
(De)Compression using Computational
Storage Drives (CSD)
Guangming Lu, Sr. Storage Architect

Vladimir Alves, Sr. Director Pathfinding

1©2023, Solidigm. All rights reserved.

Disclaimers

All product plans, roadmaps, specifications, and product descriptions are subject to change without notice.

Nothing herein is intended to create any express or implied warranty, including without limitation, the implied warranties
of merchantability, fitness for a particular purpose, and non-infringement, or any warranty arising from course of
performance, course of dealing, or usage in trade.

Contact your Solidigm representative or your distributor to obtain the latest specifications before placing your product
order.

For copies of this document, documents that are referenced within, or other Solidigm literature, please contact your
Solidigm representative.

All products, computer systems, dates, and figures specified are preliminary based on current expectations, and are subject
to change without notice.

© Solidigm. “Solidigm” is a trademark of SK hynix NAND Product Solutions Corp (d/b/a Solidigm). “Intel” is a registered
trademark of Intel Corporation. Other names and brands may be claimed as the property of others.

Some results have been estimated or simulated using internal Solidigm analysis or architecture simulation or modeling,
and provided to you for information purposes only. Any differences in your system hardware, software or configuration
may affect your actual performance.

©2023 Solidigm. All Rights Reserved.

©2023, Solidigm. All rights reserved.

Outline

• Type of Compression Implementation

• Major CS Architectural Components

• in-line Compression Vs CSD Compression

• Comp/Decomp in CSD

• Companion User Library

• Performance and Scalability

• Use case of CSD (De)Compression

• Use case of CSD (De)Compression As Service

• Future work

• Software: Flexible but CPU intensive, low throughput and lack scalability.

• CPU with built-in C/D engine, such as IBM POWER9 and z15.
• More throughput requirement, more CPUs are needed.

• Accelerator add-in card. (GPU, ASIC or FPGA).
• More data, more add-in cards.
• Take some PCIe slots.

• NVMe SSD with built-in in-line C/D engine.
• Highly scalable.
• SSD FW must handle variable LBA size.
• Typically, lower compression ratio.
• Lacks the flexibility to choose the suitable compression algorithms.

• C/D engine in CSD.
• Highly scalable.
• Works with companion library.
• SW compatible.
• Flexibility to choose the suitable compression algorithms.

Compression/Decompression Approaches

©2023, Solidigm. All rights reserved.

The NVMe® computational storage architecture
involves several types of namespaces:

• Compute namespaces (new – TP4091)

• Memory namespaces (new – TP4131)

• NVM namespaces
• NVM, Zoned, and Key Value namespaces

Programs operate on data in Subsystem Local Memory

• Includes program input, output

• Data is copied between Subsystem Local Memory
and host memory using new NVMe commands

Major Architectural Components

©2023, Solidigm. All rights reserved.

• TP4091: Computational Programs

• New I/O command set for computational
namespaces

• Commands:
• Load program

• Activate program

• Execute program

• Create/Delete Memory Range Set

• Support for Identify Controller, Namespace

NVMe Computational Storage

• TP4131: Subsystem Local Memory

• New I/O command set for memory
namespaces

• Commands:
• Memory Read
• Memory Write
• Memory Fill
• Memory Copy

• Support for Identify Controller, Namespace

• NVM Copy: TP4130 Cross NameSpace Copy

©2023, Solidigm. All rights reserved.

1. In-line C/D is only used internally. Not visible to outside. Fixed or sub-set algorithm.

2. CSD C/D needs to be as versatile as possible. Support multiple algorithms.

PCIe/NVMe

COMPRESS

MEM

In
-lin

e co
m

p
ressio

n

PCIe/NVMe

COMPRESS

CSD compression

GZR SoC

SRC

DEST

1. Neither FileSystem nor Driver
need modification & transparent

2. Works on LBA granularity

3. Close system

4. But SSD FW becomes more
complicated since it has to
handle variable LBA size(after
compression)

5. Larger DDR size to hold L2P due
to more bits(size/offset) in each
L2P entry.

6. C/D can be customized.

1. Need user library w/
FileSystem modification to
log compressed file size, etc.

2. Works on file granularity

3. Open system

4. But SSD FW keeps same with
additional CSD FW.

5. Send compressed data to
host or NAND.

6. Choose most suitable
algorithm for incoming file.

7. Higher Compression Ratio.

8. Expose Engines to outside of
CSD. Compliant with Spec.

4

6

In-line Compression vs. CSD Compression

NANDNANDNANDNAND
NANDNANDNANDNAND

NANDNANDNANDNAND
NANDNANDNANDNAND

Host Host

5.1

MEM NS

1

2

3

4

Flash Ctrl

5

Flash Ctrl

1

2 3

4

5.2

… …

©2023, Solidigm. All rights reserved.

