k.
GPUDirect™ Storage: foenenune

Accelerated File APIs for CUDA
Applications

Presenter: Kiran Kumar Modukuri, NVIDIA

NVIDIA.

NVIDIAR Magnum |0 GPUDirect® Storage R\

Flash Memory Summit

* NVIDIA Magnum IO GPUDirect Storage (GDS) is designed
to accelerate data transfers between GPU memory and
remote or local storage by reducing CPU overheads

* GDS enables a direct data path for direct memory access
(DMA) transfers between GPU memory and storage,
whiﬁh avoids a bounce buffer through the CPU page
cache.

 ~—
* The GDS direct path increases system bandwidth,

e e 100 GB/sec s A
O [o decreases the CPU utilization load and 10 latency by

O 4 avoiding cudaMemcpy calls
0

Local or
remote
storage

* The GDS feature is exposed using cuFile APls, integrated
into NVIDIA CUDA Toolkit and supported by multiple
NVIDIA frameworks including RAPIDS and DALI.

* Unified APIs for host memory and GPU memory

NVIDIA. 2
©2023 Flash Memory Summit. All Rights Reserved

GDS vs Traditional 10 Path - Busy System

NVIDIA DGX A100, 8x Micron 9400 PRO NVMe, CPU + Memory at 80%

GDSIO?! 4KB 2,048 Threads GDSIO?! 128KB 1,024 Threads GDSIO! 1MB 512 Threads

3 6X performance i 5 1.5X performance i 20
improvement R ! improvement | 1.4X performance
>, : 4 . | improvement
. ' | . | ! __15
E? : E3 ! : £
z : ' z , ! Z 10
g | i g2 | g
g1 i | «© ! k&
| i 1 | 5
. . ~ ! . ! i .
0 . : 0 : ! 0 = -
0 5 10 15 20 25 30 E 0 10 20 30 40 50 60 ! 0 10 20 30 40 50 60
GB/sec | GB/sec E GB/sec
—e— GDS Path —e— Traditional Path | —e—GDS Path —e— Traditional Path i —e— GDS Path —e— Traditional Path
v On a busy system?, GDS increased 4KB v GDS improved 128KB transfer size : v GDS improved 1024KB transfer size
transfer size performance by up to 6X performance by up to 1.5X and improved ! performance by up to 1.4X and
and improved response time by 3.8X : 128KB transfer size response time by 3X improved responsive time by 1.5X
compared to the traditional 10 path ! '
1) NVIDIA GDSIO Tool 2) Google Stressful Application Test
NVIDIA GDSIO tool is a synthetic IO benchmarking tool that uses cufile APIs for 10 and it can be found in the stressapptest genera_tis fnf:iomlzecllc traff"_: to me”}?’Y frrlgrr] |
/usr/local/cuda/gds/tools directory. In this test we use GDSIO transfer types O (Storage -> GPU) and 2 (Storage -> CPU -> procsssor’?nd I/O, with the intent o Freatlgg a realistic high load.
GPU) to perform randread 10 operations for different block sizes (4k, 128k, 1M) with a file size of 5GB The “Busy” system testes were run with 80% load.

©2023 Flash Memory Summit. All Rights Reserved MCI‘OI‘I 3

NVIDIA GPUDirect Storage — Use Cases E!

Flash Memory Summit

Pre-Stack Time Migration

Reverse Time Migration

HPC Visualization

DeepCAM Inference

NVTabular

Genotyping

Seismic Simulation

RAPIDS/cuCIM

HDF5

KviklO/Zarr

Cosmoflow DL Training

storage

Up to 3x lower CPU utilization | O_DIRECT only

File 10 in CUDA Use CTK
1.2x-8x bandwidth boost System Topology (PCle Switch)

Faster 10 to GPU memory GPUDirect / Vidmem Only,
NVME or RDMA based FS

NVIDIA

4

cuFile Synchronous |0 Flow M

Synchronous submission and completion Flash Memory Summit

cuFileRead ez cuStreamSynchronize cuFileWrite
kernel

A

pp Thread (OS context)

A 4

Time (msecs)

