
Modern NVMe SSD
Architecture:

Dev Purandare

Center for Research in Systems and Storage

UC Santa Cruz

©2023 Flash Memory Summit. All
Rights Reserved 1

Enabling host↔device communication: Zoned Namespaces (ZNS)
and Flexible Data Placement (FDP)

©2023 Flash Memory Summit. All Rights Reserved

Layout of the talk

©2023 Flash Memory Summit. All Rights Reserved 2

1. Traditional SSDs and the motivation to change

2. Modern NVMe Command Sets: ZNS, and FDP

3. How to think of data layout

4. Available hardware, emulators, and testing

5. Tools, libraries, and Kernel Support

6. Filesystems, Applications, and popular projects

7. Blueprints for deploying modern SSDs

Everything referenced in this talk is also listed at: https://github.com/devashishp/FMS

©2023 Flash Memory Summit. All Rights Reserved 3

“SSDs will continue to improve by some metrics
(notably density and cost per bit), but everything else

about them is poised to get worse.”

— The Bleak Future of NAND Flash Memory (2012)

©2023 Flash Memory Summit. All Rights Reserved

©2023 Flash Memory Summit. All Rights Reserved

Structure of an SSD

©2023 Flash Memory Summit. All Rights Reserved 4

Flash
Channels

NAND NAND

Memory - NAND Interface

DRAM FTL

ECC
Engine

Wear
Leveling

Address
TranslationController

PC
Ie R/
W

Bu
!e

r

D
M
A

FT
L
C
op

y

Other modules

Bu!er

G
ar
ba

ge
C
ol
le
ct
io
n

©2023 Flash Memory Summit. All Rights Reserved

Density comes at a cost
‣ Flash storage has grown in capacity faster

than any other kind of storage propelled by:

‣ Die shrink

‣ Packing more bits in each cell

‣ 3D stacking 

‣ Each increase in density of a cell comes at
a cost of performance and durability

5

©2023 Flash Memory Summit. All Rights Reserved

We can’t change physics but,
‣ We can help the devices perform better and last longer

‣ NAND-based flash cannot perform in-place updates

‣ Random Writes are mapped to new location on the device

‣ Causes metadata overhead

‣ The erase unit of an SSD is 10-100× the write unit

‣ Valid blocks need to be moved on erase

‣ This affects cost, performance, and lifetime

‣ If we reduce in-place updates and co-locate data that will
be deleted together, we can reduce this overhead

6

©2023 Flash Memory Summit. All Rights Reserved

Garbage Collection
‣ Requires moving valid data to new blocks before erase

‣ Impacts cost

‣ Overprovisioning (7% to 28%)

‣ Extra DRAM needed — 1GB per 1TB of flash

‣ Impacts performance

‣ Increased tail latency

‣ Degraded throughput

‣ Impacts Lifetime

‣ Write Amplification Factor >1 (2× - 5×)
©2023 Flash Memory Summit. All Rights Reserved 7

Tiny-Tail Flash: Near-Perfect Elimination of Garbage Collection Tail Latencies in NAND SSDs

©2023 Flash Memory Summit. All Rights Reserved

Host-Device Communication

©2023 Flash Memory Summit. All Rights Reserved 8

©2023 Flash Memory Summit. All Rights Reserved

Comparison (Host vs. Device)

9

User Application

Address Mapping,
Bu!ering, Wear Leveling,

Garbage Collection,

Address Mapping,
Bu!ering, Garbage

Collection,

Firmware
Address Mapping,

Bu!ers, Wear
Leveling, Garbage
Collection, Error
Correction, etc.

Filesystem and
Block Layer

Block Mapping,
File Interface, Free

Space
Management,
Formats and
Recovery

Filesystem and
Block Layer

Block Mapping,
File Interface, Free

Space
Management,
Formats and
Recovery

Filesystem and
Block Layer

Block Mapping,
File Interface, Free

Space
Management,
Formats and
Recovery

Filesystem and
Block Layer

Block Mapping,
File Interface, Free

Space
Management,
Formats and
Recovery

Firmware
Address Mapping,

Bu!ers, Wear
Leveling, Garbage
Collection, Error
Correction, etc.

Device Device Device Device

User Application User Application User Application
with Hints

Error Correction, etc.
Error Correction, Wear

Leveling etc.

