
Architecture of a query accelerating
KVCSD in a HPC System

Woosuk Chung,

Director, Memory Forest x&D, SK hynix Inc.

© 2023 Flash Memory Summit. All Rights
Reserved

1

© 2023 Flash Memory Summit. All Rights Reserved 2

Legal Disclaimer

The information contained in this document is claimed as property of SK hynix. It is provided with the
understanding that SK hynix assumes no liability, and the contents are provided under strict
confidentiality.

This document is for general guidance on matters of interest only. Accordingly, the information herein
should not be used as a substitute for consultation or any other professional advice and services.

SK hynix may have copyrights and intellectual property right. The furnishing of document and
information disclosure should be strictly prohibited.

SK hynix has right to make changes to dates, product descriptions, figures, and plans referenced in this
document at any time. Therefore the information herein is subject to change without notice.

ⓒ 2023 SK hynix Inc. All rights reserved

© 2023 Flash Memory Summit. All Rights Reserved 3

Recent Trends: Analysis is being complicated

• Data growth is triggering the rapid increase
of highly selective data queries.
• Queries tend only to find a small subset of data.

• Seeing all of a simulation’s data output fetches
too many unnecessary data.

• Overhead increases as data grows.

• Increasing cases to analyze using various
value fields.
• User wants to find refined information to make

analysis more meaningful.
* Source: Los Alamos National Laboratory “Ordered Key-Value Computational Storage Device

Video" Flash memory summit, 2022

Example : Tracing the state of few high-energy particles
SELECT X, Y, Z FROM particles WHERE Ke >= 1.5

© 2023 Flash Memory Summit. All Rights Reserved 4

Background: Scientific Simulation & Analysis
• HPC application performs scientific simulation and then performs analysis.

• Simulation produces petabytes of data and trillion records.

• Analysis finds meaningful data in a specific value range.

Block Device

Simulation Analysis

Range

write read

check-
pointing

Illustration of a typical scientific workflow consisting of a bulk-synchronous

parallel simulation application acting as a data writer and a subsequent data

analysis program acting as a data reader with the execution of the writer further

divided into iterations of non-overlapping compute and I/O phases.

* Source: “Streaming Data Reorganization at Scale with DeltaFS Indexed Massive Directories”, ACM Trans. Storage, 2020

© 2023 Flash Memory Summit. All Rights Reserved 5

Background: Secondary Index

• Access records using value attributes other than primary key.
• Secondary indexes are built using the target attributes you want to search.

• Additional data structure is created to support secondary index.
• Building secondary indexes require additional resources and time.

• Secondary index improves query performance and reduces storage overhead.
• Secondary index can reduce the amount of data that needs to be scanned.

Primary Key(PK)

Particle ID X Y Z Ke

000001 0.51 1.22 6.55 1.2213

000002 0.66 1.44 5.81 1.0895

000003 0.88 2.10 4.99 1.5202

...

Secondary Key(SK)

Particles Data Table

Ke Particle ID

... ...

1.0895 000002

1.0915 003253

... ...

Secondary Index

SK PK

Able to query using “Ke” attributes.
SELECT X, Y, Z FROM particles WHERE Ke >= 1.5

© 2023 Flash Memory Summit. All Rights Reserved 6

Our Goal: High Performance KVCSD for Analytics

KVSSD CSD  KVCSD+

Block Device

Simulation Analysis

Indexing
Query

(w. Index)

write read

check-
pointing

Simulation Analysis

put,
bulk-put

get,
range get

check-
pointing

Indexing
Query

(w. Index)

offloadedoffloaded

• Called Key Value Computational Storage Drive (KVCSD).
• KVCSD supports basic Key-Value operations and Queries. (KVSSD).

• KVCSD offloads computations including indexing and query processing to the device (CSD).

• Offloading both primary and secondary index operations to the device.
• Achieves high I/O performance by eliminating index overheads on host.

• Reduces data movement and accelerates query performance.

© 2023 Flash Memory Summit. All Rights Reserved 7

Motivation: Reducing the burden of host
• To find the data that satisfies a range of value attributes...

• Full Scan : Access, transfer all the data to the host then filtering.

• Secondary Index : Finds only data within range in tiny secondary index and reads only the data you need.

• Full scan takes up too much expensive host resources.

• On the other hand, using secondary index in KVCSD...
• Just call the secondary index API and get the results. Everything is handled in KVCSD.

• The more data you have, the better the effect of secondary index.

Filter
(Host Core)

Host
DRAM

Read (Full scan)

Secondary indexes allow KVCSD to quickly
search the data meets the conditions.

Full Scanning (Read all data) Secondary Index based search

Saving computing
and I/O resource

...

...O X

X O

Result O O

Result O O

Filter
(Device Core)

O

O

2nd index

© 2023 Flash Memory Summit. All Rights Reserved 8

Motivation: Reducing the burden of host
• Write optimized LSM key-value store dynamically transform data using compaction.

• This key-value store must run inside an application process with limited host resource.

