M

Flash Memory Summit

Modern NVMe SSD
Architecture:

Enabling host«=device communication: Zoned Namespaces (ZNS)
and Flexible Data Placement (FDP)

Dev Purandare

Center for Research in Systems and Storage

UC Santa Cruz
UG SHNIR GRUL

BaskinEngineering

Center for Research

% = in Systems and Storage

@-

72—
=

//

©2023 Flash Memory Summit. All
Rights Reserved

M

Flash Memory Summit

Layout of the talk

1. Traditional SSDs and the motivation to change

2. Modern NVMe Command Sets: ZNS, and FDP

3. How to think of data layout

4, Avallable hardware, emulators, and testing

5. Tools, libraries, and Kernel Support

6. Filesystems, Applications, and popular projects
7. Blueprints for deploying modern SSDs

Everything referenced in this talk is also listed at: https://github.com/devashishp/FMS

©2023 Flash Memory Summit. All Rights Reserved 2

M

Flash Memory Summit

“SSDs will continue to improve by some metrics
(notably density and cost per bit), but everything else

about them is poised to get worse.”

— 'The Bleak Future of NAND Flash Memory (2012)

Structure of an SSD

Controller

Engine

| Leveling

Other modules

Collection

Address

Translation | :

DRAM

Memory - NAND Interface

Flash

Channels

M

Flash Memory Summit

Density comes at a cost DR

- Flash storage has grown in capacity faster
than any other kind of storage propelled by:

. . NAND Flash SSD Technology
> Die shrink

» Packing more bits in each cell

» 3D stacking

» Each Increase In density of a cell comes at
a cost of performance and durability

©2023 Flash Memory Summit. All Rights Reserved 5

We can’t change physics but, [ED

» We can help the devices perform better and last longer
» NAND-based flash cannot perform in-place updates
» Random Writes are mapped to new location on the device
» Causes metadata overhead
» The erase unit of an SSD i1s 10-100X the write unit
~ Valid blocks need to be moved on erase
» This affects cost, performance, and lifetime

- |f we reduce In-place updates and co-locate data that will
be deleted together, we can reduce this overhead

©2023 Flash Memory Summit. All Rights Reserved 6

Garbage Collection

» Requires moving valid data to new blocks before erase

- Impacts cost
» Overprovisioning (7% to 28%)

- Extra DRAM needed — 1GB per 1TB of flash

- Impacts performance
» Increased tall latency
» Degraded throughput
- Impacts Lifetime

- Write Amplification Factor >1 (2% - 5%)

©2023 Flash Memory Summit. All Rights Reserved

Avg. Latency (us)

0

Base =xxxxx ttFlash EEmmmy

NoGC /T

M

Flash Memory Summit

Latencies

1500
1000 |
500 r

N\

\

N\

g

N\

DAPPS DTRS Exch LMBE MSNFS TPCC

Page Read 40us
(flash-to-register)
Page Write 800us

(register-to-flash)

Page data transfer 100us
(via channel)

Block erase 2ms

Tiny-Tail Flash: Near-Perfect Elimination of Garbage Collection Tail Latencies in NAND SSDs

Full host exposure
to device topology

Open Channel

1

Proposed standard

Open Channel

Denali

Host managed placement;

brought Zoned Storage to SSDs

Zoned Namespaces

- EXPRESS)‘

(ZNS)

1

Streams

nvm_,
EXPRESS.

|O Determinism

Device placement
based on Stream ID

- OCP
% ‘__ '+ GLOBAL
“:iz‘::s'-:* SUMMIT

"fqe

OCTOBER 18-20, 2022
SAN JOSE, CA

©2023 Flash Memory Summit. All Rights Reserved

Focus on latency; added device
topology abstraction to NVMe

!

ZAC/ZBC SMR HDD

[|

Overlapped Tracks

LI RO VAN) MR N R R)
| I ULV BRI R AR B R Y
LRSI S VAL R A
IR IllH)] Ilmlll

NN

) lllll 1)

1l
l

ost-Device Communication

A Brief History of NVMe Data Placement Debates

Direct Placement
Mode (DPM)

Flexible Direct
Placement (FDP)

— EXPRESS.)