Traditional Open-Channel ZNS FDP

©2023 Flash Memory Summit. All Rights Reserved

ZNS and FDP: an overview
‣ ZNS splits the address space

in equal sized append-only
regions called ‘zones’

‣ Simple device: lightweight
FTL, low overprovisioning,
lower DRAM needed

‣ Complex interface: needs
append-only writes, host
performs garbage collection

10

‣ FDP routes data to the right
‘reclaim units’ depending on
the hint

‣ Complex device: Full FTL,
same overprovisioning and
DRAM as standard SSDs

‣ Simple interface: hints are
optional, backwards
compatible with current SSDs

©2023 Flash Memory Summit. All Rights Reserved

Zoned Namespace SSDs
‣ Address space partitioned into ‘zones’

‣ Equal sized append-only regions

‣ Multi-tenancy

‣ Can pick zones for different writers

‣ Data co-location

‣ Related data in the same zone

‣ Garbage Collection

‣ By the host with 'Zone Reset'
©2023 Flash Memory Summit. All Rights Reserved 11

Don’t Be a Blockhead: Zoned Namespaces Make Work

on Conventional SSDs Obsolete

zonedstorage.io

http://zonedstorage.io

©2023 Flash Memory Summit. All Rights Reserved

ZNS Architecture
‣ ZNS partitions the device into equal

sized append-only regions

‣ Zone Size vs Zone Capacity

‣ Write pointer

‣ Maintains the last written Logical
Block Address

12

zonedstorage.io

http://zonedstorage.io

©2023 Flash Memory Summit. All Rights Reserved

ZNS State Transitions

©2023 Flash Memory Summit. All Rights Reserved

‣ ZONE RESET

‣ → Empty

‣ WRITE

‣ →Implicit open/full

‣ OPEN

‣ → Explicit Open

‣ CLOSE

‣ → Closed

‣ FINISH

‣ → Full

13

https://zonedstorage.io/docs/introduction/zoned-storage

©2023 Flash Memory Summit. All Rights Reserved

New Commands

©2023 Flash Memory Summit. All Rights Reserved 14

‣ Zone Append

‣ Writes data to the tail of the log

‣ Returns the lowest logical block address

‣ Write ordering according to the device

‣ Solves contention over write pointer

‣ Allows >1 Queue Depth writes to the device

‣ Simple Copy

‣ Copy without involving host (like XCOPY)

©2023 Flash Memory Summit. All Rights Reserved

ZNS: Programming
‣ ZNS Unlocks new capabilities for applications

‣ Co-locate related data and reduce WAF

‣ Improve performance with isolation

‣ Host-managed GC

‣ ZNS introduces the following challenges:

‣ Sequential writes only*

‣ Active management of write resources

‣ ZNS is well suited for log-structured
applications

©2023 Flash Memory Summit. All Rights Reserved 15

©2023 Flash Memory Summit. All Rights Reserved

Getting Started: Emulation
‣ null_blk

‣ Null block device

‣ Can be backed
by memory

‣ Useful to test
compatibility

©2023 Flash Memory Summit. All Rights Reserved 16

‣ Qemu

‣ Can emulate a
zoned device

‣ Fully compliant

‣ ConfZNS

‣ Timing accurate
configurable
emulator

‣ Based on FEMU

‣ Allows to pick
channels, dies,
etc.

https://github.com/DKU-StarLab/ConfZNS

modprobe null_blk nr_devices=1 \

 zoned=1 \

 zone_nr_conv=4 \

 zone_size=64 \

/usr/local/bin/qemu-system-x86_64 \

...

-device nvme,id=nvme0,serial=deadbeef,zoned.zasl=5 \

-drive file=${znsimg},id=nvmezns0,format=raw,if=none \

-device nvme-ns,drive=nvmezns0,bus=nvme0,nsid=1,\

logical_block_size=4096,\

physical_block_size=4096,zoned=true,zoned.zone_size=64M,zoned.\

zone_capacity=62M,zoned.max_open=16,zoned.max_active=32

...

