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Executive Summary

e Background: A hybrid storage system (HSS) uses multiple different storage devices to
provide high and scalable storage capacity at high performance

* Problem: Two key shortcomings of prior data placement policies:
- Lack of adaptivity to:
* Workload changes
* Changes in device types and configurations
- Lack of extensibility to more devices

: Design a data placement technique that provides:
, by to the

to incorporate a wide range of hybrid storage configurations

e Contribution: Sibyl, the first reinforcement learning-based data placement technique in
hybrid storage systems that:

- Provides adaptivity to changing workload demands and underlying device characteristics
- Can easily extend to any number of storage devices
- Provides ease of design and implementation that requires only a small computation overhead

* Key Results: Evaluate on real systems using a wide range of workloads

- Sibyl improves performance by 21.6% compared to the best previous data placement technique in
dual-HSS configuration

- In a tri-HSS configuration, Sibyl outperforms the state-of-the-art-policy policy by 48.2%
- Sibyl achieves 80% of the performance of an oracle policy with storage overhead of only 124.4 KiB

SAFARI https://github.com/CMU-SAFARI/Sibyl
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Talk Outline

Key Shortcomings of Prior Data Placement Techniques
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Hybrid Storage System Basics
Address Space (Application/File System View)
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Hybrid Storage System Basics

Performance of a hybrid storage system
highly depends on the ability of the
storage management layer

SAFARI



Key Shortcomings m Prior Techniques

We observe two key shortcomings that significantly
limit the performance benefits of prior techniques

1. Lack of adaptivity to:
a) Workload changes
b) Changes in device types and configuration

2. Lack of extensibility to more devices

SAFARI 7



Lack of Adaptivity (1/2)
Workload Changes

Prior data placement techniques consider only a few
workload characteristics that are statically tuned
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Lack of Adaptivity (2/2)

Changes in Device Types and Configurations

Do not consider underlying storage device
characteristics (e.g., changes in the level asymmetry in
read/write latencies, garbage collection)
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Lack of Extensibility (1/2)

Rigid techniques that require significant effort to
accommodate more than two devices

Change in storage configuration
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Lack of Extensibility (2/2)

Rigid techniques that require significant effort
accommodate more than two devices

Change in storage configuration Design a new policy

\_ Tri-HSS

SAFARI
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Our Goal

-
A data-placement mechanism

that can provide:

1.Adaptivity, by continuously learning and
adapting to the application and underlying
device characteristics

2.Easy extensibility to incorporate a wide
range of hybrid storage configurations

\_

SAFARI
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Our Proposal

Sibyl
Formulates data placement in

hybrid storage systems as a
reinforcement learning problem

Sibyl is an oracle that makes accurate prophecies

SA FA RI https://en.wikipedia.org/wiki/Sibyl
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Talk Outline

Formulating Data Placement as Reinforcement Learning

SAFARI
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Basics of Reinforcement Learning (RL)

| Agent \

[ Environment ]

Agent learns to take an action in a given state
to maximize a numerical reward

SAFARI
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Formulating Data Placement as RL

>[ Agent }
| 1 |
State (S,) Reward (R,,,) Action (A,)
| ' |
{ Environment ]<

>[ Sibyl }
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Features of the Request latency Select storage device to

current request (of last served request)  place the current page
and system I

‘ ( Hybrid Storage }
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Sibyl ]—‘
A

Request latency  Select storage
(of last served device to place
request) the current page

1
Hybrid Storage
System

[ the current

What 1s State?

* Limited number of state features:
- Reduce the implementation overhead
- RL agent is more sensitive to reward

* 6-dimensional vector of state features

O; = (sizes, typey, intrs, cnty, capy, curry)

* We quantize the state representation into bins to
reduce storage overhead

SAFARI 17



What is Reward? TS —

equest laten
the current /ofqlast sorv} y Ze/e.ct s;torc;ge
request and \ evice to place

* Defines the objective of Sibyl system wquest) the current page

Hybrid Storage
System

e We formulate the reward as a function of the
request latency

* Encapsulates three key aspects:

- Internal state of the device (e.g., read/write latencies, the
latency of garbage collection, queuing delays, ...)