“Stronger” form of Streams;
host guided placement

Elements of DPM and SmartFTL;
host guided placement

Flash Memory Summit

EMPOWERING OPEN:

Traditional

Open-Channel

User Application

User Application

Comparison (Host vs. Dewce)

ZNS

Filesystem and
Block Layer

Block Mapping,
File Interface, Free
Space
Management,
Formats and
Recovery

User Application

Filesystem and
Block Layer

Block Mapping,
File Interface, Free
Space
Management,
Formats and
Recovery

User Appllcatlon
with Hints

Firmware

Address Mapping,
Buffers, Wear
Leveling, Garbage
Collection, Error
Correction, etc.

Filesystem and
Block Layer

Block Mapping,
File Interface, Free
Space
Management,
Formats and
Recovery

Address Mapping,
Buffering, Wear Leveling,
Garbage Collection,

Filesystem and
Block Layer

Block Mapping,
File Interface, Free
Space
Management,
Formats and
Recovery

Address Mapping,
Buffering, Garbage
Collection,

Error Correction, etc.

Error Correction, Wear

Leveling etc.

Firmware

Address Mapping,
Buffers, Wear
Leveling, Garbage
Collection, Error
Correction, etc.

Device

Device

Device

Device

M

Flash Memory Summit

M

Flash Memory Summit

ZNS and FDP: an overview

» ZNS splits the address space » FDP routes data to the right

In equal sized append-only 'reclaim units’ depending on
regions called ‘zones’ the hint

- Simple device: lightweight » Complex device: Full FTL,
FTL, low overprovisioning, same overprovisioning and
lower DRAM needed DRAM as standard SSDs

- Complex interface: needs - Simple interface: hints are
append-only writes, host optional, backwards

performs garbage collection compatible with current SSDs

Zoned Namespace SSDs

- Address space partitioned into ‘zones’

» Equal sized append-only regions
» Multi-tenancy

~ Can pick zones for different writers
- Data co-location

- Related data In the same zone
» Garbage Collection

- By the host with '"Zone Reset’

©2023 Flash Memory Summit. All Rights Reserved

M

Flash Memory Summit

zonedstorage.io

Flash

EEEEEEEEEEEEEEE
EEEEEEEEEEEEEEn
EEEEEEEEEEEEEEn
00000 0000000000
00000 0000000000
0000000000 odoobo

Application 1 Application 2 Application 3

' ' !

Conventional SSD Controller

Regular SSD: Device controls data
placement

Venue | #Pubs. Simpl

Application 1 Application 2 Application 3

! ! !

f [o o o o o i [
D0DDDD000DDOODg:
00D0DDDOD0oEoooo:
0000C0000coo0oo:
00000:0000000000:
o o o o o o [o

e L A N T T N TS

ZNS SSD: Applications control data
placementin zones

Appr Res Orth

FAST | 126 9 8 23 8
OSDI | 164 3 0 4 0
SOSP | T7 2 2 2 0
MSST | 98 10 7 16 10
Total | 465 24 17 45 18

Table 1: Impact of ZNS adoption on existing work on
flash-based SSDs. Columns are counts. # Pubs. indicates
the total publications in the venue over the last S years.

Don't Be a Blockhead: Zoned Namespaces Make Work
on Conventional SSDs Obsolete

1

http://zonedstorage.io

M

Flash Memory Summit

ZNS Architecture

~ ZNS partitions the device into equal |

sized append-only regions Ml | B |

LBA =0 e S~ LBA = NSZE-1

» Zone Size vs Zone Capacity

~ Write pointer

ZCAP (logical blocks)
ZSZE (logical blocks)

» Maintains the last written Logical
Block Address

Figure 6: Write Pointer in a Partially Written Zone

LBA m (i.e., ZSLBA) LBA w LBA n-1
Y
written LBAs write pointer
(LBA w)

zonedstorage.io

©2023 Flash Memory Summit. All Rights Reserved 12

http://zonedstorage.io

ZNS State Transitions

» ZONE RESET
-~ - Empty
» WRITE
- —>Implicit open/full
» OPEN
- — Explicit Open
» CLOSE
» — Closed
» FINISH
~ - Full

Figure 7: Zone State Machine

4 P "N

Active Resources (

Open Resources

ZS10:
Implicitly
Opened

ZSE:Empty >

Only

ZSEO:
Explicitly
Opened

z dev + z ~/ sudo zns id-ns /dev/nvmeln2 -H
ZNS Command Set Identify Namespace:
: 0 Zone Operation Characteristics
Zone Active Excursions: No
Variable Zone Capacity: No

