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egal Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/Performancelndex.

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates. See backup for
configuration details. No product or component can be absolutely secure.

Your costs and results may vary.

Results have been estimated or simulated.

Intel technologies may require enabled hardware, software or service activation.
Intel does not control or audit third-party data. You should consult other sources to evaluate accuracy.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular purpose,
and non-infringement, as well as any warranty arising from course of performance, course of dealing, or usage in trade.

Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may be
imed as the property of others.
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Research Vision

Integrate neuromorphic intelligence into
Develop a new programmable computing products at all scales
computi chnology inspired
n understanding /
omputation

Cloud
Compute

Conventional
Client/Edge
Compute

o | Achieve brain-like
efficiency, speed,
adaptability, and

“Hindbrain” intelligence

neuromorphic

Deliver gains of 104 or higher
Sensing in energy-delay-product™

+

Control

Neuromorphic edge subsystem / N ) e, ]
Combined latency and energy efficiency metric
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NCL

The brain offers a huge space of design exploration

Neuromorphic Computing Lab

Self-organized growth

Autonomous healing

Exploiting material time constants

Oscillatory dynamics

Stochasticity

Local learning rules

Very high fanout

Distributed data representations

Fine-grain parallelism

Temporal data coding

Sparse temporal activity (“Spikes”)

Sparse connectivity

3D wiring

Recurrence and feedback loops

Compute-memory integration

Analog-valued persistent state

Online causal adaptation

Low precision

Dynamics on diverse time scales

Hybrid analog/digital computation

Continuous time operation

Parametric Heterogeneity

Increasingly exotic or
uncommon properties in
conventional computing

systems
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Calls for iterative architecture-algorithms co-design

Neuro-Inspired Silicon

Pursue neuro No
Yes
Compute-memory | No
Yes

Temporal neurcn
models?

Conventionalcomputing and traditional
Al approaches

Tradlitional accelerator-based
architectures
GPUs, TPU, Movidius

Tradlitional neural network algorithms
and other connectionistapproaches
Cerebras, Berkeley (Rabaey)

Yes (SNNs + derivatives)

Standard CMOS
or new devices?

Asynchronous
design style?

Integrate analog
circuits?

Support plasticity? | N°

(+ other novel features)

L Yes
Intel Labs (Loihi)
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Experimental small-scale designs
RRAMcrossbar chips, IBM (A. Sebastian’s
PCM-based spiking neurons), Rain
Neuromorphics

Fully standard design methodologies
Tsinghua U (Tianjic), Zheijiang Labs
(Darwin), Human Brain Project (SpiNNaker
2), BrainChip, GrAl Matter Labs, IMEC

Rigorous
Benchmarking

“Tradiitional” neuromorphic engineering
Examples: Stanford (BrainDrop),
SynSense/ETHz(DynapSE), Human
Brain Project (BrainscaleS)

IBM (TrueNorth)

Paradigm

Deep learning:
Backprop-trained event-based DNNs

Deep learning:
DNNs with online adaptation

Vector Symbolic Architectures (VSA), aka
Hyperdimensional Computing (HDC)

Neural Engineering Framework (NEF)
Dynamic Neural Fields (DNF)

Neural sampling e.g. spiking Boltzmann
machines

Oscillatory computation

Recurrent Excitation/Inhibition-balanced
networks

Event-based networks with temporally
coded information

Novel Neuro-Inspired Algorithms

Example applications
Object and gesture recognition for event-
based vision sensors, slip detection for
event-based tactile sensors, ANNs with
sparsely changing input data
Few-shot new gesture learning, Adaptive
control,
Semantic factorization, relational
reasoning, symbolic and analogical
reasoning
Adaptive control systems, state machines
SLAM, object tracking, dynamic control,
attention
Constraint satisfaction, probabilistic
inference
Optimization, event-based spectral
transforms, optic flow, audio spectral
normalization
LASSO regression, sparse feature coding

Graph search, similarity search
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Dynamics at the neuron level

Artificial Neuron (Stateless) Spiking Neuron (Nonlinear Filter)

(=% wyy (8(0) * () + by
V()= (=v; () + w4 (1)) — Vinr i (1)

Uu; =Z]lef(u]) + bi

6341279589325

5787587856886

8492352934532

5787587856886

o > 29
8492352934532 Output spikes
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Sparse, asynchronous communication is fast + efficient
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eads us to a new class of computer architecture

Standard Computing Parallel Computing
= Memory .i: E: : : — Memor
= .

