
GPUDirect™ Storage:
Accelerated File APIs for CUDA

Applications

Presenter: Kiran Kumar Modukuri, NVIDIA

©2023 Flash Memory Summit. All Rights Reserved

NVIDIAⓇ Magnum IO GPUDirectⓇ Storage

• NVIDIA Magnum IO GPUDirect Storage (GDS) is designed
to accelerate data transfers between GPU memory and
remote or local storage by reducing CPU overheads

• GDS enables a direct data path for direct memory access
(DMA) transfers between GPU memory and storage,
which avoids a bounce buffer through the CPU page
cache.

• The GDS direct path increases system bandwidth,
decreases the CPU utilization load and IO latency by
avoiding cudaMemcpy calls

• The GDS feature is exposed using cuFile APIs, integrated
into NVIDIA CUDA Toolkit and supported by multiple
NVIDIA frameworks including RAPIDS and DALI.

• Unified APIs for host memory and GPU memory

2
©2023 Flash Memory Summit. All Rights Reserved

GDS vs Traditional IO Path - Busy System
NVIDIA DGX A100, 8x Micron 9400 PRO NVMe, CPU + Memory at 80%

✔ On a busy system2, GDS increased 4KB

transfer size performance by up to 6X

and improved response time by 3.8X

compared to the traditional IO path

✔ GDS improved 128KB transfer size

performance by up to 1.5X and improved

128KB transfer size response time by 3X

✔ GDS improved 1024KB transfer size

performance by up to 1.4X and

improved responsive time by 1.5X

0

1

2

3

4

5

0 10 20 30 40 50 60

La
te

n
cy

 (
m

s)

GB/sec

GDSIO1 128KB 1,024 Threads

GDS Path Traditional Path

1) NVIDIA GDSIO Tool
NVIDIA GDSIO tool is a synthetic IO benchmarking tool that uses cufile APIs for IO and it can be found in the
/usr/local/cuda/gds/tools directory. In this test we use GDSIO transfer types 0 (Storage -> GPU) and 2 (Storage -> CPU ->
GPU) to perform randread IO operations for different block sizes (4k, 128k, 1M) with a file size of 5GB

2) Google Stressful Application Test
Stressapptest generates randomized traffic to memory from
processor and I/O, with the intent of creating a realistic high load.
The “Busy” system testes were run with 80% load.

0

1

2

3

0 5 10 15 20 25 30

La
te

n
cy

 (
m

s)

GB/sec

GDSIO1 4KB 2,048 Threads

GDS Path Traditional Path

6X performance

improvement
1.5X performance

improvement

0

5

10

15

20

0 10 20 30 40 50 60

La
te

n
cy

 (
m

s)

GB/sec

GDSIO1 1MB 512 Threads

GDS Path Traditional Path

1.4X performance

improvement

©2023 Flash Memory Summit. All Rights Reserved 3

NVIDIA GPUDirect Storage – Use Cases
Proven success for many use cases and application profiles

Pre-Stack Time Migration 1.19x

Reverse Time Migration Re 1.3x-6.3x

HPC Visualization 8x

DeepCAM Inference 4.6x

NVTabular 1.4x

Genotyping 3x-6x

Seismic Simulation 2.5x

RAPIDS/cuCIM 11x

HDF5 5x

KvikIO/Zarr 2.9x

Cosmoflow DL Training 1.2x

Keep workflow & data on GPU

BENEFITS REQUIREMENTS

Up to 3x lower CPU utilization O_DIRECT only

File IO in CUDA Use CTK

1.2x-8x bandwidth boost System Topology (PCIe Switch)

Faster IO to GPU memory GPUDirect / Vidmem Only,
NVME or RDMA based FS

IO performance boost

©2023 Flash Memory Summit. All Rights Reserved
4

cuFile Synchronous IO Flow

App thread (User Context)

cuFileRead GPU

 kernel
cuFileWrite

App Thread (OS context)

vfs_read vfs_write

Time (msecs)

IDLE

cuStreamSynchronize

• Overview Synchronous submission and completion)

©2023 Flash Memory Summit. All Rights Reserved
5

cuFile Batch IO Flow

App thread

cuFileBatchIOSubmit

(read1, read2, read3)

GPU

 kernel

OS threads

R

Time (msecs)

IDLE

cuStreamSynchronizecuFileBatchIOGet

Status (DBR)

cuFileBatchIOGet

Status (DBR)

cuFileBatchIOSubmit

(write1, write2, write3)