<ANVIDIA. °
©2023 Flash Memory Summit. All Rights Reserved Z

cuFile Batch 10 Flow M

Synchronous submission and Asynchronous completion Flash Memory Summit

App thread

CIT I [T o

A 4

Time (msecs
() DBR - Doorbell read

DBW - Doorbell write
R - VFSread
W - VFS write

6
©2023 Flash Memory Summit. All Rights Reserved '@g NVIDIA.

cuFile Stream 10 Flow M

Asynchronous submission and Asynchronous completion Flash Memory Summit

App thread

L T T LT

DBW - Doorbell write

cuda Stream Callback Thread (GPUO) K - CUDA Kernel
R -read call from host callback

W - write call from host callback

OS threads

A 4

Time (msecs)

>
©2023 Flash Memory Summit. All Rights Reserved '@Z NVIDIA.

GDS Performance M

Read throughput comparison with different modes of cuFile IO Flash Memory Summit
DGX A100 with 8x Local NVMes, Batch (8TxB16) vs. Threaded (128T), GDS 1.7.x

B GPUD | GPUD_BATCH GPUD_ASYNC @ COMPAT
60

40

Throughput (GiB/s)

20 II
OMM”
4 &8 16 32 64 128 256

10 Size (KiB)

512 1024 2048 4096 8192 16384

8
©2023 Flash Memory Summit. All Rights Reserved ({E NVIDIA.

GDS Performance M

Write throughput comparison with different modes of cuFile 10 Flash Memory Summit
DGX A100 with 8x Local NVMes, Batch (8TxB16) vs. Threaded (128T), GDS 1.7.x

B GPUD [GPUD BATCH GPUD _ASYNC [COMPAT
40.00
30.00
Q
@
Q
5 20.00
Q.
i -
on
- |
o
£
F 10.00
0.00 I'—I
4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384
10 Size (KiB)

9
©2023 Flash Memory Summit. All Rights Reserved ({E NVIDIA.

cuFile Batch APIs vs cuFile Sync APIs F

CPU utilization between Batch and Sync APIs Flash Memory Summit

DGX A100 with 8x Local NVMes, Batch (8TxB16) vs. Threaded (128T), GDS 1.7.x

Read CPU Util (normalized) == Write CPU Util (normalized)

B Read Tput [Write Tput
== == Breakeven

Speedup

"_.I_.._.._ll —l' 7

1024 2048 4096 8192 16384

32 64 128 256 512

10 Size (KiB)

@inviplA. ¢ 10

©2023 Flash Memory Summit. All Rights Reserved

cuFile APIs with CUDA Streams M

Throughput and CPU utilization between Stream and Sync APIs Flash Memory Summit

DGX A100 with 8x Local NVMes, Batch (8TxB16) vs. Threaded (128T), GDS 1.7.x

B Batch Read TP | Batch Write TP Read CPU% == \Write CPU%

1.25 1.00
1.00 S
' 075 %
O
' p
o 075)
3 =)
o 050 <
o o
2 0.50 =
= D
%)
0.25 &
0.25 EN
(a'
l- ;

0.00 . 0.00

4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384

<AnviDiA. 11
©2023 Flash Memory Summit. All Rights Reserved

cuFile APl Use Cases

Flash Memory Summit

cuFileRead Synchronous Single threaded application using standard file system Pros
cuFileWrite calls for single large file and large buffers(>16MB) simple to use
cuFile Thread Pool Cons
enabled Does not help for multiple files or multiple buffers
Synchronous e Multithreaded application using standard file system |Pros
cuFileRead calls for multiple files, buffers e simple to use
cuFileWrite e Application has thread pools for 10 pipeline e lower submission latency
e work good for medium size 10 request 64K and above.
Cons
e scalability limited by number of CPU threads used.
e higher CPU cost for smaller 10 sizes(4K-64K)
cuFileBatchlOSetup Synchronous ¢ Single threaded application using standard filesystem |Pros
cuFileBatchlOSubmit |submission calls needs to perform IO for multiple non-contiguous|{® lower average completion latency
cuFileBatchGetStatus file offsets, sizes and GPU buffers. e |ower CPU cost because of batch submission
Asynchronous |e Each IO request is small < 64KB Cons
completion e Has ability to track completion of IOs asynchronously |®¢ more complex to code, submit followed by polling for completion of the batch
or wait in same thread. e higher submission latency. can be reduced by partial submission
cuFileReadAsync Asynchronous |Single threaded application using standard filesystem calls |Pros
cuFileWriteAsync submission needs to perform 10 for multiple non-contiguous file works with CUDA semantics.
offsets, sizes and GPU buffers. lower submission latency
Asynchronous Cons
completion |0 sizes , buffer data is dependent on prior async CUDA higher execution latency for 10 size (<1MB)

work.