©2023 Flash Memory Summit. All Rights Reserved

Libraries
‣ libzbd

‣ Provides support for zoned
devices through the kernel
interface using ioctls

‣ libzbd calls are for zoned
operations while standard
systemcalls are used for
reads and writes

©2023 Flash Memory Summit. All Rights Reserved 17

‣ libnvme

‣ Library for interacting with
nvme devices

‣ nvme-cli uses this library

‣ Allows OS-mapping of NVMe
commands like id-ns, id-ctrl,
zone-append, mgmt-send,
mgmt-receive, write etc.

https://github.com/westerndigitalcorporation/libzbd

©2023 Flash Memory Summit. All Rights Reserved

xNVMe - Cross-platform
‣ xNVMe includes libxnvme_znd with

the zoned command set

‣ Can be used with a variety of
backends: Linux, AIO, SPDK, io_uring,
freebsd, ioctl

‣ Supports all NVMe commands,
similarly to libnvme

18
https://github.com/OpenMPDK/xNVMe/blob/main/lib/xnvme_znd.c

©2023 Flash Memory Summit. All Rights Reserved

Filesystems: POSIX
‣ BTRFS

‣ Support for ZNS (experimental)

‣ Fixed extent sizes can cause
issues

‣ No support for mixed groups,
RAID or NOCOW

19©2023 Flash Memory Summit. All Rights Reserved

‣ F2FS

‣ Support for sequential zones
in the data region (not for
metadata or checkpoints)

‣ Needs to span multi-
namespace or device

BTRFS’ partially filled extents leave gaps

And cause space amplification

Fill Update Overwrite Read
0

100000

200000

300000

400000

500000

600000

700000

800000

IO
P
S

Throughput

Persimmon

F2FS (Zoned)

F2FS

Btrfs

Relative performance, Persimmon is a fork 
of F2FS with append-only metadata and  
checkpoints (my work)

©2023 Flash Memory Summit. All Rights Reserved

Persimmon
‣ Fork of F2FS with append-only

metadata

‣ Does not require conventional zones

‣ Reduces tail latency, garbage
collection overhead

‣ Offers better space utilization

‣ Maintains performance of F2FS

20

0 1

Metadata Allocation Table (MAT)

Zone Information Table (ZIT)
Zone Bitmap

Zone Zone

2 ... n-1

0 1 2 ... n-1

5 15 300 0 0 1 0 1 1 0 1 0 1 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0

Minimum Median 99%

0

50

100

150

200

L
at

en
cy

(u
s)

A: Read Latency

Persimmon Read-Update

F2FS Read-Update

Persimmon Read-Heavy

F2FS Read-Heavy

Minimum Median 99%

0

10

20

30

40

50

60

70

B: Read Latency

Persimmon Read-Only

F2FS Read-Only

Persimmon Insert-Read

F2FS Insert-Read

Minimum Median 99%

10

20

30

40

50

C: Insert Latency

Persimmon Read-Inserts

F2FS Read-Inserts

Persimmon Scan-Inserts

F2FS Scan-Inserts

Minimum Median 99%

0

50

100

150

200

L
at

en
cy

(u
s)

D: Update Latency

Persimmon Light

F2FS Light

Persimmon Heavy

F2FS Heavy

0.9999990.999990.99990.9990.990.9

0

2000

4000

6000

8000

10000

12000
E: Tail Latency

Persimmon Read-Update

F2FS Read-Update

Persimmon Read-Heavy

F2FS Read-Heavy

0.9999990.999990.99990.9990.990.9

0

20000

40000

60000

80000
F: Tail Latency

Persimmon Read-Only

F2FS Read-Only

Persimmon Insert-Read

F2FS Insert-Read

©2023 Flash Memory Summit. All Rights Reserved

Filesystems: ZoneFS
‣ Exposes each zone as a file

‣ Block layer representation

‣ Write can append to the file

‣ Truncate Garbage collects the zone

‣ Great for experimentation!

‣ Writes are unbuffered

‣ Reads are unchanged

‣ Sysfs reports device details
©2023 Flash Memory Summit. All Rights Reserved 21

A simple C program to write 100 pages of “1” to zone 16 on a
mounted zonefs filesystem.

©2023 Flash Memory Summit. All Rights Reserved

Highlighted works: ZenFS
‣ ZenFS is a storage backend for

RocksDB

‣ Can place files on raw zoned
block devices or ZoneFS

‣ Does not support random
writes and performs lazy GC

22

https://github.com/westerndigitalcorporation/zenfs

©2023 Flash Memory Summit. All Rights Reserved

ZNSwap
‣ ZNS Optimized swap subsystem

‣ GC co-designed with OS swap logic

‣ Stable throughput

‣ 10× lower p99 latency

‣ 5× higher throughput

©2023 Flash Memory Summit. All Rights Reserved 23

©2023 Flash Memory Summit. All Rights Reserved

Motivation for FDP SSDs
‣ ZNS imposes a restrictive contract:

‣ Can only write to a write pointer

‣ Append-only writes, random writes-overwrites not possible

‣ Host manages data placement and garbage collection

‣ Requires a new interface and rewriting filesystems/applications

‣ FDP presents backwards compatibility

‣ Backwards compatible interface to traditional SSDs

‣ Optional hints that the device can leverage
©2023 Flash Memory Summit. All Rights Reserved 24

©2023 Flash Memory Summit. All Rights Reserved

Evolving NVMe Streams
‣ Stream SSDs (2016) added

support for multiple streams
of different temperatures

‣ Streams have limitations

‣ Eg. SHORT is application
and workload dependent

‣ FDP use arbitrary Reclaim
Groups as hints

©2023 Flash Memory Summit. All Rights Reserved 25

RWH_WRITE_LIFE_SHORT
Data written with this flag is

expected to have a high overwrite
rate, or life time.

RWH_WRITE_LIFE_MEDIUM Longer life time than SHORT

RWH_WRITE_LIFE_LONG Longer life time than MEDIUM

RWH_WRITE_LIFE_EXTREME Longer life time than LONG

©2023 Flash Memory Summit. All Rights Reserved

NVMe FDP
‣ Google and Meta merged their suggestions for Smart FTL, and

Direct Placement Mode into FDP

‣ On-device:

‣ Placement on the indicated super block

‣ Management of super blocks

‣ At host:

‣ Addition of a placement identifier

‣ No other functionality is changed

26

©2023 Flash Memory Summit. All Rights Reserved

Core Concepts
‣ Grouping

‣ Reclaim Groups (RGs)

‣ Reclaim Units (RUs)

‣ Reclaim Unit Handles (RUHs)

‣ Placement

‣ Placement Identifier

‣ Placement Handle

27

©2023 Flash Memory Summit. All Rights Reserved

FDP Benefits
‣ Without application support:

‣ Writes could still be tagged into groups
per-application

‣ Gets partial performance isolation

‣ Gets most, but not all benefits

‣ With explicit application support:

‣ Writes can be grouped by delete
characteristics

‣ WAF=1 possible with good grouping
©2023 Flash Memory Summit. All Rights Reserved 28

From OCP 2023 Storage talks

https://www.opencompute.org/events/past-
events/2023-ocp-storage-tech-talks

https://www.opencompute.org/events/past-events/2023-ocp-storage-tech-talks
https://www.opencompute.org/events/past-events/2023-ocp-storage-tech-talks

©2023 Flash Memory Summit. All Rights Reserved

Simple vs Complex Hierarchy

©2023 Flash Memory Summit. All Rights Reserved 29

©2023 Flash Memory Summit. All Rights Reserved

Selecting Reclaim Groups
‣ FDP can used a placement handle to

indicate reclaim unit

‣ Placement handle is an integer hint
(unsigned 16 bit)

©2023 Flash Memory Summit. All Rights Reserved 30

[global]

rw=randwrite

size=2M

iodepth=1

bs=4K

thread=1

fdp=1

fdp_pli=4,5

A sample fio spec using pli 4 and 5

©2023 Flash Memory Summit. All Rights Reserved

Possible Hint Interfaces
‣ RWH_Lifetime hints

‣ Used by the stream interface

‣ The third parameter can be
an integer allowing the host
to set a write hint for a
particular file descriptor

©2023 Flash Memory Summit. All Rights Reserved 31

‣ fadvise(2)

‣ Allows application to
indicate to the kernel the
expected workload

‣ Typically used to perform
cache-based optimization

‣ Could be utilized for RUHs

fcntl(fd, F_SET_RW_HINT, RW_WRITE_LIFE_MEDIUM);
 fadvise64(15, 0, 0, POSIX_FADV_RANDOM)

©2023 Flash Memory Summit. All Rights Reserved

Hardware and Emulation
‣ FDP is ratified as a part of NVMe 2.0

spec (TP 4146)

