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Execut ive Summary
• Background: A hybrid storage system (HSS) uses multiple different storage devices to

provide high and scalable storage capacity at high performance
• Problem: Two key shortcomings of prior data placement policies:

- Lack of adaptivity to:
• Workload changes
• Changes in device types and configurations

- Lack of extensibility to more devices

• Goal: Design a data placement technique that provides:
- Adaptivity, by continuously learning and adapting to the application and underlying device

characteristics
- Easy extensibility to incorporate a wide range of hybrid storage configurations

• Contribution: Sibyl, the first reinforcement learning-based data placement technique in
hybrid storage systems that:

- Provides adaptivity to changing workload demands and underlying device characteristics
- Can easily extend to any number of storage devices
- Provides ease of design and implementation that requires only a small computation overhead

• Key Results: Evaluate on real systems using a wide range of workloads
- Sibyl improves performance by 21.6% compared to the best previous data placement technique in

dual-HSS configuration
- In a tri-HSS configuration, Sibyl outperforms the state-of-the-art-policy policy by 48.2%
- Sibyl achieves 80% of the performance of an oracle policy with storage overhead of only 124.4 KiB

https://github.com/CMU-SAFARI/Sibyl 3
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Storage Management Layer

Hybrid Storage System Basics

WriteRead

Read Write Read Write
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Hybrid Storage System
Fast Device Slow Device

Address Space (Application/File System View) 

5



Hybrid Storage System Basics

WriteRead

Read Write Read Write

Promotion

Eviction

Hybrid Storage System

Performance of a hybrid storage system 
highly depends on the ability of the 

storage management layer
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Key Shortcomings in Prior Techniques

We observe two key shortcomings that significantly 
limit the performance benefits of prior techniques

1. Lack of adaptivity to:
a) Workload changes
b) Changes in device types and configuration

2. Lack of extensibility to more devices 
 

7



Lack of Adapt ivity (1/ 2)
Workload Changes
Prior data placement techniques consider only a few
workload characteristics that are statically tuned

CDE RNN-HSS Oracle

41.1%
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Lack of Adapt ivity (2/ 2)
Changes in Device Types and Configurations 
Do not consider underlying storage device 
characteristics (e.g., changes in the level asymmetry in 
read/write latencies, garbage collection)

HSS Configuration 1 HSS Configuration 2

Slow-Only CDE RNN-HSS Slow-Only CDE RNN-HSS OracleOracle
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Lack of Extensibility (1/ 2)
Rigid techniques that require significant effort to 
accommodate more than two devices

Change in storage configuration

Dual-HSS
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Lack of Extensibility (2/ 2)
Rigid techniques that require significant effort to 
accommodate more than two devices

Change in storage configuration Design a new policy

Tri-HSS
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Our Goal

A data-placement mechanism 
that can provide:

1.Adaptivity, by continuously learning and 
adapting to the application and underlying 

device characteristics
2.Easy extensibility to incorporate a wide 

range of hybrid storage configurations
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Our Proposal

Sibyl
Formulates data placement in 

hybrid storage systems as a 
reinforcement learning problem

Sibyl is an oracle that makes accurate prophecies
https://en.wikipedia.org/wiki/Sibyl 13
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Basics of Reinforcement  Learning (RL)

Agent learns to take an action in a given state 
to maximize a numerical reward
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Formulat ing Data Placement  as RL

Agent

Environment

State (St) Action (At)Reward (Rt+1)

Hybrid Storage 
System

Sibyl

Features of the 
current request 

and system

Request latency
(of last served request)

Select storage device to 
place the current page
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What is State?
• Limited number of state features:

- Reduce the implementation overhead
- RL agent is more sensitive to reward

• 6-dimensional vector of state features

• We quantize the state representation into bins to 
reduce storage overhead
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What is Reward?
• Defines the objective of Sibyl

• We formulate the reward as a function of the     
request latency

• Encapsulates three key aspects:
- Internal state of the device (e.g., read/write latencies, the 

latency of garbage collection, queuing delays, …)
- Throughput
- Evictions
 

• More details in the paper
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What is Act ion?
• At every new page request, the                                     

action is to select a storage device

• Action can be easily extended to any number of 
storage devices

• Sibyl learns to proactively evict or promote a page
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Sibyl Design: Overview
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HSS Collect
Experiences

Experience Buffer 
(in host DRAM)

Observation 
Vector

Storage
Request

(from OS)

State

Reward

RL Decision 
Thread

27



RL Training Thread
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Periodic Weight  Transfer
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Evaluat ion Methodology (1/ 3)
• Real system with various HSS configurations