Optional Zoned Command Support
Reserved

Read Across Zone Boundaries: No
Active Resources
Open Resources

ZSRO:Read

ZS0:0Offline

Open Zones

RESET ZONE

Flash Memory Summit

WRITE

y
el

\

—J1_ RESET | |

Q’?—T’Y//\: ZONE

@

{' ? EXPLICIT

OPEN

RESET ZONE IMPLICLT
WRITE |
/ |
OPEN
ZONE
d 4”'"—'\

{1 WRITE

» 1 WRITE

WRITE E
OPEN 5
ZONE ZONE '
RESET OPEN 5
ZONE ZONE | :
/CLOSED> WRITE
——— ———
/ RERD '/OFFLINE
Device ONLY Device
Internal Internal
Event Event

https://zonedstorage.io/docs/introduction/zoned-storage

©2023 Flash Memory Summit. All Rights Reserved

13

M

Flash Memory Summit

New Commands
- Zone Append

» Writes data to the talil of the log
- Returns the lowest logical block address —

WP WP, WP,
No) (W,) (after W,)

» Write ordering according to the device

— A: 4K Write,
B: 8K Write,

» Solves contention over write pointer

~ Allows >1 Queue Depth writes to the device

» Simple Copy
> Copy without involving host (like XCOPY)

©2023 Flash Memory Summit. All Rights Reserved 14

M

Flash Memory Summit

ZNS: Programming

» ZNS Unlocks new capabilities for applications
» Co-locate related data and reduce WAF

» Improve performance with isolation 0 ' , ,
. Host-managed GC v b w
- ZNS introduces the following challenges: - g:ggtgggfzz‘og”D """""" I R
> Seq U ent|a| Wr|teS on Iy* Figure 1: Throughput ofam;:i-thia(dec)i write workload that

overwrites usable SSD capacity four times. The SSDs all have
2 TB raw media and share the same hardware platform.

» Active management of write resources

» ZNS is well suited for log-structured
applications

Getting Started: Emulation . F'

» hull blk » Qemu » ConfZNS

» Null block device > Can emulate a » TiIming accurate
. Can be backed zoned device configurable

by memory - Fully compliant emulator
X USGfUI to test #Lot.{usr/local/bin/qemu—system—x86_64\ . Based on FEMU

-device nvme,id=nvme0,serial=deadbeef,zoned.zasl=5 \
» o -drive file=$3znsimg$,id=nvmezns0, format=raw,if=none \ /c\ll -t n L(
compatibility » Allows to pic
logical_block_size=4096,\

physical_block_si1ze=4096, zoned=true,zoned.zone_size=64M, zoned. \C h a n n e I S, d i eSl

modprobe null_blk nr_devices=1 \ zone_capacity=62M, zoned.max_open=16,zoned.max_active=32

zoned=1 \ etC-

zone_nr_conv=4 \

zone_size=64 \ https://github.com/DKU-StarLab/ConfZNS

©2023 Flash Memory Summit. All Rights Reserved 16

M

LI bra rles Flash Memory Summit
- libzbd - libnvme
» Provides support for zoned » Library for interacting with
devices through the kernel nvme devices
interface using ioctls . nvme-cli uses this library
- libzbd calls are for zoned . Allows OS-mapping of NVMe
operations while standara commands like id-ns, i1d-ctrl,
systemcalls are used for zone-append, mgmt-send,

reads and writes mgmt-receive, write etc.

XNVMe - Cross-platform EED

err = xnvme_buf_fill(buf, buf_nbytes,

- XNVMe includes libxnvme_znd with

xnvme_cli_perr("xnvme_buf_fill()", err);

cli—>args.data_input ? cli->args.data_input : "anum");

goto exit;

the zoned command set }

xnvme_cli_pinf("Initializing async. context + alloc/init requests");

err = xnvme_queue_init(dev, qd, @, &queue);
if (err) {

~ Can be used with a variety of

goto exit;
}

backends: Linux, AlO, SPDK, 1o0_uring, e dos
freebsd, ioctl

xnvme_spec_znd_descr_pr(&zone, XNVME_PR_DEF);
xnvme_cli_timer_start(cli);

payload = buf;

- Supports all NVMe commands T
" struct xnvme_cmd_ctx xctx = xnvme_queue_get_cmd_ctx(queue);
. . . submit:
SI I I I I a r y O I nVI I Ie err = xnvme_znd_append(ctx, nsid, zone.zslba, 0, payload, NULL);

