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 Type of Compression Implementation
 Major CS Architectural Components

* in-line Compression Vs CSD Compression
 Comp/Decompin CSD

e Companion User Library

* Performance and Scalability

e Use case of CSD (De)Compression

e Use case of CSD (De)Compression As Service

e Future work

©2023, Solidigm. All rights reserved.



Compression/Decompression Approaches

CPU with built-in C/D engine, such as IBM POWER9 and z15.
* More throughput requirement, more CPUs are needed.

Accelerator add-in card. (GPU, ASIC or FPGA).
 More data, more add-in cards.
 Take some PCle slots.

NVMe SSD with built-in in-line C/D engine.
* Highly scalable.
« SSD FW must handle variable LBA size.
» Typically, lower compression ratio.
« Lacks the flexibility to choose the suitable compression algorithms.

C/D engine in CSD.
* Highly scalable.
« Works with companion library.
« SW compatible.
 Flexibility to choose the suitable compression algorithms.
©2023, Solidigm. All rights reserved.

Software: Flexible but CPU intensive, low throughput and lack scalability.
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Major Architectural Components Flash emory Summi

Host The NVMe® computational storage architecture

involves several types of namespaces:

* Compute namespaces (new — TP4091)
 Memory namespaces (new — TP4131)

- * NVM namespaces
Memory Namespace 10 * NVM, Zoned, and Key Value namespaces

NVM Mamespace 100

Programs
Compute Namespace 1 Memory Namespace 11

NVM Namespace 101 Programs operate on data in Subsystem Local Memory
* Includes program input, output

== * Datais copied between Subsystem Local Memory
ompute Tamecpace and host memory using new NVMe commands

NVM Subsystem

©2023, Solidigm. All rights reserved.



F

NVMe Computational Storage Alsh Memory Summi

TP4131: Subsystem Local Memory
New I/O command set for memory

TP4091: Computational Programs

New I/O command set for computational

namespaces Namespaces
e Commands: *  Commands:
« Load program * Memory Read
. Pros *  Memory Write
* Activate program . Memory Fill
* Execute program + Memory Copy

* Create/Delete Memory Range Set

Support for Identify Controller, Namespace

Support for Identify Controller, Namespace

NVM Copy: TP4130 Cross NameSpace Copy

©2023, Solidigm. All rights reserved.



In-line Compression vs. CSD Compression

1.
2.
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In-line C/D is only used internally. Not visible to outside. Fixed or sub-set algorithm.

CSD C/D needs to be as versatile as possible. Support multiple algorithms.
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. Neither FileSystem nor Driver

need modification & transparent

. Works on LBA granularity
. Close system

. But SSD FW becomes more

complicated since it has to
handle variable LBA size(after
compression)

. Larger DDR size to hold L2P due

to more bits(size/offset) in each
L2P entry.

. C/D can be customized.
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CSD compression
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. Need user library w/

FileSystem modification to
log compressed file size, etc.

. Works on file granularity
. Open system

. But SSD FW keeps same with

additional CSD FW.

. Send compressed data to

host or NAND.

. Choose most suitable

algorithm for incoming file.

. Higher Compression Ratio.

. Expose Engines to outside of

CSD. Compliant with Spec.



Comp/Decomp in CSD M
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Add-in (De)Compression * (De)Compression Engines exposed to SW.

Card(GPU/ASIC/FPGA) « Multiple (De)Compression Algorithm
supported.

* Performance Scalable with # of CSD
Flexible combinations:

| * SW compression for best CR; CSD
decompression. Or vice versa

T!___'_____@ o * Can configured as Accelerator (Both
Solidigm Computational source/destination data in host/NAND) for
@ Storage Drive (CSD) w/ (De)Compression as Service.
| Compression & Decompression
. O Functionalities

Solidigm Traditional SSD

©2023, Solidigm. All rights reserved.



Companion User Library

Application Server

-

Application

(" File System )

User
Library

File: foo.c.gz
Block 1-5000

J

\_ Size 20MB
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Device Drivers
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I NVMe
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Basic Library Functions

* Abstract device layer

e Handle cache coherency

e Build & Issue “EXEC” commands

* Prepare memory space for return data
* Harvests results

* Custom info. returns of public API
» Utilize SNIA CS API

EXEC(ComputeNS#, op=#(Decompression),
SRC(MemoryNS#,Start addr=#, bufsz=#),

DEST(MemoryNS#,Start addr=#, bufsz=#),

NVMeNS# LBA1-LBA5000, SIZE=20MB)

©2023, Solidigm. All rights reserved.

Custom information example:
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* EXEC Completion with some extra info:
1. Mem ID# in NS# has #Dword data

TP4091 Cmd
TP4131 Cmd

ready to pickup.

2. CSD C/D Engine needs more data.



Performance and Scalability M
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CSD decompression throughput vs QAT 9870 & future generation

250

* Intel® QAT 9870:20GB/s

* Future HW accel. : Hypothetical 4x throughput
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©2023, Solidigm. All rights reserved. Modeling results assuming in-storage compression matches SSD max read bandwidth



NVMe Read + Decompression Fr

User Lib Flash Memory Summit
FS
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7y e 7y decompressed file in host memory
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s § 5 2. User Lib orchestrates the data flow outside CSD.
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»| Flash Media I/F 7. “Memory Read”, “Memory Copy” are TP4131 commands.
CSD SoC Controller ;
@ read data
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Compression as Service

User Lib
FS
Driver

X 20MB File in Host Memory

] [ ] compressed File
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CSD SoC Controller
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. TP4091 steps: load/activate/execute program, are already done,

not shown here.

User Lib orchestrates data flow outside CSD.

CSD Compression program orchestrates internal cmd & data flow.
Both source and destination data in host memory.

Engine works as a compression accelerator.

“Memory Read’”, “Memory write” are TP4131
commands.



Future Pathfinding Work . Mﬁm“

e Using the ratified TPs in a future NVMe CSD solution once the
updated NVM Express spec is released.
* Align with NVMe TP4091
* Align with NVMe TP4131

* Leverage the SNIA Architecture and Programming Model, and newly
released Computational Storage API to delivery an industry standard
solution to market.

©2023, Solidigm. All rights reserved.
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Thank You
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