E[TWJ (Z) SOLIDIGM.

s
Flash Memory Summit

(De)Compression using Computational
Storage Drives (CSD)

Guangming Lu, Sr. Storage Architect

Vladimir Alves, Sr. Director Pathfinding

Disclaimers

All product plans, roadmaps, specifications, and product descriptions are subject to change without notice.

Nothing herein is intended to create any express or implied warranty, including without limitation, the implied warranties
of merchantability, fitness for a particular purpose, and non-infringement, or any warranty arising from course of
performance, course of dealing, or usage Iin trade.

Codntact your Solidigm representative or your distributor to obtain the latest specifications before placing your product
order.

For copies of this document, documents that are referenced within, or other Solidigm literature, please contact your
Solidigm representative.

All products, computer systems, dates, and figures specified are preliminary based on current expectations, and are subject
to change without notice.

© Solidigm. “Solidigm”is a trademark of SK hynix NAND Product Solutions Corp (d/b/a Solidigm). “Intel” is a registered
trademark of Intel Corporation. Other names and brands may be claimed as the property of others.

Some results have been estimated or simulated using internal Solidigm analysis or architecture simulation or modeling,
and provided to you for information purposes only. Any differences in your system hardware, software or configuration
may affect your actual performance.

©2023 Solidigm. All Rights Reserved.

Outline M

Flash Memory Summit

 Type of Compression Implementation
 Major CS Architectural Components

* in-line Compression Vs CSD Compression
 Comp/Decompin CSD

e Companion User Library

* Performance and Scalability

e Use case of CSD (De)Compression

e Use case of CSD (De)Compression As Service

e Future work

©2023, Solidigm. All rights reserved.

Compression/Decompression Approaches

CPU with built-in C/D engine, such as IBM POWER9 and z15.
* More throughput requirement, more CPUs are needed.

Accelerator add-in card. (GPU, ASIC or FPGA).
 More data, more add-in cards.
 Take some PCle slots.

NVMe SSD with built-in in-line C/D engine.
* Highly scalable.
« SSD FW must handle variable LBA size.
» Typically, lower compression ratio.
« Lacks the flexibility to choose the suitable compression algorithms.

C/D engine in CSD.
* Highly scalable.
« Works with companion library.
« SW compatible.
 Flexibility to choose the suitable compression algorithms.
©2023, Solidigm. All rights reserved.

Software: Flexible but CPU intensive, low throughput and lack scalability.

F

Flash Memory Summit

M

Major Architectural Components Flash emory Summi

Host The NVMe® computational storage architecture

involves several types of namespaces:

* Compute namespaces (new — TP4091)
 Memory namespaces (new — TP4131)

- * NVM namespaces
Memory Namespace 10 * NVM, Zoned, and Key Value namespaces

NVM Mamespace 100

Programs
Compute Namespace 1 Memory Namespace 11

NVM Namespace 101 Programs operate on data in Subsystem Local Memory
* Includes program input, output

== * Datais copied between Subsystem Local Memory
ompute Tamecpace and host memory using new NVMe commands

NVM Subsystem

©2023, Solidigm. All rights reserved.

F

NVMe Computational Storage Alsh Memory Summi

TP4131: Subsystem Local Memory
New I/O command set for memory

TP4091: Computational Programs

New I/O command set for computational

namespaces Namespaces
e Commands: * Commands:
« Load program * Memory Read
. Pros * Memory Write
* Activate program . Memory Fill
* Execute program + Memory Copy

* Create/Delete Memory Range Set

Support for Identify Controller, Namespace

Support for Identify Controller, Namespace

NVM Copy: TP4130 Cross NameSpace Copy

©2023, Solidigm. All rights reserved.

In-line Compression vs. CSD Compression

1.
2.

M

Flash Memory Summit

In-line C/D is only used internally. Not visible to outside. Fixed or sub-set algorithm.

CSD C/D needs to be as versatile as possible. Support multiple algorithms.

Host

uolissasdwod aul|-uj

@

PCle/NVMe

©

A 4

COMPRESS

O,

A\ 4

MEM

@)

Flash Ctrl

®

[Fwe) = (G

. Neither FileSystem nor Driver

need modification & transparent

. Works on LBA granularity
. Close system

. But SSD FW becomes more

complicated since it has to
handle variable LBA size(after
compression)

. Larger DDR size to hold L2P due

to more bits(size/offset) in each
L2P entry.

. C/D can be customized.

©2023, Solidigm. All rights reserved.

Host

©

\ 4

PCle/NVMe

G

@

SRC

COMPRESS

MEM N

DEST

A4

O,

Flash Ctrl

CSD compression

(o) = G

. Need user library w/

FileSystem modification to
log compressed file size, etc.

. Works on file granularity
. Open system

. But SSD FW keeps same with

additional CSD FW.