CNVMe
N/

https://github.com/OpenMPDK/xNVMe/blob/main/lib/xnvme_znd.c
©2023 Flash Memory Summit. All Rights Reserved 18

Filesystems: POSIX I:‘ED

- BTRFS - F2FS
- Support for ZNS (experimental) » Support for sequential zones
- Fixed extent sizes can cause in the data region (not for

issues metadata or checkpoints)
- No support for mixed groups, - Needs to span mU'_t"
RAID or NOCOW namespace or device
BTRFS' partially filled extents leavegaps @0 e
And cause space amplification Zzzzzz i
elative performance, Persimmon is a for o +§ i
(F:f I|:2tFS \./F\)/itffappend-’ozly metadata ar:cd ‘ . Z Z
checkpoints(mywork) e o |0

Persimmon

Fork of F2FS with append-only
metadata

Does not require conventional zones

Reduces tail latency, garbage
collection overhead

Metadata Allocation Table (MAT)

R ——

Flash Memory Summit

Zone

Zone Information Table (ZIT)

15 (300 O 0|1

A: Read Latency

n-1

B: Read Latency

Zone

Zone Bitmap

01170101000111111111100

200
== Persimmon Read-Update r 70 1 == Persimmon Read-Only
* F2FS Read-Update ;;' 604 F2FS Read-Only
n n n 150 + Persimmon Read-Heavy ‘;./ Persimmon Insert-Read
5
> 100 - 40 7
g
4:-% 30
3 -
50 - 20 A ‘)‘)‘;‘;a
]] 10 A e
=T
0 o e—— 0 m——
> T T T T T T
Minimum Median 99% Minimum Median 99%
D: Update Latency E: Tail Latency
12000
200 { == Persimmon Light = = Persimmon Read-Update
- F2FS Light 10000 H =--- F2FS Read-Update I
Persimmon Heavy Persimmon Read-Heavy
—_ 150 1 F2FS Heavy 8000 A F2FS Read-Heavy
= =
2 6000 {
£ 100 A |
g
= 4000
50
T = 2000 ereeeeemeerrinhe i o e
e B i
r—-'-“‘"""‘""-_ O_'I'-""l'\-t::r.-—-r_,-i__-l’--—- ----
O— T T T mrrrTTeT T LLALLLEL LI LI T
Minimum Median 99% 0.9 0.99 0.999 0.9999 0.99999 0.999999

©2023 Flash Memory Summit. All Rights Reserved

C: Insert Latency

50 4 == Persimmon Read-Inserts
* F2FS Read-Inserts
40 - Persimmon Scan-Inserts
F2FS Scan-Inserts
30 + I
)
I
20 i
W
— e
10 - T T T T T L ittt
S =i -
\/”
T T T
Minimum Median 99%
F: Tail Latency
80000
== Persimmon Read-Only
= F2FS Read-Only
60000 - Persimmon Insert-Read
F2F'S Insert-Read
40000 -~
20000 A '
LiET
R S S— -
T T LRI LRI T L LA
0.9 0.99 0.999 0.9999 0.99999 0.999999

20

Filesystems: ZoneFS

- Exposes each zone as a file
» Block layer representation
-~ Write can append to the file

» Truncate Garbage collects the zone [EEEEE.

» Great for experimentation!
- Writes are unbuffered

» Reads are unchanged

» Sysfs reports device detalls

©2023 Flash Memory Summit. All Rights Reserved

M

Flash Memory Summit

#define _GNU_SOURCE
#include <errno.h>
#include <fcntl.h>
#include <stdio.h>
#include <string.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>

#define BLOCKSIZE 409600

int main() {
char buf[BLOCKSIZE] = {1};
for (int i = @; i < BLOCKSIZE; i++) {

buf[i] = 1;
}
int fd = open("/mnt/zonefs/seq/16", O_WRONLY | O_DIRECT | O_CREAT | O_APPEND,
0666);

}
int ret = write(fd, buf, BLOCKSIZE);

if (ret < 0) {
printf("Err: %s\n", strerror(errno));
perror("File");

}

close(fd);

return 0,

A simple C program to write 100 pages of “1” to zone 16 on a
mounted zonefs filesystem.

i dev + 2 ~/ /mnt/zonefs

Z dev + i ~/ /mnt/zonefs/seq/
O 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Z dev + i~/ /sys/fs/zonefs/dm-4/
max_active_seq_files max_wro_seq_files nr_active_seq_files nr_wro_seq_files 21
Z dev + i ~/ /sys/fs/zonefs/dm-4/nr_active_seq_files

