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Legal Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/PerformanceIndex.  

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates.  See backup for 
configuration details.  No product or component can be absolutely secure. 

Your costs and results may vary. 

Results have been estimated or simulated.

Intel technologies may require enabled hardware, software or service activation.

Intel does not control or audit third-party data.  You should consult other sources to evaluate accuracy.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular purpose, 
and non-infringement, as well as any warranty arising from course of performance, course of dealing, or usage in trade.

© Intel Corporation.  Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries.  Other names and brands may be 
claimed as the property of others.  
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Research Vision

Sensing
+

Control

“Hindbrain”

Conventional
Client / Edge

Compute

Cloud
Compute

Neuromorphic edge subsystem

Develop a new programmable 
computing technology inspired 
by the modern understanding 

of brain computation

Integrate neuromorphic intelligence into 
computing products at all scales

neuromorphic

Achieve brain-like 
efficiency, speed, 
adaptability, and 

intelligence

Deliver gains of 104 or higher 
in energy-delay-product*

* Combined latency and energy efficiency metric
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The brain offers a huge space of design exploration

Increasingly exotic or 
uncommon properties in 
conventional computing 

systems

Self-organized growth
Autonomous healing

Exploiting material time constants
Oscillatory dynamics

Stochasticity
Local learning rules

Very high fanout

Distributed data representations

Fine-grain parallelism
Temporal data coding

Sparse temporal activity (“Spikes”)

Sparse connectivity
3D wiring

Recurrence and feedback loops
Compute-memory integration

Analog-valued persistent state
Online causal adaptation

Low precision
Dynamics on diverse time scales

Hybrid analog/digital computation
Continuous time operation

Parametric Heterogeneity
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Calls for iterative architecture-algorithms co-design

Paradigm Example applications

Deep learning:
Backprop-trained event-based DNNs

Object and gesture recognition for event-
based vision sensors, slip detection for 
event-based tactile sensors, ANNs with 
sparsely changing input data

Deep learning:
DNNs with online adaptation

Few-shot new gesture learning, Adaptive 
control, 

Vector Symbolic Architectures (VSA), aka
Hyperdimensional Computing (HDC)

Semantic factorization, relational 
reasoning, symbolic and analogical 
reasoning

Neural Engineering Framework (NEF) Adaptive control systems, state machines

Dynamic Neural Fields (DNF)
SLAM, object tracking, dynamic control, 
attention

Neural sampling e.g. spiking Boltzmann 
machines

Constraint satisfaction, probabilistic 
inference

Oscillatory computation
Optimization, event-based spectral 
transforms, optic flow, audio spectral 
normalization

Recurrent Excitation/Inhibition-balanced 
networks

LASSO regression, sparse feature coding

Event-based networks with temporally 
coded information

Graph search, similarity search

Novel Neuro-Inspired Algorithms 

Neuro-Inspired Silicon

Rigorous 
Benchmarking

Co-design
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𝑢𝑖 = σ𝑗𝑤𝑖𝑗𝑓 𝑢𝑗 + 𝑏𝑖

Artificial Neuron (Stateless) Spiking Neuron (Nonlinear Filter)

𝜏 ሶ𝑣𝑖(𝑡)= −𝑣𝑖 𝑡 + 𝑢𝑖(𝑡) − 𝑉𝑡ℎ𝑟𝛿𝑖(𝑡)

𝑢𝑖(𝑡)= σ𝑗𝑤𝑖𝑗 𝛿𝑗 𝑡 ∗ 𝛼𝑢 𝑡 + 𝑏𝑖

Dynamics at the neuron level

input

Output spikes 

State
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Sparse, asynchronous communication is fast + efficient
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Leads us to a new class of computer architecture

Standard Computing Parallel Computing Neuromorphic Computing
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Realized in Loihi

Fundamental to
deep learning hardware

Compute and memory integrated
to spatially embody programmed networks

Temporal neuron models (LIF)
to exploit temporal correlation

Spike-based communication
to exploit temporal sparsity

Sparse connectivity
for efficient dataflow and scalability

On-chip learning
without weight movement or data storage

Digital asynchronous implementation
for power efficiency, scalability, and fast prototyping

Yet…

No floating-point numbers
No multiply-accumulators

No off-chip DRAM

KEY PROPERTIES

Davies et al, “Loihi: A Neuromorphic 
Manycore Processor with On-Chip 
Learning.” IEEE Micro, Jan/Feb 2018.
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Second generation Loihi neuromorphic core