needs multiple streams to submit IO in parallel

©2023 Flash Memory Summit. All Rights Reserved

NVIDIA.

12

0O daon

M NetApp

©2023 Flash Memory Summit. All Rights Reserved

ALL GA PARTNERS

DALEMC

KIOXIA

SAMSUNG

VAST

NVIDIA GPUDirect Storage integrated solution in production.

—

Hewlett Packard
Enterprise

LIQID

2 ScaleFlux

\\ WEKA

HITACHI

Inspire the MNext

Acron

SUPERMI!

FILE SYSTEM PARTNERS

GPUDirect Storage Partner Ecosystem M

The Partner ecosystem is expanding in response to customer demands

System Fabrics Works

WekalO WekaFs 3.13 1.0

DellEMC PowerScale 9.2 1.0

Hitachi Vantara HCSF 1.0

IBM Spectrum Scale 5.1.2 1.1 and higher
DDN EXAScaler 6.0* 1.1 and higher
VAST Universal Storage 4.1 1.1 and higher
NetApp ONTAP9.10.1 1.0 and higher
NetApp BeeGFS Tech Preview 1.1 and higher
ThinkParQ

IBM

Spectrum Scale 5.1.5

1.5 and higher

HPE

HPE Ezmeral 5.5

1.5 and higher

HPE Cray ClusterStor

Neo 4.2 and newer

1.0 and higher

*Open source Lustre 2.15 supports GPUDirect Storage

<A NVIDIA.

Flash Memory Summit

13

GDS with MONAI M

* MONAI is an open-source built on top of PyTorch
for accelerating research and clinical
collaboration in Medical Imaging

* Brain tumor 3D segmentation training with
MONAI using BraTS dataset

e Used Persistent Dataset and GDSDataset

* Stores pre-computed values to efficiently
manage larger than memory dictionary
format data,

* operates on transforms for specific fields.

* Results from the non-random transform
components are computed and cached

* when first used, results are stored in
a cache_dir for rapid retrieval on
subsequent uses.

e GDS integration done with KviklO Python
library for cuFile and no changes to core
MONAI library.

* Single PCle Gen3 NVMe and Tesla V100S-PCIE-
32GB

©2023 Flash Memory Summit. All Rights Reserved

Flash Memory Summit

Medical Open Network
for Artificial Intelligence

(Corevl.l Label v0.6 < Deploy App SDK vO.5.1>

1,000,000+ downloads and counting

NVIDIA 14

https://github.com/Project-MONAI/tutorials/blob/main/modules/GDS_dataset.ipynb
https://github.com/rapidsai/kvikio

MONAI Dataset Pipeline with M
Persistent Caching o emony S

Train_transforms = Compose([

@ . "\ Deterministic
- LoadNiftid(), transforms Selected Training II
AddChanneld(), Data Data

Spacingd(),

Orientationd(), -
\ scalelntenS|tyRanged(), _,/l cache0 | cachel | —_—> | Load cache
RandCropByPosNegLabeld(), |

ToTensord()
<

Run non-deterministic transforms

]) O’/j/ . :
(1) Define a chain of transforms (2) Run deterministic transforms (3) Load cached data and run
on selected data before training random transforms in training

NVIDIA. 15
©2023 Flash Memory Summit. All Rights Reserved

GDS vs Persistent Caching Dataset

* Dataset is read from compressed dataset in epoch 0, transformed and persistently cached for deterministic transforms in NVMe

disk.

* Datais read from the NVMe cache dataset for all epochs (1-300).