0

Highlighted works: ZenFs . Fi

> Ze n F S i S a StO ra g e b a C ke n d fo r ZNS: Avoiding the Block Interface Tax for Flash-based SSDs
R O C kS D B Matias Bjgrling*, Abutalib Aghayev®, Hans Holmberg*, Aravind Ramesh*, Damien Le Moal*,

Gregory R. Ganger', George Amvrosiadis’
*Western Digital ~°The Pennsylvania State University —TCarnegie Mellon University

~ Can place files on raw zoned
block devices or ZoneFS = e ——

Composite*Env o 123 - \\\\
.+ 8 60 [7 s’ ..
» Does not support random e = |
MetaZZ:e mlr‘]agemFe”:tVO é 4] 2?) L] i\é §§§§§§§§ :\\\\\E////\\\ _______________ N

n 8 % ’
! fillrandom overwrite
W r I te S a n d p e rfo r m S I a Zy G C %l o = Fi'ESJStem Fosix Env Figure 6: Throughput of RocksDB with write-heavy

| benchmarks— fillrandom followed by overwrite using the

block-interface SSD with 28% OP and the ZNS SSD.

Linux kernel

Zoned Block Devices

https://github.com/westerndigitalcorporation/zenfs

©2023 Flash Memory Summit. All Rights Reserved 22

ZNSwap

» ZNS Optimized swap subsystem
» GC co-designed with OS swap logic
» Stable throughput
» 10X lower p99 latency
> 5X higher throughput

©2023 Flash Memory Summit. All Rights Reserved

M

Flash Memory Summit

ZNSwap: un-Block your Swap

SHAI BERGMAN, Technion

NIKLAS CASSEL and MATIAS BJ@RLING, Western Digital
MARK SILBERSTEIN, Technion

Linux swap (Block SSD) —&— ZNSwap (ZNS SSD)

+~ Q ><3_
S n —
2@ 500 - <
eSS = 27
%I—l

0 1

O 10 20 30 40 50 60 70 80 O 10 20 30 40 50 60 70 80
Device utilization [%] Device utilization [%]

—>— Block SSD = ZNS SSD

v
$ 1000
@ —
= 00 - f 1.5 -
<C
2 <
v
.: 0 1 I | 1-0 | AL \ll Al \,l\l DL
= 0 25 50 75 0 25 50 75
Device utilization [%] Device utilization [%]

23

Motivation for FDP SSDs E'D

-~ ZNS Imposes a restrictive contract:

» Can only write to a write pointer

 Append-only writes, random writes-overwrites not possible

» Host manages data placement and garbage collection

- Requires a new interface and rewriting filesystems/applications
- FDP presents backwards compatibility

» Backwards compatible interface to traditional SSDs

» Optional hints that the device can leverage

Evolving NVMe Streams JE

» Stream SSDs (2016) added

Support fOI‘ mUIt|p|e Stl‘ea Ims Data written with this flag is
. RWH_WRITE_LIFE_SHORT : expected to have a high overwrite
of different temperatures ate, or lfe time.
> Strea mS have I I m ItatIOnS RWH_WRITE_LIFE_MEDIUM Longer life time than SHORT

. Eg. SHORT is application
and workload dependent RWH_WRITE_LIFE_LONG | Longer life time than MEDIUM

~ FDP use arbitrary Reclaim
Groups as hints

RWH_WRITE_LIFE_EXTREME Longer life time than LONG

NVMe FDP N

» Google and Meta merged their suggestions for Smart FTL, and
Direct Placement Mode into FDP

» On-device:

» Placement on the indicated super block
» Management of super blocks

» At host:
» Addition of a placement identifier

» No other functionality i1s changed

Flash Memory Summit

1/O write command

NSID: Namespace A

DSPEC (i.e, Placement |Identifer)
Reclaim Group Placement

Core Concepts

» Grouping
» Reclaim Groups (RGs) 7

Endurance Group
| [
> I :eCIaIIII UI lItS (I :US) / Namespace A
Placement Reclaim Unit Reclaim Unit Handle 1
Handle Handle Identifier
| [
» Reclaim Unit Handles (RUHSs) I L w T
L) Reclaim Reclaim Reclaim Reclaim
P I t X _ Unit Unit 1 unit Unit
> a C e m e n N b, Reclaim | [Rectaim Reclaim Reclaim
| Unit Unit Unit Unit
Reclaim Reclaim Reclaim | Reclaim
o G The number of entries is defined by the Unit Unit Unit T unit
> Namespace Management command as
defined by the appropriate I/0
Command Set specification. Reclaim Reclaim Reclaim Reclaim
Unit Unit Unit Unit
Reclaim Reclaim Reclaim Reclaim Group
Group O Group 1 Group 2 NRG-1

» Placement Handle

Bits Description

31:24 | Reserved

23:20 Directive Type (DTYPE): Specifies the Directive Type associated with the Directive Specific field
' (refer to the Directives section in the NVM Express Base Specification).