Axon Routing
Up to 256x compression vs Loihi 1

Neuron state 
~4x compression vs Loihi 1

Input
spikes

Programmable 
Neurons

Neuron models 
described by microcode 

instructions

Generalized
Spikes

Spikes carry int8 
magnitudes for greater 

workload precision

Enhanced
Learning

Support for powerful new 
“three factor” learning 

rules from neuroscience

Better Neuron and Routing State 
Compression

Better Utilization of Core Memory
Highly ported centralized async memory array 

provides resource allocation flexibility

Factorized
O(𝑛2) to O(𝑛) 
compression

Stochastic
up to 80x 

compression

Convolution
Store kernel instead
of connection matrix

Better Synaptic Compression

Output
spikes



labsNCL Neuromorphic Computing Lab

Combinatorial optimization
(CSP, SAT, ILP, QP)

2,800x lower energy and 44x faster vs CPU

Loihi Has Confirmed the Value of This Direction

M. Davies et al, “Advancing Neuromorphic Computing With Loihi: A Survey of Results and Outlook,” Proc. IEEE, 2021. Results may vary.

Gesture recognition + learning
Loihi + DAVIS 240C camera
60 mW total power, 15 mW dynamic

Olfaction-inspired odor 
recognition and learning

3000x more data efficient 
learning than a deep 

autoencoder

Adaptive robotic arm control 
40x lower power, 50% faster vs GPU

Scene understanding
Integrated behaviors: Object 
recognition, tracking, learning

100x lower power SLAM vs CPU

Volume 2 Issue 3,
March 2020
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For the right workloads, orders of magnitude gains in 
latency and energy efficiency are achievable

CPU (Intel Core/Xeon)

GPU (Nvidia)

Movidius (NCS)

TrueNorth

(Better on Loihi)

(Worse on Loihi)

Reference
architecture
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LASSO

CSP
K-NN

Graph search

LSNN
Adaptive control

SLAM

M. Davies et al, “Advancing Neuromorphic Computing With Loihi: A Survey of Results and Outlook,” Proc. IEEE, 2021. Results may vary.
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Standard feed-forward deep neural networks give the 
least compelling gains (if gains at all)

CPU (Intel Core/Xeon)

GPU (Nvidia)

Movidius (NCS)

TrueNorth

Reference
architecture
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(Better on Loihi)

(Worse on Loihi)

M. Davies et al, “Advancing Neuromorphic Computing With Loihi: A Survey of Results and Outlook,” Proc. IEEE, 2021. Results may vary.
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Recurrent networks with novel bio-inspired properties 
give the best gains

CPU (Intel Core/Xeon)

GPU (Nvidia)

Movidius (NCS)

TrueNorth

Reference
architecture
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(Better on Loihi)

(Worse on Loihi)

M. Davies et al, “Advancing Neuromorphic Computing With Loihi: A Survey of Results and Outlook,” Proc. IEEE, 2021. Results may vary.
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Zooming in on the best examples:
Optimization problems

LASSO – Sparse coding

Constraint Satisfaction

Graph search

What features best explain the sensory input?

What is the shortest path to my goal?

What is the shortest path while visiting each waypoint exactly once?
1000 – 100,000x lower energy

10
 –

10
0

0
x 

fa
st

e
r argmin

𝑧
𝑥 − 𝐷𝑧 2

2 + 𝜆 𝑧 1

Input Sparse 
regularizationReconstruction
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Key insight: Neuromorphic networks efficiently optimize 
solutions via stochastic gradient descent

Conventional deep neural networks Neuromorphic networks

Single input produces single inference result Network continually visits different candidate solution states
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Neural dynamics descend the gradient

Local minimum
escaped by stochastic 

spiking dynamics

Efficient descent due to massively 
parallel, asynchronous  neuromorphic 

computing architecture

Network state space

Key insight: Neuromorphic networks efficiently optimize 
solutions via stochastic gradient descent
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Loihi outperforms leading optimization solvers by orders 
of magnitude

Performance results are based on testing as of September 
2021 and may not reflect all publicly available security updates. 

Results may vary. 

Loihi: Nahuku board running NxSDK 0.95 with an Intel Core i7-9700K host with 128GB RAM, running Ubuntu 16.04.6 LTS
QUBO-QBSolv/CPU: benchmarks ran on an Intel Xeon CPU E5-2699 v3 @ 2.30GHz with 32GB DRAM (https://github.com/dwavesystems/qbsolv)
ILP-CPU: Xeon-based commercial cloud service as used operationally by DB. Solver runtime was measured; energy consumption estimated based on a 100W TDP estimate.

Workload:
Find largest set of 
unconnected vertices

𝟖 ⋅ 𝟏𝟎𝟑 ×

Energy Delay Product

Relevance: 
▪ Target of SOTA quantum 

annealing approaches
▪ NP hard

QUBO
(Maximum Independent Set)

Relevance: 
▪ Large-scale, real-world use case
▪ Applicable to resource allocation in warehouses and production lines.