PROGRAMMING BY OFFLINE TRAINING USING LEARN ON THE FLY THROUGH
ENCODING ALGORITHMS LABELED DATASETS NEURON FIRING RULES

SYNCHRONOUS SYNCHRONOUS ASYNCHRONOUS
CLOCKING CLOCKING EVENT-BASED SPIKES

PARALLEL

SEQUENTIAL THREADS PARALLEL
SPARSE COMPUTE

OF CONTROL DENSE COMPUTE

if X then

else
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Realized in Loihi

KEY PROPERTIES

Compute and memory integrated
to spatially embody programmed networks

Temporal neuron models (LIF)
to exploit temporal correlation

Spike-based communication
to exploit temporal sparsity

Sparse connectivity
for efficient dataflow and scalability

On-chip learning
without weight movement or data storage

Digital asynchronous implementation
for power efficiency, scalability, and fast prototyping

S
No multiply-accumulators Eundamental to S & s et al, “Loihi: A Neuromorphic
No off-chip DRAM . Saestitaseesy ~ Manycore Processor with On-Chip
deep learning hardware et Learning.” IEEE Micro, Jan/Feb 2018.

"N
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Second generation Loihi neuromorphic core

— — Better Synaptic Compression
Generalized
. Convolution Factorized
Sp' kes : Store kernel instead O(n?)to O(n)
. ] s;ﬁ(:ts of connection matrix compression
Splkes carry int8 lnl====- Eheaats
magnitudes for greater T up to 80x e
workload precision VEEEEE  emacseon |
< — — —

Programmable

Neurons
Neuron models
described by microcode

instructions

Better Utilization of Core Memory
Highly ported centralized async memory array
provides resource allocation flexibility

Loihi: Fixed partitioning per function

Loihi 2: Proganjlmable parlition:ing

Better Neuron and Routing State
Compression

Enhanced

Learning
Support for powerful new
“three factor” learning
rules from neuroscience

. Neuromorphic Computing Lab intel labs

= Neuron state

~4x compression vs Loihi 1

= AxonRouting
Up to 256x compression vs Loihi 1




Loihi Has Confirmed the Value of This Direction

other

Adaptive robotic arm control
_ 40xlower power, 50% faster vs GPU

Olfaction-inspired odor padhine %

e . intelligence 8 rgn®
recognitionandlearning ™t .. o, ¢
3000x more data efficient AT
learning than a deep
autoencoder

Gesture recognition + learning
Loihi + DAVIS 240C camera
60 mW total power, 15 mW dynamic

Combinatorial optimization

(CSP, SAT, ILP, OP)
2,800x lower energy and 44x faster vs CPU

Sudoku Solver

M. Davies et al, “Advancing Neuromorphic Computing With Loihi: A Survey of Results and Outlook,” Proc. IEEE, 202]. Results may vary.
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For the right workloads, orders of magnitude gainsin
and are achievable

Refereﬂce LASSO @ [Task 1] Keyword Spotter DNN

. : hsearch
architecture - i .Searc °"°

CPU (Intel Core/Xeon) K-NN
GPU (Nvidia) ' ®
Movidius (NCS)
TrueNorth

[Task 1] Keyword spotting (batch size = 1)
[Task 2] Image retrieval (batch size 1)
[Task 2] Image retrieval (batch size = 1)
[Task 3] Image Segmentation

[Task 4] CIFAR-10 classification

Adaptive control

ask 5] DVS gesture recognition vs TrueMorth
¢ [SLAM o [Tasks]DVS g &

[Task 6] Visual-tactile sensing (SLAYER
(Better on Loihi) gl )

[Task 7] Seq MNIST (batch size 1)

Directly trained  Converted with rate coding

[Task 7] Seq MNIST (batch size 64)
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[Task 8] Adaptive arm controller [PES)
[Task 9] LASSO
[Task 10] 1D SLAM

[Task 11] k-NN GIST 1M

(Worse on Loihi)
[l b i e e S R RO T T S [Task 12] Graph search

10 100 1000 10000 100000 ] ] ]
[Task 13] Constraint Satisfaction

Energy Ratio (vs Loihi) Unit energy delay product (EDP) ratio

M. Davies et al, “Advancing Neuromorphic Computing With Loihi: A Survey of Results and Outlook,” Proc. IEEE, 2021, Results may vary.
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Standard feed-forward deep neural networks give the
compelling gains (if gains at all)

Reference
architecture

CPU (Intel Core/Xeon)
GPU (Nvidia)
Movidius (NCS)
TrueNorth

\“ l
’ \.““n" (Better on Loihi)
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Feed-forward