19:16 | Reserved
_ Number of Logical Blocks (NLB): This field specifies the number of logical blocks to become

15:00 L ;

uncorrectable. This is a 0’s based value.

©2023 Flash Memory Summit. All Rights Reserved 27

FDP Benefits N

- Without application support:
» Writes could still be tagged into groups

per-application Write Amplification
. . . ConvSSD| FDPSSD | %

» Gets partial performance isolation FIO 163 1.02|-37%
JEDEC (512B) 3.95 3.8| -4%

» Gets most, but not all benefits JEDEC (4kB) 373] 3.48| 7%
Full Bechmarks In Progress

- With explicit application support: rom OCP 2023 Storage talke

https://www.opencompute.org/events/past-

. ertes can be grou ped by delete events/2023-ocp-storage-tech-talks

characteristics
» WAF=1 possible with good grouping

©2023 Flash Memory Summit. All Rights Reserved 28

https://www.opencompute.org/events/past-events/2023-ocp-storage-tech-talks
https://www.opencompute.org/events/past-events/2023-ocp-storage-tech-talks

Simple vs Complex Hierarchy

Namespace 1

Reclaim
Group O

Endurance Group 1

Domain 0

NVM Subsystem

©2023 Flash Memory Summit. All Rights Reserved

Namespace Namespace
[| [
Namespace Namespace
Reclaim Reclaim Reclaim Reclaim Reclaim Reclaim
Group Group Group Group Group Group
A10 A11 A1f A30 A31 A3g
Endurance Group A1 Endurance Group A3
Domain A
Namespace Namespace
Namespace Namespace
Reclaim Reclaim Reclaim Reclaim Reclaim Reclaim
Group Group Group Group Group Group
D10 D11 D1h D50 D51 D5i
Endurance Group D1 Endurance Group D5
Domain D

NVM Subsystem

29

Selecting Reclaim Groups EED

» FDP can used a placement handle to it
indicate reclaim unit forepthe
bs=4K

thread=1

» Placement handle is an integer hint e
(UnSigned 16 blt) fdp_pli=4,5

A sample fio spec using pli 4 and 5

int nvme_ns_write_uncorrectable(nvme_ns_t n, off_t offset, size_t count)

{

struct nvme_io_args args = {

.args_size = sizeof(args),

.fd = nvme_ns_get_fd(n),
.nsid = nvme_ns_get_nsid(n),
.control = 0,

.dsm = 0,

.dspec = 0,

.reftag = 0,

.apptag = 0,

.appmask = 0,

.storage_tag = 0,

.data_len = 0,

.data = NULL,

.metadata_len = 0,

.metadata = NULL,

.timeout = NVME_DEFAULT_IOCTL_TIMEOUT,

©2023 Flash Memory Summit. All Rights Reserved
.result = NULL,

30

Possible Hint Interfaces EED

- RWH_Lifetime hints - fadvise(2)
- Used by the stream interface » Allows application to
. The third parameter can be Indicate to the kernel the
an integer allowing the host expected workload
to set a write hint for a - Typically used to perform
particular file descriptor cache-based optimization

» Could be utilized for RUHs

fcntl(fd, F_SET_RW_HINT, RW_WRITE_LIFE_MEDIUM); fadvise64(15, ©, 0, POSIX_FADV_RANDOM)

M

Flash Memory Summit

Hardware and Emulation

~ FDP Is ratified as a part of NVMe 2.0

SpeC (TP 4146) -device nvme-subsys,id=nvme-
subsys-0,ngn=subsys0, fdp=on, fdp.nruh=16
> LanX Kernel SUppOrt Slnce 5-19 Setting up a FDP device in QEMU

» XNVMe support

» QEMU 8.0 supports FDP emulation
for 1 endurance group

- flo supports FDP
~ nvme-cli has fdp-specific commands

©2023 Flash Memory Summit. All Rights Reserved 32

Drives ZNS and FDP I:‘L'D

Western Digital.