‣ Linux Kernel Support since 5.19

‣ xNVMe support

‣ QEMU 8.0 supports FDP emulation
for 1 endurance group

‣ fio supports FDP

‣ nvme-cli has fdp-specific commands

32

-device nvme-subsys,id=nvme-
subsys-0,nqn=subsys0,fdp=on,fdp.nruh=16

Setting up a FDP device in QEMU

©2023 Flash Memory Summit. All Rights Reserved

Drives ZNS and FDP

33

©2023 Flash Memory Summit. All Rights Reserved

The fork: ZNS and FDP

34

FDP SSD Controller

App 1

With Hint Writes

App 2 App 3

Reclaim Unit 1 Reclaim Unit 3Reclaim Unit 2

ZNS SSD Controller

App 1 App 2 App 3

Zone 1 Zone 3Zone 2

FDP ZNS
Standard Interface Append-only Interface

Sequential, random, overwrite Sequential writes only

Standard OP 0% OP

Standard DRAM Reduced DRAM

Host changes optional Host changes required

WAF 1 possible WAF = 1

Host provides hints Hosts picks zone

On-device GC Host-performed GC

Reclaim Unit Zone

Full FTL Simple FTL

Stateless Stateful

Static resource allocation Dynamic resource allocation

Open Problems: Hint Generation

35

©2023 Flash Memory Summit. All Rights Reserved

History of host-managed SSD

36

FMS 2016 (Stream)

OCP 2018 (Denali)

FMS 2019 (ZNS)

FMS 2022 (FDP)

©2023 Flash Memory Summit. All Rights Reserved

Existing Work

37

‣ Separate journaling from writes

‣ ZenFS can use write lifetime hints to place data

‣ RocksDB can supply these hints based on levels

Efficient Key-Value Data Placement for ZNS SSD

©2023 Flash Memory Summit. All Rights Reserved

Blueprints for effective hints

‣ Application:

‣ Is unaware of hardware layout

‣ Unaware of other application

‣ Filesystem:

‣ Unaware of application workload characteristics

‣ Applications need to be rewritten

38

©2023 Flash Memory Summit. All Rights Reserved

An ideal hint generator
‣ Aware of storage hierarchy

‣ Aware of application and workload

‣ Decoupled from application, filesystem for greater visibility

‣ Lightweight and efficient

‣ Could be implemented as a shim layer:

‣ Possible to use WASI/eBPF to inject hints?

‣ Or dynamic libraries?

39

©2023 Flash Memory Summit. All Rights Reserved

Idea: Dynamic interception
‣ Write() calls are intercepted

‣ A trained model is used to generate hint

‣ In ZNS files are mapped to zones

‣ In FDP, just need to supply reclaim group

‣ Model trained on deletion

40

1 2 3

Application

Hinter

ZNS SSD

Zone 1

Zone 1

Map

Mapping Data Structures

Shimmer

Intercept IO Calls

Rebuilt IO Calls

Device
Geometry

Get Hints

©2023 Flash Memory Summit. All Rights Reserved

Shimmer
‣ Uses dynamic library loading to

modify system calls to read() and
write()

‣ Injects hints based on a trained k-
nearest-neighbors model on file
lifetimes

‣ Groups related files together in the
same zone/resource group

‣ Work in progress

‣ Check out the poster at FMS!
41

Clock cyles Context Switches User Time System Time

1

10

100

R
el
a
ti
ve

P
er
fo
rm

a
n
ce

(n
o
rm

a
liz
ed
)

1.0

2.2

1.0

153.9

11.5

21.4

85.7
96.5

1.0

68.6

Interception overhead of diÆerent frameworks

shimmer

bpftrace

syscall
intercept

©2023 Flash Memory Summit. All Rights Reserved

Large-Scale Deployment

42

App 1

Mapping

ZNS Management (SPDK, io_uring etc.)

Low Cost append-only Flash FDP Enabled Flash

FDP Management (SPDK, io_uring etc.)

Hint GeneratorLibrary (WASI, eBPF, VM, FS)

App 2 App 3 App 4

©2023 Flash Memory Summit. All Rights Reserved

Opportunities
‣ Leverage fast path optimizations

‣ eBPF, SPDK, io_uring for reducing kernel overhead

‣ Maintain backwards compatibility

‣ Interception using VMs, Filesystems, eBPF, dynamic libraries

‣ Leverage observability and machine learning

‣ Dynamic application-specific, workload-specific hints

‣ Improve performance, lifetime, and reduce cost

43

©2023 Flash Memory Summit. All Rights Reserved

Questions?

44

Everything referenced in this talk is also listed at: https://github.com/devashishp/FMS

©2023 Flash Memory Summit. All Rights Reserved

About Me:

45

Dev Purandare

Center For Research in Storage and Systems 
Baskin School of Engineering 
University of California, Santa Cruz

devashish@ucsc.edu

LinkedIn: devashishp

Website: https://sincerely.dev

I am currently looking for full-time cutting-edge data
management positions.

mailto:devashish@ucsc.edu