. Send compressed data to

host or NAND.

. Choose most suitable

algorithm for incoming file.

. Higher Compression Ratio.

. Expose Engines to outside of

CSD. Compliant with Spec.

Comp/Decomp in CSD M

Flash Memory Summit

Add-in (De)Compression * (De)Compression Engines exposed to SW.

Card(GPU/ASIC/FPGA) « Multiple (De)Compression Algorithm
supported.

* Performance Scalable with # of CSD
Flexible combinations:

| * SW compression for best CR; CSD
decompression. Or vice versa

T!___'_____@ o * Can configured as Accelerator (Both
Solidigm Computational source/destination data in host/NAND) for
@ Storage Drive (CSD) w/ (De)Compression as Service.
| Compression & Decompression
. O Functionalities

Solidigm Traditional SSD

©2023, Solidigm. All rights reserved.

Companion User Library

Application Server

-

Application

(" File System)

User
Library

File: foo.c.gz
Block 1-5000

J

_ Size 20MB

A

~

Device Drivers

J

I NVMe

&

- @,
Solidigm CSD

Basic Library Functions

* Abstract device layer

e Handle cache coherency

e Build & Issue “EXEC” commands

* Prepare memory space for return data
* Harvests results

* Custom info. returns of public API
» Utilize SNIA CS API

EXEC(ComputeNS#, op=#(Decompression),
SRC(MemoryNS#,Start addr=#, bufsz=#),

DEST(MemoryNS#,Start addr=#, bufsz=#),

NVMeNS# LBA1-LBA5000, SIZE=20MB)

©2023, Solidigm. All rights reserved.

Custom information example:

F

Flash Memory Summit

* EXEC Completion with some extra info:
1. Mem ID# in NS# has #Dword data

TP4091 Cmd
TP4131 Cmd

ready to pickup.

2. CSD C/D Engine needs more data.

Performance and Scalability M

Flash Memory Summit

CSD decompression throughput vs QAT 9870 & future generation

250

* Intel® QAT 9870:20GB/s

* Future HW accel. : Hypothetical 4x throughput

Pt
=
[=]

150

100

Decompression Throughput (GB/s)

50

1 2 3 i 5 5] 7 8 9 10 11 12 13 14 15 16
of CSD in System

— PCle Gen3xd4 CSD m—— PCle Gendx4 CSD PCle Gen5x4 C5D e QAT 9870 | Future HW accell

©2023, Solidigm. All rights reserved. Modeling results assuming in-storage compression matches SSD max read bandwidth

NVMe Read + Decompression Fr

User Lib Flash Memory Summit
FS
=
7y e 7y decompressed file in host memory
]]
2 e
= 2| |“Memory Read” from Memory NS 1. TP4091 steps: load/activate/execute program not shown
2 3 <
é% E T here.
s § 5 2. User Lib orchestrates the data flow outside CSD.
) < ®
g S § Streaming 3. CSD Decompression program orchestrates internal cmd &
s 2 5 DEST |« Dec‘l’mpressor data flow.
'g) ==
| = Memory NS : 4. Source data in NAND, destination data in host memory.
S z compressed data. —r
- SRC @ A 5. Source file may be compressed in SW.
O
z 4 6. Decompressor fully compatible with selected
C% decompression algorithm.
»| Flash Media I/F 7. “Memory Read”, “Memory Copy” are TP4131 commands.
CSD SoC Controller ;
@ read data

= - &=

©2023, Solidigm. All rights reserved.

Compression as Service

User Lib
FS
Driver

X 20MB File in Host Memory

] [] compressed File

©,

A

(&)

“Memory Write” to Memory NS

=2
S
T =
o <
4 T
> 2
® 3
U)\ (éb .
4 g Streaming
A
3 = @ Compressor
S 2. SRC 7
& (®)| Memory NS
< Collect compressed data. @ —Il:_II
) DEST < |

<
<

@ “Memory Read” data to host memory.

Flash Ctrl

CSD SoC Controller

©2023, Solidigm. All rights reserved.

M

Flash Memory Summit

. TP4091 steps: load/activate/execute program, are already done,

not shown here.

User Lib orchestrates data flow outside CSD.

CSD Compression program orchestrates internal cmd & data flow.
Both source and destination data in host memory.

Engine works as a compression accelerator.

“Memory Read’”, “Memory write” are TP4131
commands.

Future Pathfinding Work . Mﬁm“

e Using the ratified TPs in a future NVMe CSD solution once the
updated NVM Express spec is released.
* Align with NVMe TP4091
* Align with NVMe TP4131

* Leverage the SNIA Architecture and Programming Model, and newly
released Computational Storage API to delivery an industry standard
solution to market.

©2023, Solidigm. All rights reserved.

M

Flash Memory Summit

Thank You

©2023, Solidigm. All rights reserved.