Ultrastar
DC ZN540

DATA CENTER NVMe™ZNS SSD

STORAGE

©2023 Flash Memory Summit. All Rights Reserved 33

Standard Interface

The fork: ZNS and FDP
. FDP_____ NS

Append-only Interface

Sequential, random, overwrite

Sequential writes only

App 2

Standard OP

0% OP

M

Flash Memory Summit

l Writes

FDP SSD Controller

Standard DRAM

Reduced DRAM

App 2 App 3

! !

Reclaim Unit 2

Host changes optional

Host changes required

ZNS SSD Contro ller

__

WAF 1 possible

WAF =1

Host provides hints

Hosts picks zone

__

On-device GC

Host-performed GC

Reclaim Unit one
Full FTL Simple FTL
Stateless Stateful

Static resource allocation

Dynamic resource allocation

©2023 Flash Memory Summit. All Rights Reserved

34

M

Flash Memory Summit

Open Problems: Hint Generation

History of host-managed SSD E

Flash Memory Summit

FMS 2019 (ZNS)
FMS 2016 (Stream)

(+)
ZNS/ZAC/ZBC -> Zoned Block Device .

Capacity, Sequential Write “
L dat - ‘ ‘
og data A @ A Host writes to offset Application/OS/FS (HDD & SSD)
@ A from Zone starting LBA (Host FTL)
Meta data A ‘ < O o
= Device

Database ‘ . A A FIL

® ® A A —— Zone
V.| Multimedia A f OO0O0O0OO0000O000000¢

@ EEEEEOOOO0O0OOOOO

ODO00OEEEEECcOoOooO
OO0 EEEEmE
OO0 0OEEEEOOOOOmD | o%or
OoOOoOoooodooood

Flash Memory Summit 2016
Santa Clara, CA

Host manages (zone) placement; device manages media

(Write Amplification)
2. Erase Block

HEOON
OEOEAO

SSD Architecture @ o
"""""""""""""" Address Map Data Cache FDP -> Conventional Block Device
e Address Map Data Cache Enough data to Compute
] Enough data to fill a striped page
[— fill a page (SSD Only) —_— Host writes anywhere in
Application/OS/FS
— — (Host FTL optional) LBA space and sends
4kB Writes 1MB Writes - - placement hints (RU ID)
Device
g FTL
NAND Flash 5 NAND Flash _ Reclan
Flash Page -i E g Umt(RU) ‘DDDDD---.- DDDDD
|- | s g O0O0O0OO8008008000808
Garbage Collection: § % D EI I:I D D - - - . - D D D D D
Flash Block 1. Copy valid data g' g . - - - -
£

OO00OOoobooco
O0O0O00 om0 |

‘DDDDDDDDDD}»
oP

Device manages placement and media

—

OCP 2018 (Denali) FMS 2022 (FDP)

©2023 Flash Memory Summit. All Rights Reserved

36

Existing Work

- Separate journaling from writes e

cation
o

100 O
%75 T;l1.10 /.
[| [[o 50 <)
- ZenFS can use write lifetime hints to place data :aadblll -
Threshold Threshold
(a) Total Copied Data (b) Write Amplification

» RocksDB can supply these hints based on levels P 3 WA sy of 174 snd CAZ

Compaction-Aware Zone Allocation for LSM based Key-Value Store on ZNS SSDs HotStorage’22, June 27-28, 2022, Virtual Event, USA
ZNS SSD
—_—- Zonckile #0 | o Extent #0 | » Extent #1
D Valid SSTable D Invalid SSTable I__ 1 New SSTable D Compaction Input D Victim Zone (Reset) (WLITH_SHORT) Zone #0(WLTH_SHORT)
. 1 .

