIM Repository

* All microbenchmarks, benchmarks, and scripts
* https://github.com/CMU-SAFARI/prim-benchmarks

H CMU-SAFARI/ prim-benchmarks @ Unwatch ~ 2 {7 star 2 % Fork 1

<> Code () Issues 1 Pull requests (*) Actions ["1] Projects [ wiki () Security [~ Insights 51 Settings

¥ main +  prim-benchmarks / README.md Go to file

Juan Gomez Luna PrIM -- first commit Latest commit 3desb49 9 days ago O History

A 1 contributor

‘= 168 lines (132 sloc) 5.79 KB Raw Blame G 2 O

PrIM (Processing-In-Memory Benchmarks)

PrIM is the first benchmark suite for a real-world processing-in-memory (PIM) architecture. PrIM is developed to evaluate,
analyze, and characterize the first publicly-available real-world processing-in-memory (PIM) architecture, the UPMEM PIM
architecture. The UPMEM PIM architecture combines traditional DRAM memory arrays with general-purpose in-order cores, called
DRAM Processing Units (DPUs), integrated in the same chip.

PrIM provides a common set of workloads to evaluate the UPMEM PIM architecture with and can be useful for programming,
architecture and system researchers all alike to improve multiple aspects of future PIM hardware and software. The workloads
have different characteristics, exhibiting heterogeneity in their memory access patterns, operations and data types, and
communication patterns. This repository also contains baseline CPU and GPU implementations of PrIM benchmarks for
comparison purposes.

Prim also includes a set of microbenchmarks can be used to assess various architecture limits such as compute throughput and
memory bandwidth.
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Processing-in-Memory (PIM)

* PIM is a computing paradigm that advocates for memory-
centric computing systems, where processing elements are
placed near or inside the memory arrays

* Real-world PIM architectures are becoming a reality

- UPMEM PIM, Samsung HBM-PIM, Samsung AXDIMM, SK Hynix AiM,
Alibaba HB-PNM

* These PIM systems have some common characteristics:

1. Thereis a host processor (CPU or GPU) with access to (1) standard
main memory, and (2) PIM-enabled memory

2. PIM-enabled memory contains multiple PIM processing elements
(PEs) with high bandwidth and low latency memory access

3. PIM PEs run only at a few hundred MHz and have a small number
of registers and small (or no) cache/scratchpad

4. PIM PEs may need to communicate via the host processor
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Processing-in-Memory Course (Spring 2023)

Loy

d S h O rt W e e kl y I e Ct u re S gﬁ;‘f el B Rec;:::n:nges Media Manager Sitema‘p

Y (Spring 2023)

Trace: * heterogeneous_systems « processing_in_memory

* Hands-on projects

Table of Contents

Courses . .
Data-Centric Architectures: Fundamentally Data-Centric Architectures:
= SoftMC . Fundamentally Improving
o Improving Performance and Energy (227- Performance and Energy (227-
i i 0085-37L)
= Accelerating Genomics 0085_37'_) e i
= Mobile Genomics Vet
1 " entors
= Processing-in-Memory Y : ’
= Heterogeneous Systems Course Description Lea{:ﬂlﬁg/ldeo Playlist on
: m;’ii:;rzlssziware odesian Data movement between the memory units and the compute units of Spring 2023 Meetings/Schedule
g current computing systems is a major performance and energy Past Lecture Video Playlists on
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PIM Course: Lecture 1: Data-Centric Archif proving Per & Energy (Spring 2023) bottleneck. From large-scale servers to mobile devices, data movement Learning Materials
costs dominate computation costs in terms of both performance and Assignments

Onur Mutlu Lectures - 1.1K views - Streamed 3 months ago

energy consumption. For example, data movement between the main

memory and the processing cores accounts for 62% of the total system
PIM Course: Lecture 2: How to Evaluate Data Movement Bottlenecks (Spring 2023) energy in consumer applications. As a result, the data movement bottleneck is a huge burden that greatly
limits the energy efficiency and performance of modern computing systems. This phenomenon is an
undesired effect of the dichotomy between memory and the processor, which leads to the data movement
bottleneck.

o (P or GPU) i 3
i oy Onur Mutly Lectures - 332 views - 2 months ago

Livestream - Data-Centric ASPLOS 2023 Tutorial: Real-world Processing-in-Memory Systems for Modern Workloads

Onur Mutlu Lectures - 1.5K views - Streamed 2 months ago Many modern and important workloads such as machine learning, computational biology, graph
processing, databases, video analytics, and real-time data analytics suffer greatly from the data
movement bottleneck. These workloads are exemplified by irregular memory accesses, relatively low data

= PIM Course: Lecture 3: Real-world PIM: UPMEM PIM (Spring 2023) reuse, low cache line utilization, low arithmetic intensity (i.e., ratio of operations per accessed byte), and

Onur Mutlu Lectures - 411 views - 2 months ago large datasets that greatly exceed the main memory size. The computation in these workloads cannot
usually compensate for the data movement costs. In order to alleviate this data movement bottleneck, we
need a paradigm shift from the traditional processor-centric design, where all computation takes place in

PIM Course: Lecture 4: Real-world PIM: Microbenchmarking of UPMEM PIM (Spring 2023) the compute units, to a more data-centric design where processing elements are placed closer to or

Onur Mutlu Lectures - 188 views - 2 months ago inside where the data resides. This paradigm of computing is known as Processing-in-Memory (PIM).

Architectures: Fundamentally... 3

Onur Mutlu Lectures

19 videos 813 views Updated 3 days ago

= &) & 4

This is your perfect P&S if you want to become familiar with the main PIM technologies, which represent
Anélisis Experimental da na Arquitectura PIM - Juan G6mez Lina - Lecture In Spanish @ U. de Cérdaba “the next big thing” in Computer Architecture. You will work hands-on with the first real-world PIM
Qi ubhd Cestires!- 169 ¥1eWs -2 Mofitia ago, architecture, will explore different PIM architecture designs for important workloads, and will develop tools
to enable research of future PIM systems. Projects in this course span software and hardware as well as
the software/hardware interface. You can potentially work on developing and optimizing new workloads
for the first real-world PIM hardware or explore new PIM designs in simulators, or do something else that
O DA EactReni 453 Viewia <2 montis s00 can forward our understanding of the PIM paradigm.

PIM Course: Lecture 5: Real-world PIM: Samsung HBM-PIM (Spring 2023)

PIM Course: Lecture 6: Real-world PIM: SK Hynix AiM (Spring 2023) Prerequisites of the course:

Onur Mutlu Lectures - 573 views - 1 month ago

Digital Design and Computer Architecture (or equivalent course).
Familiarity with C/C++ programming.

Interest in future computer architectures and computing paradigms.
Interest in discovering why things do or do not work and solving problems
Interest in making systems efficient and usable

PIM Course: Lecture 7: Real-world PIM: Samsung AxDIMM (Spring 2023)

" Onur Mutlu Lectures - 325 views - 1 month ago

https://safari.ethz.ch/projects and seminars/spring2023/doku.php?id=
processing in _memory

https://www.youtube.com/playlist?list=PL5Q2s0XY2Zi EObuoAZVSq o06UySWQHvZ
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Benchmarking a New Paradigm:
Analysis of a
Real Processing-in-Memory System

Juan Gomez Luna, Izzat El Hajj,
lvan Fernandez, Christina Giannoula,
Geraldo F. Oliveira, Onur Mutlu

https://arxiv.org/pdf/2105.03814.pdf
https://github.com/CMU-SAFARI/prim-benchmarks
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