.0 DNNs
L 4

(WorseonLoihi) 7 | |

10 100 1000 10000
Energy Ratio (vs Loihi)

M. Davies et al, “Advancing Neuromorphic Computing With Loihi: A Survey of Results and Outlook,” Proc. IEEE, 2021, Results may vary.
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100000

Directly trained  Converted with rate coding

[Task 1] Keyword Spotter DNN

[Task 1] Keyword spotting (batch size » 1)
[Task 2] Image retrieval (batch size 1)
[Task 2] Image retrieval (batch size = 1)
[Task 3] Image Segmentation

[Task 4] CIFAR-10 classification

[Task 5] DVS gesture recognition vs TrueNorth
[Task 6] Visual-tactile sensing [SLAYER)
[Task 7] Seq MNIST (batch size 1)

[Task 7] Seq MNIST [batch size 64)

[Task 8] Adaptive arm controller (PES)
[Task 2] LASSO

[Task 10] 1D SLAM

[Task 11] k-NN GIST 1M

[Task 12] Graph search

[Task 13] Constraint Satisfaction

Unit energy delay product (EDP) ratio
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Recurrent networks with novel bio-inspired properties
give the gains

Reference [Task 1] Keyword Spotter DNN

architecture
CPU (Intel Core/Xeon)
GPU (Nvidia)
Movidius (NCS)
TrueNorth

Recurrent
Networks

[Task 1] Keyword spotting (batch size = 1)
[Task 2] Image retrieval (batch size 1)
[Task 2] Image retrieval (batch size = 1)
[Task 3] Image Segmentation

[Task 4] CIFAR-10 classification

[Task 5] DWS gesture recognition vs TrueMorth

ask 6] Visual-tactile sensing (SLAYER
(Better on Loihi) [Task 6] gl )

[Task 7] Seq MNIST (batch size 1)
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[Task 7] Seq MNIST (batch size 64)

Solution Time Ratio (vs Loihi)

[Task 8] Adaptive arm controller [PES)
[Task 9] LASSO

[Task 10] 1D SLAM

[Task 11] k-NN GIST 1M

(WorseonLoihi) 7 | |

L L [Task 12] Graph search
10 100 1000 10000 100000

[Task 13] Constraint Satisfaction

Energy Ratio (vs Loihi) Unit energy delay product (EDP) ratio

M. Davies et al, “Advancing Neuromorphic Computing With Loihi: A Survey of Results and Outlook,” Proc. IEEE, 2021, Results may vary.
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Zooming in on the best examples:
Optimization problems

What features best explain the sensory input?

LASSO - Sparse coding @

argmin||x — Dz||5 + Al|z||,

Constraint Satisfaction

What is the shortest path to my goal?
»

| -

% Graph search it 7

2 t T f

= Input Sparse
8 . . s Reconstruction  regularization
Q

I

o

[

1000 —100,000x lower energy

What is the shortest path while visiting each waypoint exactly once?

o—>
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Key insight: Neuromorphic networks efficiently

solutions via stochastic gradient descent

Conventional deep neural networks Neuromorphic networks

19983

A\

'Sifi\‘ X

~L
DA 1

Single input produces single inference result Network continually visits different candidate solution states
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Key insight: Neuromorphic networks efficiently

solutions via stochastic gradient descent

Neural dynamics descend the gradient

Local minimum
escaped by stochastic
spiking dynamics

Energy / #violations

Efficient descent due to massively
parallel, asynchronous neuromorphic
computing architecture

Network state space

NCL  Neuromorphic Computing Lab intel labs



Loihi outperforms leading optimization solvers by orders
of magnitude

QUBO Integer Linear Programing " with;
(Maximum Independent Set) (Train Scheduling) DB}

%

Workload:
' Find largest set of
unconnected vertices

Workload:

Find the largest possible set of route assignments, given customer requests and railway,
time and train constraints.

Relevance:

» | arge-scale, real-world use case

= Applicable toresource allocation in warehouses and production lines.