- Dual-hybrid and tri-hybrid systems
AMD Ryzen7 
2700G CPU

Seagate HDD 
ST1000DM010

Intel Optane 
SSD P4800X

Intel SSD         
D3-S4510

ADATA 
SU630 SSD 
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Evaluat ion Methodology (2/ 3)
Cost-Oriented HSS Configuration

High-end SSD Low-end HDD

Performance-Oriented HSS Configuration

High-end SSD Middle-end SSD 32



Evaluat ion Methodology (3/ 3)
• 18 different workloads from:

- MSR Cambridge and Filebench Suites

• Four state-of-the-art data placement baselines:
- CDE [Matsui+, Proc. IEEE’17] 

- HPS [Meswani+, HPCA’15]

- Archivist [Ren+, ICCD’19]

- RNN-HSS [Doudali+, HPDC’19]

Heuristic-based

Learning-based
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Performance Analysis
Cost-Oriented HSS Configuration

Slow-Only CDE HPS Archivist RNN-HSS Sibyl Oracle

High-end SSD Low-end HDD
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Performance Analysis

Sibyl consistently outperforms all the baselines 
for all the workloads

Cost-Oriented HSS Configuration
Slow-Only CDE HPS Archivist RNN-HSS Sibyl Oracle

High-end SSD Low-end HDD
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Performance Analysis

RNN-HSS Sibyl OracleSlow-Only CDE HPS Archivist

Performance-Oriented HSS Configuration
High-end SSD Mid-end SSD
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Performance Analysis

RNN-HSS Sibyl OracleSlow-Only CDE HPS Archivist

Performance-Oriented HSS Configuration

Sibyl provides 21.6% performance improvement by 
dynamically adapting its data placement policy 

High-end SSD Mid-end SSD

37



Performance Analysis

RNN-HSS Sibyl OracleSlow-Only CDE HPS Archivist

Performance-Oriented HSS Configuration
High-end SSD Mid-end SSD
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Performance Analysis

RNN-HSS Sibyl OracleSlow-Only CDE HPS Archivist

Performance-Oriented HSS Configuration

Sibyl achieves 80% of the performance 
of an oracle policy that has 

complete knowledge of future access patterns

High-end SSD Mid-end SSD
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Performance on Tri-HSS
Extending Sibyl for more devices:

SibylTri-hybridHeuristicTri-hybrid

High-end SSD Low-end HDDMid-end SSD

Extending Sibyl for more devices:
1. Add a new action
2. Add the remaining capacity of the new device as a 

state feature
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Performance on Tri-HSS

SibylTri-hybridHeuristicTri-hybrid

Extending Sibyl for more devices:
1. Add a new action
2. Add the remaining capacity of the new device as a 

state feature

High-end SSD Low-end HDDMid-end SSD
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Performance on Tri-HSS

SibylTri-hybridHeuristicTri-hybrid

Extending Sibyl for more devices:
1. Add a new action
2. Add the remaining capacity of the new device as a 

state feature
Sibyl outperforms the state-of-the-art 

data placement policy by
48.2% in a real tri-hybrid system

Sibyl reduces the system architect's burden 
by providing ease of extensibility

High-end SSD Low-end HDDMid-end SSD

42



Sibyl’s Overhead
• 124.4 KiB of total storage cost 

- Experience buffer, inference and training network

• 40-bit metadata overhead per page for state features

• Inference latency of ~10ns

• Training latency of ~2us

Small area overhead

Small inference overhead

Satisfies prediction latency
43



More in the Paper (1/ 3)
• Throughput (IOPS) evaluation

- Sibyl provides high IOPS compared to baseline policies because it 
indirectly captures throughput (size/latency)

• Evaluation on unseen workloads
- Sibyl can effectively adapt its policy to highly dynamic workloads

• Evaluation on mixed workloads
- Sibyl provides equally-high performance benefits as in single 

workloads
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More in the Paper (2/ 3)
• Evaluation on different features

- Sibyl autonomously decides which features are important to 
maximize the performance

• Evaluation with different hyperparameter values

• Sensitivity to fast storage capacity
- Sibyl provides scalability by dynamically adapting its policy to 

available storage size

• Explainability analysis of Sibyl's decision making
- Explain Sibyl’s actions for different workload characteristics and 

device configurations
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More in the Paper (3/ 3)

https://arxiv.org/pdf/2205.07394.pdf

https://github.com/CMU-SAFARI/Sibyl
46
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Conclusion
• We introduced Sibyl, the first reinforcement learning-

based data placement technique in hybrid storage
systems that provides
- Adaptivity
- Easily extensibility
- Ease of design and implementation