- Throughput
- Evictions

* More details in the paper

SAFARI 18



What 1s Action? o

the current

Request lateneyiy Iselect storaq
(of last served \device to plage
request) e currentpage

* At every new page request, the st 1
. . . Hybrid Storage
action is to select a storage device [

request and

System

e Action can be easily extended to any number of
storage devices

* Sibyl learns to proactively evict or promote a page

SAFARI 19



Talk Outline

Sibyl: Overview

SAFARI
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Sibyl Execution
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Sibyl Design: Overview

~

)

g Training — RL Training
Network | Training L Thread
NHYO Dataset J
Periodic Policy
\__Weight Update
/ RL Decision
4 X ) Thread
Experience Buffer
(in host DRAM)
state [ |OOPO ={ Max \ Action
Inference  g;p, Policy | |

Storage ?
Request |[Observation \_Networ
(from OS)l|  vector

{ HSS

]Reward ( Collect
'LExperience

K State

)

SAFARI

/

22



RIL. Decision Thread
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RIL. Decision Thread
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RIL. Decision Thread
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RIL. Decision Thread
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RIL. Decision Thread
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RL Traming Thread
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Periodic Weight Transfer
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Talk Outline

Evaluation of Sibyl and Key Results

SAFARI
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Evaluation Methodology (1/3)

* Real system with various HSS configurations

- Dual-hybrid and tri-hybrid systems
)..
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Evaluation Methodology (2/3)
Cost-Oriented HSS Configuration
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Evaluation Methodology (3/3)

18 different workloads from:
- MSR Cambridge and Filebench Suites

* Four state-of-the-art data placement baselines:

- CDE Heuristic-based
Hps :>- euristic-base
- Archivist

Learning-based
- RNN-HSS

SAFARI
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Performance Analysis

" High-endSSD  Low-end HDD

Cost-Oriented HSS Configuration
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Performance Analysis

‘ . ‘ s . A
High-end SSD  Low-end HDLJ

Cost-Oriented HSS Configuration
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Sibyl consistently outperforms all the baselines
for all the workloads
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Performance Analysis
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Performance-Oriented HSS Configuration
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Performance Analysis
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High-endSSD  Mid-end SSD

Performance-Oriented HSS Configuration
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Sibyl provides 21.6% performance improvement by
dynamically adapting its data placement policy
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Performance Analysis {

High-endSSD  Mid-end SSD

Performance-Oriented HSS Configuration
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Performance Analysis IR

~ High-end SSD

Mid-end SSD

Sibyl achieves 80% of the performance
of an oracle policy that has

complete knowledge of future access patterns

SAFARI
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Performance on Tri-HSS|es

High-end SSD  Mid-end SSD Low?end HDD

Extending Sibyl for more devices:
1. Add a new action
2. Add the remaining capacity of the new device as a
state feature
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Performance on Tri-HSS ez

High-end SSD  Mid-end SSD Low?end HDD

Extending Sibyl for more devices:
1. Add a new action
2. Add the remaining capacity of the new device as a
state feature
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Performance on > &J
D

High-end SSD  Miid-end SSD Low-end HD

Sibyl outperforms the state-of-the-art
data placement policy by
48.2% in a real tri-hybrid system

Sibyl reduces the system architect's burden
by providing ease of extensibility

SAFARI 42



Sibyl’s Overhead

* 124.4 KiB of total storage cost
- Experience buffer, inference and training network

* 40-bit metadata overhead per page for state features

* Inference latency of ~¥10ns

* Training latency of ~2us

V Small area overhead
V Small inference overhead

V Satisfies prediction latency
SAFARI 43



More 1n the Paper (1/3)
* Throughput (IOPS) evaluation

- Sibyl provides high IOPS compared to baseline policies because it
indirectly captures throughput (size/latency)

e Evaluation on unseen workloads
- Sibyl can effectively adapt its policy to highly dynamic workloads

e Evaluation on mixed workloads

- Sibyl provides equally-high performance benefits as in single
workloads

SAFARI 44



More 1n the Paper (2/3)

e Evaluation on different features

- Sibyl autonomously decides which features are important to
maximize the performance

e Evaluation with different hyperparameter values

* Sensitivity to fast storage capacity

- Sibyl provides scalability by dynamically adapting its policy to
available storage size

* Explainability analysis of Sibyl's decision making
- Explain Sibyl’s actions for different workload characteristics and
device configurations

SAFARI 45



More 1n the Paper (3/3)

Sibyl: Adaptive and Extensible Data Placement in
Hybrid Storage Systems Using Online Reinforcement Learning
Gagandeep Singh!  Rakesh Nadig!  Jisung Park! = Rahul Bera! = Nastaran Hajinazar!
David Novo®  Juan Gémez-Luna!  Sander Stuijk?  Henk Corporaal?  Onur Mutlu?
IETH Ziirich 2Eindhoven University of Technology SLIRMM, Univ. Montpellier, CNRS

https://arxiv.org/pdf/2205.07394.pdf

https://github.com/CMU-SAFARI/Sibyl
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Talk Outline