* With GDS and cuFile APIs, the model achieved 1.1x speedup in total time compared to standard persistent disk caching mechanism.

Total Train Time(300 epochs)

Epoch Time

M PersistentDataset training
50000 A Bmm GDSDataset training 700
40000 6001
500 +
30000 A
(%] wvi
o v
& b
400 -
20000 A
300 A
10000 -
200 A

| -

—— PersistentDataset training
—— GDSDataset training

| W W TN T Y W N W

PersistentDataset GDSDataset

©2023 Flash Memory Summit. All Rights Reserved

100

150 200 250 300
epoch

<ANVIDIA.

Flash Memory Summit

16

GDS vs Persistent Caching Dataset

* With GDS, the model achieves 0.75 mean_dice in 18159 secs compared to 28049 secs. This is a 1.54x speedup.

Metrics Time

0.76

0.75 4

0.74 4

best mean_dice
o o
~J ~J
%] w
1 1

e

~

[
1

Q

~J

[=]
I

0.69 -

0.68

—— PersistentDataset training
—— GDSDataset training

10000

©2023 Flash Memory Summit. All Rights Reserved

20000

30000 40000 50000
secs

Typical Metrics Time

B PersistentDataset training
mmm GDSDataset training
25000 A
21217
20000 A
J 15000
&
12317
10000 -
7540
6475
5000 -
ALty 3554

0.60 0.60 070 0.70
best mean_dice

0.74 0.74

28049

18159

0.75 0.75

Flash Memory Summit

<A NVIDIA.

17

Call to Action M

Flash Memory Summit

Check it out
* Documentation - https://docs.nvidia.com/gpudirect-storage/index.html

Try it

* Get from CUDA - https://developer.nvidia.com/cuda-downloads

* MagnumlO repo - https://github.com/NVIDIA/MagnumlO/tree/main/gds
e NVIDIA Frameworks - DALI, cuCIM, SPARK-RAPIDS, RAPIDS-cuDF, MONAI

Bring more use cases

: . NVIDIA. 18
©2023 Flash Memory Summit. All Rights Reserved

https://docs.nvidia.com/gpudirect-storage/index.html
https://developer.nvidia.com/cuda-downloads
https://github.com/NVIDIA/MagnumIO/tree/main/gds
https://docs.nvidia.com/deeplearning/dali/user-guide/docs/examples/general/data_loading/numpy_reader.html
https://developer.nvidia.com/cucim-for-image-io-processing
https://nvidia.github.io/spark-rapids/docs/additional-functionality/gds-spilling.htmlhttps://nvidia.github.io/spark-rapids/docs/additional-functionality/gds-spilling.html
https://docs.rapids.ai/api/cudf/nightly/user_guide/io/io/#magnum-io-gpudirect-storage-integration
https://github.com/Project-MONAI/tutorials/blob/main/modules/GDS_dataset.ipynb

	Slide 1: GPUDirect™ Storage: Accelerated File APIs for CUDA Applications
	Slide 2: NVIDIAⓇ Magnum IO GPUDirectⓇ Storage
	Slide 3: GDS vs Traditional IO Path - Busy System NVIDIA DGX A100, 8x Micron 9400 PRO NVMe, CPU + Memory at 80%
	Slide 4: NVIDIA GPUDirect Storage – Use Cases
	Slide 5: cuFile Synchronous IO Flow
	Slide 6: cuFile Batch IO Flow
	Slide 7: cuFile Stream IO Flow
	Slide 8: GDS Performance Read throughput comparison with different modes of cuFile IO DGX A100 with 8x Local NVMes, Batch (8TxB16) vs. Threaded (128T), GDS 1.7.x
	Slide 9: GDS Performance Write throughput comparison with different modes of cuFile IO DGX A100 with 8x Local NVMes, Batch (8TxB16) vs. Threaded (128T), GDS 1.7.x
	Slide 10: cuFile Batch APIs vs cuFile Sync APIs
	Slide 11: cuFile APIs with CUDA Streams
	Slide 12: cuFile API Use Cases
	Slide 13: GPUDirect Storage Partner Ecosystem
	Slide 14: GDS with MONAI
	Slide 15
	Slide 16
	Slide 17
	Slide 18