Workload:
Find the largest possible set of route assignments, given customer requests and railway, 
time and train constraints. 

Integer Linear Programing
(Train Scheduling)

In collaboration 
with:

𝟏𝟎𝟓 ×

Energy Delay Product
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Into a New Era of Neuromorphic Computing

Properties of suitable applications:
• Power constrained

• Latency constrained

• Process real-time signals 

• Slowly evolving structure

• Benefit from shallow online learning

• Apply deep learning for offline trainingc

Motivates a new computational paradigm
(cheap, continuous optimization)

Many successful learning algorithms
(albeit shallow so far, not deep)

Proven computational value
(using today’s manufacturing tech)
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Challenges and headwinds

High cost due to on-chip 

memory integration

Algorithms and 

Programming models

Software

convergence
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Outlook to Commercial Value

▪ Acceleration for datacenter 
optimization workloads

▪ Recommendation systems
▪ Scientific computing, HPC

▪ Audio and other signal processing functions in SoCs
▪ Sensor integration (e.g. event-based cameras, electronic skins)
▪ Wireless signal processing and channel optimization
▪ IP and embedded accelerators for Intel Foundry customers

Intelligent Extreme Edge Co-Processors

Scaled up systems

Specialized Designs

General-purpose 
research chips and 

software framework

▪ Aerospace and robotics devices
▪ Scene awareness and localization
▪ Model predictive control
▪ Navigation and planning
▪ Consumer devices (longer term)

Today:
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Priorities for process technology innovation

▪ Memory capacity and integration
▪ Increased on-chip memory density
▪ 3D integration of memory and compute

▪ Low voltage, low leakage transistors
▪ Reduce static power in the presence of sparsity

▪ Optical interconnect
▪ Fast communication and synchronization across a chip or many chips

▪ Analog synaptic state
▪ Exploit physical/analog device properties (time constants) to model time varying neuron dynamics
▪ Asynchronous ADC/DAC to perturb or readout the current state



Email inrc_interest@intel.com for more information
Visit https://github.com/lava-nc to get started with Lava

Thank You!

https://github.com/lava-nc
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Performance Analysis Details

1 CPU dynamic neural field measurements obtained using repo 
version of Cedar (https://cedar.ini.rub.de/) as of October 2021 running 
on an Intel Core i7-4720HQ CPU with four threads, 128GB RAM, with 
Ubuntu 18.04 OS.  Loihi 1 simulation measurements obtained using a 
silicon-calibrated Lava profiling model (unreleased) as of September 
2021. Each DNF is a 2D mesh attractor with 27x27 neurons, with one 
input DNF fanning out to all other DNFs operating in parallel.

2 Based on comparisons between barrier synchronization time, 
synaptic update time, neuron update time, and neuron spike times 
between Loihi 1 and 2.  Loihi 1 parameters measured from silicon 
characterization (see below); Loihi 2 parameters measured from 
both silicon characterization with N3B1 revision and pre-silicon circuit 
simulations using back-annotated timing for Loihi 2. 

3 Based on Lava simulations in September, 2021 of a nine-layer 
variant of the PilotNet DNN inference workload implemented as a 
sigma-delta neural network on Loihi 2 compared to the same network 
implemented with SNN rate-coding on Loihi. The Loihi 2 SDNN 
implementation gives better accuracy than the Loihi 1 rate-coded 
implementation. Equivalent DNN op counts calculated from a 
conventional DNN implementation with the same topology and same 
number of 8-bit parameters.

See Bojarski, Mariusz et al. "End to end learning for self-driving 
cars." arXiv preprint arXiv:1604.07316 (2016).

4 Circuit simulations of Loihi 2’s wave pipelined signaling circuits 
show 800 Mtransfers/s compared to Loihi 1’s measured 
performance of 185 Mtransfers/s.

5 Based on analysis of 3-chip and 7-chip Locally Competitive 
Algorithm examples.

6 Loihi 1 measurements were obtained on Oheo Gulch FMC board 
ncl-og-06 using an internal version of NxSDK advanced from v1.0.0

7 Loihi 2 measurements were obtained on Nahuku 32 board ncl-ghrd-
01 using NxSDK v1.0.0

The Lava performance model for both chips is based on silicon 
characterization in September 2021 using the Nx SDK release 1.0.0 
with an Intel Xeon E5-2699 v3 CPU @ 2.30 GHz, 32GB RAM, as the 
host running Ubuntu version 20.04.2.  Loihi results use Nahuku-32 
system ncl-ghrd-04. Loihi 2 results use Oheo Gulch system ncl-og-
04.

Results may vary.

https://cedar.ini.rub.de/
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Enabling a Future of AI in Motion

Operating in a Dynamic World