Relevance:

» Targetof SOTA quantum
annealing approaches Energy Delay Product

* NP hard gyLelay

Energy Delay Product

e QBSolv #vertices
o Loihi ® 45 ® 500
A 200 * 700

Destination 2

mfm | 0ihi
== CPU and SOTA solver

Source 2
50 100 150 P 1384 2666 3497 4186 4828 5384 5650
Unconnected vertex pairs [x1000] Binary Variables
Loihi: Nahuku board running NxSDK 0.95 with an Intel Core i7-9700K host with 128GB RAM, running Ubuntu 16.04.6 LTS Performance results are based on testing as of September
QUBO-QBSolv/CPU: benchmarks ran on an Intel Xeon CPU E5-2699 v3 @ 2.30GHz with 32GB DRAM (https://github.com/dwavesystems/qbsolv) 2021 and may not reflect all publicly available security updates.
ILP-CPU: Xeon-based commercial cloud service as used operationally by DB. Solver runtime was measured; energy consumption estimated based on a 100W TDP estimate. Results may vary.
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Into a New Era of Neuromorphic Computing

Proven computational value Properties of suitable applications:
(using today's manufacturing teCh) = Power constrained

= |atency constrained
Process real-time signals
Slowly evolving structure
Benefit from shallow online learning
Apply deep learning for offline trainingc

Motivates a new computational paradigm
(cheap, continuous optimization)

Many successful learning algorithms
(albeit shallow so far, not deep)
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Challenges and headwinds

<0

{
-l

P
Q)

igh cost due to on-chip Algorithms and Software
memory integration Programming models convergence
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Outlook to Commercial Value

Scaled up systems

= Acceleration for datacenter
optimization workloads

= Recommendation systems

= Scientific computing, HPC

Intelligent Extreme Edge Co-Processors

= Aerospace and robotics devices

= Scene awareness and localization
= Model predictive control

= Navigation and planning

=  Consumer devices (longer term)

General-purpose
search chips and
ware framework

Specialized Designs

WU LLLLE: io and other signal processing functions in SoCs o
%}}I@M r integration (e.g. event-based cameras, electronic skins) T 4
m HTTTE less signal processing and channel optimization
* |Pand embedded accelerators for Intel Foundry customers 7 % N
> NV

\
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Priorities for process technology innovation

Memory capacity and integration
= |ncreased on-chip memory density
= 3D integration of memory and compute

Low voltage, low leakage transistors
= Reduce static power in the presence of sparsity

Optical interconnect
= Fast communication and synchronization across a chip or many chips

Analog synaptic state
= Exploit physical/analog device properties (time constants) to model time varying neuron dynamics
C/DAC to perturb or readout the current state
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Thank Youl

intel

Email inrc_interest@intel.com for more information
Visit https://github.com/lava-nc to get started with Lava



https://github.com/lava-nc

Performance Analysis Details

! CPU dynamic neural field measurements obtained using repo
version of Cedar (hitps://cedarinirub.de/) as of October 2021 running
on an Intel Core i7-4720HQ CPU with four threads, 128GB RAM, with
Ubuntu OS. Loihilsimulation measurements obtained using a
silicon-calibrated Lava profiling model (unreleased) as of September
2021. Each DNF is a 2D mesh attractor with 27x27 neurons, with one
input DNF fanning out to all other DNFs operating in parallel.

2 Based on comparisons between barrier synchronization time,
synaptic update time, neuron update time, and neuron spike times
between Loihiland 2. Loihi 1 parameters measured from silicon
characterization (see below); Loihi 2 parameters measured from
both silicon characterization with N3B1 revision and pre-silicon circuit
simulations using back-annotated timing for Loihi 2.

ased on Lava simulations in September, 2021 of a nine-layer
iant of the PilotNet DNN inference workload implemented as a
a-delta neural network on Loihi 2 compared to the same network
mented with SNN rate-coding on Loihi. The Loihi 2 SDNN

i than the Loihi 1 rate-coded
calculated froma

number of 8-bit param

See Bojarski, Mariusz et al. "End to end learning for self-driving
cars.” arXiv preprint arXiv:1604.07316 (2016).
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4 Circuit simulations of Loihi 2's wave pipelined signaling circuits
show 800 Mtransfers/s compared to Loihi I's measured
performance of 185 Mtransfers/s.

5 Based on analysis of 3-chip and 7-chip Locally Competitive
Algorithm examples.

%L oihi 1 measurements were obtained on Oheo Gulch FMC board
ncl-og-06 using an internal version of NxSDK advanced from v1.0.0

7| oihi 2 measurements were obtained on Nahuku 32 board ncl-ghrd-
Olusing NxSDK v1.0.0

The Lava performance model for both chips is based on silicon
characterization in September 2021 using the Nx SDK release 1.0.0
with an Intel Xeon E5-2699 v3 CPU @ 2.30 GHz, 32GB RAM, as the
host running Ubuntu version 20.04.2. Loihi results use Nahuku-32
system ncl-ghrd-04. Loihi 2 results use Oheo Gulch system ncl-og-
04.

Results may vary.
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https://cedar.ini.rub.de/

Enabling a Future of Alin Motion
N
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