DBW DBWR R W WW

DBR - Doorbell read
DBW - Doorbell write
R - VFS read
W - VFS write

Synchronous submission and Asynchronous completion

©2023 Flash Memory Summit. All Rights Reserved
6

cuFile Stream IO Flow

App thread

cuFileRead

Async

GPU

 kernel

cuFileWrite

Async

cuda Stream Callback Thread (GPU0)

R K WDBR DBR

OS threads

vfs_read vfs_write DBWDBW

cudaStreamSynchronize

Time (msecs)

perform other tasks or IDLE

other stream callbacks

or IDLE

other stream

callbacks or IDLE

IDLE

DBR - Doorbell read

DBW - Doorbell write

K - CUDA Kernel

R - read call from host callback

W - write call from host callback

Asynchronous submission and Asynchronous completion

©2023 Flash Memory Summit. All Rights Reserved
7

GDS Performance
Read throughput comparison with different modes of cuFile IO

DGX A100 with 8x Local NVMes, Batch (8TxB16) vs. Threaded (128T), GDS 1.7.x

©2023 Flash Memory Summit. All Rights Reserved
8

GDS Performance
Write throughput comparison with different modes of cuFile IO

DGX A100 with 8x Local NVMes, Batch (8TxB16) vs. Threaded (128T), GDS 1.7.x

©2023 Flash Memory Summit. All Rights Reserved
9

cuFile Batch APIs vs cuFile Sync APIs
DGX A100 with 8x Local NVMes, Batch (8TxB16) vs. Threaded (128T), GDS 1.7.0

©2023 Flash Memory Summit. All Rights Reserved

CPU utilization between Batch and Sync APIs
DGX A100 with 8x Local NVMes, Batch (8TxB16) vs. Threaded (128T), GDS 1.7.x

10

cuFile APIs with CUDA Streams
DGX A100 with 8x Local NVMes, 8TxQD16 for batch

©2023 Flash Memory Summit. All Rights Reserved

Throughput and CPU utilization between Stream and Sync APIs
DGX A100 with 8x Local NVMes, Batch (8TxB16) vs. Threaded (128T), GDS 1.7.x

11

cuFile API Use Cases
Mode IO Behavior Use case Pros/Cons

cuFileRead
cuFileWrite
cuFile Thread Pool
enabled

Synchronous Single threaded application using standard file system
calls for single large file and large buffers(>16MB)

Pros
simple to use
Cons
Does not help for multiple files or multiple buffers

cuFileRead
cuFileWrite

Synchronous • Multithreaded application using standard file system
calls for multiple files, buffers

• Application has thread pools for IO pipeline

Pros
• simple to use
• lower submission latency
• work good for medium size IO request 64K and above.
Cons
• scalability limited by number of CPU threads used.
• higher CPU cost for smaller IO sizes(4K-64K)

cuFileBatchIOSetup
cuFileBatchIOSubmit
cuFileBatchGetStatus

Synchronous
submission

Asynchronous
completion

• Single threaded application using standard filesystem
calls needs to perform IO for multiple non-contiguous
file offsets, sizes and GPU buffers.

• Each IO request is small < 64KB
• Has ability to track completion of IOs asynchronously

or wait in same thread.

Pros
• lower average completion latency
• lower CPU cost because of batch submission
Cons
• more complex to code, submit followed by polling for completion of the batch
• higher submission latency. can be reduced by partial submission

cuFileReadAsync
cuFileWriteAsync

Asynchronous
submission

Asynchronous
completion

Single threaded application using standard filesystem calls
needs to perform IO for multiple non-contiguous file
offsets, sizes and GPU buffers.

IO sizes , buffer data is dependent on prior async CUDA
work.

Pros
works with CUDA semantics.
lower submission latency
Cons
higher execution latency for IO size (<1MB)
needs multiple streams to submit IO in parallel

©2023 Flash Memory Summit. All Rights Reserved 12

GPUDirect Storage Partner Ecosystem
The Partner ecosystem is expanding in response to customer demands