• Due to processing compaction, there are cases where inserts are blocked, leading to long I/O delays.

• KVCSD allows compaction to be deferred and processed asynchronously in the device.
• Hiding compaction latency from applications and preventing bottlenecks such as write stall.

• User only needs to experience write time, with compaction deferred and offloaded to the KVCSD.

RocksDB’s random write performance and L0-L1 compactions.

The blue line shows the random write throughput.

In the graph, the blue line has zero values in some areas

because inserts are blocked by write stalls. Write stall occurs

when the host CPU becomes a bottleneck due to compaction.
* Source: “MatrixKV: Reducing Write Stalls and Write Amplification in LSM-tree Based KV Stores with
Matrix Container in NVM”, USENIX ATC, 2020

© 2023 Flash Memory Summit. All Rights Reserved 9

Recap: KVCSD Version1 – FMS`22
• Adopt fully ordered data structure(LSM) and offer ZNS optimization.

• Optimizes I/O and search performance by sorting data within a zone.

• Simplify internal storage management and reduce garbage collection overheads with ZNS.

• Offloading Indexing and query processing to the device.
• Improve performance by minimizing host processing and data transfer.

• Better performance compared to RocksDB: Write x3, Read x2, Bulk Store x4.7.

• Supports “Range Query” which shows much better performance.
• Range read can read all data within a specific range with a single command.

• About 40% performance improvement compared to RocksDB.

• KVCSD V1 can only find the data by key index (Primary key). KVSSD + CSD  KVCSD V1

PK
Indexing

Range
(PK Index)

Simulation Analysis

write read

check-
pointing

offloadedoffloaded

© 2023 Flash Memory Summit. All Rights Reserved 10

Overview: SK hynix KVCSD Features

<KVCSD Prototype>

E1.L ZNS SSD

FPGA

• Key-Value Interface
• Eliminate duplicate layer and fine-grained management.

• Analytics Query Acceleration
• Support Range Query, 2nd Index, and Histogram.

• LSM Data Structure
• Offload sorting data and building indexes into KVCSD.

• ZNS Optimization
• Improve Write/Read amplification and remove GC.

© 2023 Flash Memory Summit. All Rights Reserved 11

Evaluation: Boosted Performance with KVCSD
• KVCSD V2 shows up to 32X faster compared with KVCSD V1.

• KVCSD V2 is faster than current state-of-the-art software-based key-value stores.
• Up to 7.4x faster than RocksDB with much less use of host resources.

KVCSD V1 vs KVCSD V2 KVCSD V2 vs Rocks DB with 2nd index

1.05s 1.16s
2.31s

14s

32s

456kb

4.79MB

47.5MB

475MB

5.12GB

3 5
8

12
19

33

55

96

Lower is better

0.4 0.8 1.9 3.7
7.4

37

74

18

Lower is better

© 2023 Flash Memory Summit. All Rights Reserved 12

Evaluation: Saturated Performance with fewer core
• RocksDB requires 32 dedicated host CPU cores to maximize performance.

• KVCSD only needs 2 CPU cores to reach peak performance.

• KVCSD also reduces total data written resulting in a reduced host burden.

Put Time(32M KV pair) Comparison Total Data Written Comparison

x7.9
Faster

KVCSD KVCSD

x4.2
Faster

© 2023 Flash Memory Summit. All Rights Reserved 13

Summary

• Scientific simulation and analysis
• Large-scale data analytics is a key element of scientific discovery.
• Data grows rapidly, data queries are being highly selective, host overhead increases.
• Indexes accelerate analysis, but host-side indexing degrades overall simulation

performance.
• Computational storage technology present a unique opportunities to overcome these

challenges.

• In-drive, indexing, query accelerating KVCSD
• Offload both primary, secondary indexing and query processing to KVCSD.
• Reduce the burden on host compute resources and enable highly fast, efficient data queries.
• KVCSD enriches the analysis using multiple secondary indexes.
• Adopt ordered data structure and offer ZNS optimization.

© 2023 Flash Memory Summit. All Rights Reserved 14

Co-demonstration with Los Alamos National Lab

Video Demo
(SKH & LANL Video)

SKH Live Demo

Shelf

LANL Live Demo

SKH Demo Server LANL Demo Server

LANL Demo simulates real-world scientific
data, VPIC, and shows query performance
using secondary index.

LANL VPIC Application

SKH Benchmark
Application

SKH KVCSDs

SKH KVCSDs

Figure showing
energy over time

for selected
particle

SKH Demo compares the performance of KVCSD
V1(Full scan) and KVCSD V2(Secondary Index)
with typical query used in real-world scientific
applications.

In video demo, SKH describes KVCSD main features
and its effects. LANL introduces VPIC and describe
the need for KVCSD and its effect.

© 2023 Flash Memory Summit. All Rights Reserved 15

Learn more about SK hynix

Visit Booth #207 and Experience SK hynix products and demos

Entrance

SOLIDIGM KIOXIA SAMSUNG

KVCSD
Demo

Booth
#207

Booth Location