Comp/Decomp in CSD

Solidigm Traditional SSD

Add-in (De)Compression
Card(GPU/ASIC/FPGA)

+
Solidigm Computational
Storage Drive (CSD) w/
Compression & Decompression
Functionalities

• (De)Compression Engines exposed to SW.

• Multiple (De)Compression Algorithm
supported.

• Performance Scalable with # of CSD

Flexible combinations:

• SW compression for best CR; CSD
decompression. Or vice versa

• Can configured as Accelerator (Both
source/destination data in host/NAND) for
(De)Compression as Service.

©2023, Solidigm. All rights reserved.

Application

File System
File: foo.c.gz
Block 1-5000

Size 20MB

User
Library

Device Drivers

Application Server

Solidigm CSD

Basic Library Functions
• Abstract device layer
• Handle cache coherency
• Build & Issue “EXEC” commands
• Prepare memory space for return data
• Harvests results
• Custom info. returns of public API
• Utilize SNIA CS API

NVMe
EXEC(ComputeNS#, op=#(Decompression),

SRC(MemoryNS#,Start addr=#, bufsz=#),
DEST(MemoryNS#,Start addr=#, bufsz=#),
NVMeNS# LBA1-LBA5000, SIZE=20MB)

Custom information example:
• EXEC Completion with some extra info:

1. Mem ID# in NS# has #Dword data
ready to pickup.

2. CSD C/D Engine needs more data.

TP4091 Cmd

Companion User Library

TP4131 Cmd

©2023, Solidigm. All rights reserved.

Performance and Scalability

• Intel® QAT 9870: 20GB/s

• Future HW accel. : Hypothetical 4x throughput

©2023, Solidigm. All rights reserved.

Future HW accell

Modeling results assuming in-storage compression matches SSD max read bandwidth

NVMe Read + Decompression

decompressed file in host memory

DEST

SRC

“Memory Read” from Memory NS

“M
em

ory C
opy” to

 re
a

d
 LB

A
 [list] fro

m
 N

A
N

D
.

Streaming
Decompressor

compressed data.

N
o

tify H
o

st to
 re

a
d

 d
a

ta

NANDNANDNANDNAND
NANDNANDNANDNAND

…

Flash Media I/F
CSD SoC Controller

Memory NS

1

2

3

4

5 6

User Lib

FS

Driver

read data.

…

1. TP4091 steps: load/activate/execute program not shown
here.

2. User Lib orchestrates the data flow outside CSD.

3. CSD Decompression program orchestrates internal cmd &
data flow.

4. Source data in NAND, destination data in host memory.

5. Source file may be compressed in SW.

6. Decompressor fully compatible with selected
decompression algorithm.

7. “Memory Read”, “Memory Copy” are TP4131 commands.

“M
em

ory R
ead

” com
pletion

7

©2023, Solidigm. All rights reserved.

File in Host Memory20MB

SRC

DEST

“Memory Write” to Memory NS

Streaming
Compressor

Collect compressed data.

NANDNANDNANDNAND
NANDNANDNANDNAND

…

Flash Ctrl
CSD SoC Controller

H
o

st issues “M
em

ory R
ead”

Compression as Service

compressed File

Memory NS

1

2

3

4

5

6

User Lib

FS

Driver

N
otify H

ost resultant size

“Memory Read” data to host memory.

…

1. TP4091 steps: load/activate/execute program, are already done,
not shown here.

2. User Lib orchestrates data flow outside CSD.

3. CSD Compression program orchestrates internal cmd & data flow.

4. Both source and destination data in host memory.

5. Engine works as a compression accelerator.

6. “Memory Read”, “Memory write” are TP4131

commands.

6

©2023, Solidigm. All rights reserved.

Future Pathfinding Work

• Using the ratified TPs in a future NVMe CSD solution once the
updated NVM Express spec is released.
• Align with NVMe TP4091

• Align with NVMe TP4131

• Leverage the SNIA Architecture and Programming Model, and newly
released Computational Storage API to delivery an industry standard
solution to market.

©2023, Solidigm. All rights reserved.

Thank You

©2023, Solidigm. All rights reserved.