Before ompactlon Before Com ompactlon &emmm F(1)-E(D) F(1-E(1) Invalid FIOy-E(0)

A A Zone 0 (Medium) B C Zone 1 (Long) B C A Zone 0 Zone 1
Level 1 (027) (28-52) (53-80) (81-99) (027) (28-52) (25-50) (53-80) (81-99) (54-99)

B c Zone #1 (WLTH SHORT)
Level 2 (_0-27)(28-52)(53-80)(81-99) Zone 2 (Empty) Zone 3 (Empty) Zone 2 Zone 3 ZoneFile #1 |- Extent #0 1+ Extent #1 1 Extent #2

Sisbasissbl FIO»-E(]) F(1)»-E(2) Empty Empty
After Compaction After Compaction After Compaction
A Zone 0 (Medium) - { B c Hes il 2 c a2 Zorel0 Zone 1 i Zone #2 (Not allocated < WLTH_EXTREME)

Level 1 (54-99) (C0-27)(28-52) (53-80)(81-99) (L0-27)(28-52)(25-50) (53-80)(81-99)(54-99) memmmsemsese-

D ___E ___ - : : : :
Level 2 (_0-35)(40-52 ,(53-80)(81-99 D £ Zone 2 (Long) Valid Data Copy\ Zone 3 (Long) D Zone 2 E Zone 3 ZoneFile #2 \-of Extent #0 Extent #0 Empty Empty Empty

ST\] - res-- re-—— Wi 5 A ’ ; A
(_0-35_,(40-52 (_0-35) (40-52 ; P A ‘
(a) LSM_tree (b) LIZA (c) CAZA . ’ WLTH: Write Life-Time Himt
P|\’ F(Y) -)/l‘fl\"’utf X, Extem Y

Figure 2: Examples showing the efficiency of zone cleaning of CAZA compared to LIZA
Efficient Key-Value Data Placement for ZNS SSD

©2023 Flash Memory Summit. All Rights Reserved 37

Blueprints for effective hints EED

- Application:
» |s unaware of hardware layout
» Unaware of other application
» Filesystem:
~ Unaware of application workload characteristics
~ Applications need to be rewritten

©2023 Flash Memory Summit. All Rights Reserved 38

An ideal hint generator I:‘ED

~ Aware of storage hierarchy
- Aware of application and workload
» Decoupled from application, filesystem for greater visibility
- Lightweight and efficient
» Could be implemented as a shim layer:
» Possible to use WASI/eBPF to inject hints?
» Or dynamic libraries?

ldea: Dynamic interception EED

- Write() calls are intercepted
» A trained model Is used to generate hint
> In ZNS files are mapped to zones

Application

~ In FDP, just need to supply reclaim group “Fteroept 10 cals
» Model trained on deletion / <

1 2 3 Rebuilt IO Calls

ZNS SSD

Shimmer

» Uses dynamic library loading to
modify system calls to read() and
write()

» Injects hints based on a trained k-
nearest-neighbors model on file
lifetimes

~ Groups related files together in the
same zone/resource group

» Work In progress
- Check out the poster at FMS!

©2023 Flash Memory Summit. All Rights Reserved

M

Flash Memory Summit

A SHIMMER overloaded write() call that adds a hint for
the Stream SSD interface.

unsafe fn write(
&mut self,
fd: c_int,
buf: *const c_char,
nbytes: size_t,
) -> c_int {
let path = get_path(fd);
if !self.hinted.contains(&path) {
self.hinted.insert(path)
let hint = get_hint(path);
let _ = fcentl(fd, F_SET_RW_HINT, &hint);
3
)

41

Large-Scale Deployment

App 1 App 2

App 3

App 4

M

Flash Memory Summit

Mapping Library (WASI, eBPF, VM, FS)

Hint Generator

ZNS Management (SPDK, io_uring etc.)

4/\>

FDP Management (SPDK, io_uring etc.)

Low Cost append-only Flash

FDP Enabled Flash

©2023 Flash Memory Summit. All Rights Reserved

42

Opportunities ..

- Leverage fast path optimizations
» eBPF, SPDK, 10_uring for reducing kernel overhead
» Maintain backwards compatibility
> Interception using VMs, Filesystems, eBPF, dynamic libraries
» Leverage observability and machine learning
» Dynamic application-specific, workload-specific hints
- Improve performance, lifetime, and reduce cost

Questions? EED

Everything referenced in this talk is also listed at: https://github.com/devashishp/FMS

©2023 Flash Memory Summit. All Rights Reserved 44

M

Flash Memory Summit

About Me:

Dev Purandare

Center For Research in Storage and Systems
Baskin School of Engineering
University of California, Santa Cruz

devashish@ucsc.edu

LinkedIn: devashishp
Website: https://sincerely.dev

| am currently looking for full-time cutting-edge data
management positions.
UG SNTH GRUL

BaskinEngineering

y

Center for Research
= in Systems and Storage

i
> -

©2023 Flash Memory Summit. All Rights Reserved 45

mailto:devashish@ucsc.edu