•We evaluated Sibyl on real systems using many 
different workloads

- Sibyl improves performance by 21.6% compared to the best prior
data placement policy in a dual-HSS configuration

- In a tri-HSS configuration, Sibyl outperforms the state-of-the-art-
data placement policy by 48.2%

- Sibyl achieves 80% of the performance of an oracle policy with a
storage overhead of only 124.4 KiB

https://github.com/CMU-SAFARI/Sibyl 48
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ISCA 2022 Paper, Slides, Videos
 Gagandeep Singh, Rakesh Nadig, Jisung Park, Rahul Bera, Nastaran Hajinazar, 

David Novo, Juan Gomez-Luna, Sander Stuijk, Henk Corporaal, and Onur Mutlu,
"Sibyl: Adaptive and Extensible Data Placement in Hybrid Storage 
Systems Using Online Reinforcement Learning"
Proceedings of the 49th International Symposium on Computer 
Architecture (ISCA), New York, June 2022.
[Slides (pptx) (pdf)]
[arXiv version]
[Sibyl Source Code]
[Talk Video (16 minutes)]
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SSD Course (Spring 2023)
 Spring 2023 Edition: 

 https://safari.ethz.ch/projects_and_seminars/spring2023/
doku.php?id=modern_ssds

 Fall 2022 Edition: 
 https://safari.ethz.ch/projects_and_seminars/fall2022/do

ku.php?id=modern_ssds 

 Youtube Livestream (Spring 2023):
 https://www.youtube.com/watch?v=4VTwOMmsnJY&list

=PL5Q2soXY2Zi_8qOM5Icpp8hB2SHtm4z57&pp=iAQB
 Youtube Livestream (Fall 2022):

 https://www.youtube.com/watch?v=hqLrd-
Uj0aU&list=PL5Q2soXY2Zi9BJhenUq4JI5bwhAMpAp13&p
p=iAQB

 Project course
 Taken by Bachelor’s/Master’s students
 SSD Basics and Advanced Topics
 Hands-on research exploration
 Many research readings

51https://www.youtube.com/onurmutlulectures 
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Comp Arch (Fall 2021)
 Fall 2021 Edition: 

 https://safari.ethz.ch/architecture/fall2021/doku.
php?id=schedule 

 Fall 2020 Edition: 
 https://safari.ethz.ch/architecture/fall2020/doku.

php?id=schedule 

 Youtube Livestream (2021):
 https://www.youtube.com/watch?v=4yfkM_5EFg

o&list=PL5Q2soXY2Zi-Mnk1PxjEIG32HAGILkTOF 
 Youtube Livestream (2020):

 https://www.youtube.com/watch?v=c3mPdZA-
Fmc&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN 

 Master’s level course
 Taken by Bachelor’s/Masters/PhD students
 Cutting-edge research topics + fundamentals in 

Computer Architecture
 5 Simulator-based Lab Assignments
 Potential research exploration
 Many research readings
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Performance on Unseen Workloads

H&M (H&L) HSS configuration, Sibyl outperforms RNN-
HSS and Archivist by 46.1% (54.6%) and 8.5% (44.1%), 
respectively
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Performance Analysis

Sibyl Oracle

Baseline policies are ineffective for many 
workloads even when compared to Slow-Only

RNN-HSSSlow-Only CDE HPS Archivist

Performance-Oriented HSS Configuration
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Performance on Mixed Workloads

Slow-Only CDE HPS Archivist RNN-HSS SibylDef SibylOpt Oracle

Performance-Oriented Cost-Oriented
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Performance on Mixed Workloads

Slow-Only CDE HPS Archivist RNN-HSS SibylDef SibylOpt Oracle

Performance-Oriented Cost-Oriented

SibylDef outperforms baseline data placement 
techniques by up to 27.9%
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Performance on Mixed Workloads

Slow-Only CDE HPS Archivist RNN-HSS SibylDef SibylOpt Oracle

Performance-Oriented Cost-Oriented

SibylDef outperforms baseline data placement 
techniques by up to 27.9%

SibylOpt provides 7.2% higher average 
performance than SibylDef

59



Performance With Different  Features

Sibyl autonomously decides which features are 
important to maximize the performance of the running 
workload
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Sensit ivity to Fast  Storage Capacity
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Explainability Analysis
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Training and Inference Network
• Training and inference 

network allow parallel 
execution 

• Observation vector as 
the input 

• Produces probability 
distribution of Q-values
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