ALL GA PARTNERS

Partner company Partner Product GDS Version
WekaIO WekaFS 3.13 1.0

DellEMC PowerScale 9.2 1.0

Hitachi Vantara HCSF 1.0

IBM Spectrum Scale 5.1.2 1.1 and higher

DDN EXAScaler 6.0* 1.1 and higher

VAST Universal Storage 4.1 1.1 and higher

NetApp ONTAP 9.10.1 1.0 and higher

NetApp
ThinkParQ
System Fabrics Works

BeeGFS Tech Preview 1.1 and higher

IBM Spectrum Scale 5.1.5 1.5 and higher

HPE HPE Ezmeral 5.5 1.5 and higher

HPE Cray ClusterStor Neo 4.2 and newer 1.0 and higher

FILE SYSTEM PARTNERS

*Open source Lustre 2.15 supports GPUDirect Storage

©2023 Flash Memory Summit. All Rights Reserved 13

GDS with MONAI
• MONAI is an open-source built on top of PyTorch

for accelerating research and clinical
collaboration in Medical Imaging

• Brain tumor 3D segmentation training with
MONAI using BraTS dataset

• Used Persistent Dataset and GDSDataset
• Stores pre-computed values to efficiently

manage larger than memory dictionary
format data,

• operates on transforms for specific fields.
• Results from the non-random transform

components are computed and cached
• when first used, results are stored in

a cache_dir for rapid retrieval on
subsequent uses.

• GDS integration done with KvikIO Python
library for cuFile and no changes to core
MONAI library.

• Single PCIe Gen3 NVMe and Tesla V100S-PCIE-
32GB

©2023 Flash Memory Summit. All Rights Reserved
14

https://github.com/Project-MONAI/tutorials/blob/main/modules/GDS_dataset.ipynb
https://github.com/rapidsai/kvikio

©2023 Flash Memory Summit. All Rights Reserved
15

MONAI Dataset Pipeline with
Persistent Caching

©2023 Flash Memory Summit. All Rights Reserved
16

GDS vs Persistent Caching Dataset
• Dataset is read from compressed dataset in epoch 0, transformed and persistently cached for deterministic transforms in NVMe

disk.

• Data is read from the NVMe cache dataset for all epochs (1-300).

• With GDS and cuFile APIs, the model achieved 1.1x speedup in total time compared to standard persistent disk caching mechanism.

©2023 Flash Memory Summit. All Rights Reserved
17

GDS vs Persistent Caching Dataset
• With GDS, the model achieves 0.75 mean_dice in 18159 secs compared to 28049 secs. This is a 1.54x speedup.

©2023 Flash Memory Summit. All Rights Reserved
18

Check it out
• Documentation - https://docs.nvidia.com/gpudirect-storage/index.html

Try it
• Get from CUDA - https://developer.nvidia.com/cuda-downloads
• MagnumIO repo - https://github.com/NVIDIA/MagnumIO/tree/main/gds
• NVIDIA Frameworks - DALI, cuCIM, SPARK-RAPIDS, RAPIDS-cuDF, MONAI

Bring more use cases

Call to Action

https://docs.nvidia.com/gpudirect-storage/index.html
https://developer.nvidia.com/cuda-downloads
https://github.com/NVIDIA/MagnumIO/tree/main/gds
https://docs.nvidia.com/deeplearning/dali/user-guide/docs/examples/general/data_loading/numpy_reader.html
https://developer.nvidia.com/cucim-for-image-io-processing
https://nvidia.github.io/spark-rapids/docs/additional-functionality/gds-spilling.htmlhttps://nvidia.github.io/spark-rapids/docs/additional-functionality/gds-spilling.html
https://docs.rapids.ai/api/cudf/nightly/user_guide/io/io/#magnum-io-gpudirect-storage-integration
https://github.com/Project-MONAI/tutorials/blob/main/modules/GDS_dataset.ipynb

	Slide 1: GPUDirect™ Storage: Accelerated File APIs for CUDA Applications
	Slide 2: NVIDIAⓇ Magnum IO GPUDirectⓇ Storage
	Slide 3: GDS vs Traditional IO Path - Busy System NVIDIA DGX A100, 8x Micron 9400 PRO NVMe, CPU + Memory at 80%
	Slide 4: NVIDIA GPUDirect Storage – Use Cases
	Slide 5: cuFile Synchronous IO Flow
	Slide 6: cuFile Batch IO Flow
	Slide 7: cuFile Stream IO Flow
	Slide 8: GDS Performance Read throughput comparison with different modes of cuFile IO DGX A100 with 8x Local NVMes, Batch (8TxB16) vs. Threaded (128T), GDS 1.7.x
	Slide 9: GDS Performance Write throughput comparison with different modes of cuFile IO DGX A100 with 8x Local NVMes, Batch (8TxB16) vs. Threaded (128T), GDS 1.7.x
	Slide 10: cuFile Batch APIs vs cuFile Sync APIs
	Slide 11: cuFile APIs with CUDA Streams
	Slide 12: cuFile API Use Cases
	Slide 13: GPUDirect Storage Partner Ecosystem
	Slide 14: GDS with MONAI
	Slide 15
	Slide 16
	Slide 17
	Slide 18