Conclusion
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Conclusion

* We introduced Sibyl, the first reinforcement learning-
based data placement technique in hybrid storage
systems that provides

- Adaptivity
- Easily extensibility
- Ease of design and implementation

*We evaluated Sibyl on real systems using many
different workloads

- Sibyl improves performance by 21.6% compared to the best prior
data placement policy in a dual-HSS configuration

- In a tri-HSS configuration, Sibyl outperforms the state-of-the-art-
data placement policy by 48.2%

- Sibyl achieves of an oracle policy with a
storage overhead of only

SAFARI https://github.com/CMU-SAFARI/Sibyl 48
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ISCA 2022 Paper, Slides, Videos

Gagandeep Singh, Rakesh Nadig, Jisung Park, Rahul Bera, Nastaran Hajinazar,
David Novo, Juan Gomez-Luna, Sander Stuijk, Henk Corporaal, and Onur Mutlu,
"Sibyl: Adaptive and Extensible Data Placement in Hybrid Storage
Systems Using Online Reinforcement Learning"

Proceedings of the 49th International Symposium on Computer

Architecture (ISCA), New York, June 2022.

[Slides (pptx) (pdf)]

[arXiv version]

[Sibyl Source Code]

[Talk Video (16 minutes)]

Sibyl: Adaptive and Extensible Data Placement in
Hybrid Storage Systems Using Online Reinforcement Learning

Gagandeep Singh!  Rakesh Nadig'  Jisung Park! = Rahul Bera! = Nastaran Hajinazar!
David Novo®  Juan Gémez-Luna!  Sander Stuijk*  Henk Corporaal®?  Onur Mutlu!

'ETH Ziirich 2Eindhoven University of Technology SLIRMM, Univ. Montpellier, CNRS

https://arxiv.org/pdf/2205.07394.pdf 50



https://people.inf.ethz.ch/omutlu/pub/Sibyl_RL-based-data-placement-in-hybrid-storage-systems_isca22.pdf
https://people.inf.ethz.ch/omutlu/pub/Sibyl_RL-based-data-placement-in-hybrid-storage-systems_isca22.pdf
http://iscaconf.org/isca2022/
http://iscaconf.org/isca2022/
https://people.inf.ethz.ch/omutlu/pub/Sibyl_RL-based-data-placement-in-hybrid-storage-systems_isca22-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Sibyl_RL-based-data-placement-in-hybrid-storage-systems_isca22-talk.pdf
https://arxiv.org/pdf/2205.07394.pdf
https://github.com/CMU-SAFARI/Sibyl
https://www.youtube.com/watch?v=5-WedkiB000
https://arxiv.org/pdf/2205.07394.pdf

SSD Course (Spring 2023)

= Spring 2023 Edition:

o https://safari.ethz.ch/projects and seminars/spring2023/

doku.php?id=modern ssds

Fall 2022 Edition:

o https://safari.ethz.ch/projects and seminars/fall2022/do
ku.php?id=modern_ssds

Youtube Livestream (Spring 2023):

o https://www.youtube.com/watch?v=4VTwOMmsnJY&list
=PL5Q2s0XY2Zi 8qOM5Icpp8hB2SHtmM4z57&pp=iAQB

Youtube Livestream (Fall 2022):

o https://www.youtube.com/watch?v=hglLrd-
Uj0aU&list=PL502s0XY2Zi9BJhenUg4JI5bwhAMpAp13&p

p=iAQB

Project course

o Taken by Bachelor’'s/Master’s students
o SSD Basics and Advanced Topics

o Hands-on research exploration

o Many research readings

Watch on G YouTube

[Fall 2022 Meetings/Schedule

https:/ /www.youtube.com/onurmutlulectures

Week Date
w1 0610
w2z 1210
wz 19.10
Wi 26.10
Ws | oz
We 08.11
wrT 231
we 3011
wa 14.12
W10 | 04.01.2022
w11 11.01
wiz2 | 2501

Livestream

Wl Live

Mm Live

Youl Live

Wl Live

foul Live

Mm Live

Youl Live

; 21) NAND Flash Dic
¢/ = Planes share decoders:
limits internal parallelism

(only operations @ the
same WL offset)

Meeting Learning
Materials

M1: P&E Course Presentation | Required

maPOF ggPPT Recommended

M2: Basics of NAND Flash- Required

Based 550s Recommended

mmPDF maPPT

M3: NAND Flash Read/\Write Required

Operations Recommended

amPOF mPPT

M4: Processing inside NAND
Flash

@ FOF maPPT

ME: Advancad NAND Flash
Commands & Mapping
mPDF mmPPT

M&: Processing inside Storage
mmPDF maPPT

M7: Address Mapping &

Recommended

Requirsd
Recommended

Recommended

Required

Garbage Collection Recommended
mPDF @ PPT

M8: Intreduction to MCOSim Required

@ FOF gm PPT Recommended
M3: Fine-Grained Mapping and = Required

Multi-Plana Oparation-fware

Recommendad

Block Management

amPOF mPPT

M10a: MAND Flash Basics Required
mmPDF maPPT Recommendad
M10b: Reducing Sofid-State Required

Drive Read Latency by
Optimizing Read-Retry

@ FOF gaPPT gaPaper
M10c: Evanesco: Architectural
Support for Efficient Data
Sanitization in Modern Flash-
Based Storage Systems

o POF ma PPT qaPaper

M10d: DeepSketch: A New
Machine Leaming-Based
Referance Search Technique
for Post-Deduplication Delta
Compression

@@ FOF om PPT amPaper

M11: FLIN: Enabling Faimess
and Enhancing Performance in
Modern NV Solid State
Drives

mPDF mmPPT

M12: Flash Memory and Solid-

Etate Drives
mwFDF m@PPT

Recommendad

Required

Recommendad

Required

Recommended

Required

Recommended
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‘f‘i}? Computer Architecture - Fall 2021

=

Trace: - readings - start - schedule

Home
Announcements

Materials

= Lectures/Schedule

Comp Arch (Fall 2021)

Fall 2021 Edition:

o https://safari.ethz.ch/architecture/fall2021/doku. ==
php?id=schedule

Fall 2020 Edition:

o https://safari.ethz.ch/architecture/fall2020/doku.
php?id=schedule

= Tutorials

Resources

Course Webpage

+ & Computer Architecture FS20:

Lecture Videos

+ & Digitaltechnik SS21: Course
Webpage

+ & Digitaltechnik SS21: Lecture
Videos

= 4 Moodle

. @ HolCRP

« g Verilog Practice Website
(HDLBits)

Youtube Livestream (2021):

o https://www.youtube.com/watch?v=4yfkM 5EFqg
o&list=PL50Q2s0XY2Zi-Mnk1PxjEIG32HAGILKTOF

Youtube Livestream (2020):

o https://www.youtube.com/watch?v=c3mPdZA-
Fmc&list=PL502s0XY2Zi9xidyIgBxUz7xRPS-wisBN

Master’s level course
o Taken by Bachelor’'s/Masters/PhD students

o Cutting-edge research topics + fundamentals in
Computer Architecture

o 5 Simulator-based Lab Assignments
o Potential research exploration
o Many research readings

https:/ /www.youtube.com/onurmutlulectures

+ & Computer Architecture FS20:

Lecture Video Playlist on YouTube

Search

Recent Changes Media Manager Sitemap

4 Livestream Lecture Playlist

s:/ /arxiv.ol

Jomputer Architecture s ectureslintroducti,

df/2105.03814.pdf

« ML accelerator: 260 mm?, 6 billion transistors,
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Performance on Unseen Workloads

[O0Slow-Only [OArchivist [ERNN-HSS [Sibyl MOracle
1251 (b) H&L
—| [ B
100 - -
751

if

O L N W P~ WU

Normalized Average
Request Latency

H&M (H&L) HSS configuration, Sibyl outperforms RNN-
HSS and Archivist by 46.1% (54.6%) and 8.5% (44.1%),

respectively
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Performance Analysis

Performance-Oriented HSS Configuration

[]Slow-Only[] CDE [ ] HPS []Archivist [ RNN-HSS [] Sibyl [ Oracle
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Baseline policies are ineffective for many
workloads even when compared to Slow-Only
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Performance on Mixed W orkloads
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Performance on Mixed W orkloads

[ Sibyly.¢ B Oracle
5 - 125 ——
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Sibyly baseline data placement

techniques by up to
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Performance on Mixed W orkloads
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Performance With Different Features

Cry Wfy Ure+fe Wre+fe+me SSre + fe + pe

=
19y
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Normalized Average
o

Request Latency
U
o

Sibyl autonomously decides which features are
important to maximize the performance of the running
workload
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Sensitivity to Fast Storage Capacity
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Available capacity in Available capacity in
fast storage fast storage
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Explamability Analysis

Preference for
Fast Storage
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Traming and Inference Network

* Training and inference
network allow parallel

o ‘ Probabilility distribution
EXECUtlon of the actions

(place data in the fast or
the slow storage)

Fully-connected
layer
(30 neurons)

e Observation vector as
the input

Fully-connected
layer
(20 neurons)

. Observation vector
* Produces pro babil ity <size; type; intr, cnt, cap; curry>

distribution of Q-values
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