

NOME OVER Fabrics Storage's New Magic Wand Arindam Sarkar MSys Technologies LLC

Flash Memory Summit 2019 Santa Clara, CA

About MSys Technologies

Outsourcing Partners to

Trends in NVMe over Fabrics (1/2)

SDS enables end-to-end NVMe-OF supporting any storage

- 60% of Software Defined Storage servers will have NVMe bays by 2020
- SDS server will register growth due to the support of RDMA's for OpenStack and other SDS platforms
- OS and Hypervisor vendors are leading the charge to native SDS solutions
- The external arrays will be challenged by NVMe-oF and Hyper-Convergence

Trends in NVMe over Fabrics (2/2)

WHY FAST NETWORKS CAN CHANGE EVERYTHING

- NVMe-OF JBOFs are replacing DAS
- NVMe-OF are enabling vendors to define new architectures
- Adoption of AFAs and NVMe Storage driving the need for faster networks
- Rack-scale shared storage solution scales to hundreds of NVMe devices

Flash Memory Summit 2019 Santa Clara, CA

Drivers of Adoption – NVMe/NVMe-OF

High Performance Computing

Telco NFV

IoT Fog Computing

Vertical

DataBase & OTLP Oracle, NoSQL, Mem SQL

IMDB & Analytics HANA and Hekaton

Scale Out SD Storage & Fibre Channel Lives

Deep Learning & AI Systems

Enterprise

Big Data & Advertising

Content Distribution & Media Services

Real-Time Apps demand faster fabrics

Real – Time Applications: The Next Phase of Digital Transformation

Artificial Intelligence

Machine Learning

All demand lower latency and higher performance from faster fabrics and faster media

NVMe – Accelerating SDS apps

- SDS provide increased performance and utilization, reduced down-time cost and management complexity
- NVMe-OF meets the above demand of SDS solutions by sharing NVMe based storage across multiple servers
- SDS enables Cloud Native Data Services for MongoDB, Cassandra, and HDFS
- SDS enables Replication, RAID, Faultdomain aware placement, snapshot, placement control for performance

NVMesh - Excelero's Softeare Defined Implementation

NVMe-OF – Storage Architectures

Benefits:

- Storage services (dedup, compression, thin provisioning)
- High availability at the array
- Fully supported from the array vendor
- Example: NetApp/IBM

Flash Memory Summit 2019 Santa Clara, CA

Rows of Servers

Benefits:

- High performance storage
- Lower cost that storage arrays, minimal storage services
- Roll-your-own support model
- Ex. SUSE on Servers configured to be storage targets

Benefits:

- Very low latency
- Low cost
- Great for a single rack/single switch
- Leverages NICs, smart NICs, and HBAs for NVMe-oF to PCIe/NVMe translation

Next Generation of Cloud Storage

- Cloud is embracing the use of networked NVMe capacity
- NVMe-OF for cloud workloads (AI & Analytics) increase scalability and elasticity
- Disaggregation of high performance NVMe storage allows performance and features to scale independently
- NVMe over Fabrics enable NVMe SSDs to scale from a few SSDs to thousands of NVMe SSDs
- Microsoft Azure data centers leverage NVMe SSDs consistent performance of SATA based SSDs

NVMe-OF Transports - Ethernet, FC and IB

- Rapid deployments of multi-core servers densely packed with VMs and increased adoption of all-flash storage arrays driving the need for high performance storage networking
- Ethernet options –ROCE and IWARP with custom drivers on host side
- Most CSPs implement Ethernet networking for storage
- Scale-out Storage and HCI increasingly adopting Ethernet Storage Fabric
- Data Centers adopting Lossless Ethernet switches with Data Center Bridging (DCB)
- RoCE 2010 Ethernet specifications improve performance of on-prem & cloud deployments

Flash Memory Summit 2019 Santa Clara, CA

Ethernet NVMe-oF

- Ethernet with RDMA will be over 70% of shipments
- Scale-out SDS will use NVMe to challenge arrays
- Mellanox is leading with RDMA/RoCE. iWARP is TCP/IP based RDMA
- Broadcom, Chelsio have announced products

Fibre Channel NVMe-oF

- Life extension for Fibre Channel & legacy Storage
- Broadcom, Brocade and Cavium look to 2017 GA
- NVMe-OF uses FCP for data (does back-to-back DMA)

InfiniBand NVMe-oF

- Mellanox ConnectX cards support NVMe-OF using RoCE or TCP
- Given their storage cluster inter-connect business this could be interesting
- IB provides native RDMA

NVMe-OF based Solutions

OpenStack and NVMe over fabrics

NVMe-OF based Solutions (contd.)

Excelero – NVMeOF with HCI

WDC OpenFlex Storage Architecture

NVMe-OF Performance with Open Source Linux Drivers

OpenFabrics Alliance Workshop 2017

Benchmarking Test Setup (MSys)

Setup				
Hardware: 1.64 core x86_64 host and target systems 2.64GB RAM 3.100GB Ethernet ConnectX-4 NICs	Software stack: 1.Linux NVMe host and target software stack with kernel 4. 10+ 2.250GB null target, 4K queue depth, 64 MQs, single LUN or namespace 3.NULL block driver with multiple queues for fabric performance characteristics	Tool: 1.Fio 2.16 jobs, 256 queue depth 3.70% write, 30% read		

fio --bs=32k --numjobs=16 --iodepth=256 --loops=1 --ioengine=libaio --direct=1 --invalidate=1 --fsync_on_close=1 --randrepeat=1 -norandommap --time_based --runtime=60 --filename=/dev/nvme0n1 --name=read-phase --rw=randread

Benchmarking

1. After establishing as connection between NVMF host (initiator) and NVMF target, find a a new NVMe block device in the initiator

2. Perform a simple fio traffic test on the block device for different block sizes

Random R/W (30-70) Latency Tests (MSys)

- 1. 20 times lower latency compare to iSCSI-TCP upto 4K IO Size
- 2. 10 times lower latency compare to ISER for 8K and higher
- 3. 2 times lower latency compare to iSER for all IO size
- 4. Block layer MQ support come natively to NVMe

Random R/W (30-70) Latency Tests (MSys)

- 1. 20 times lower latency compare to iSCSI-TCP up-to 4K Size
- 2. 4 times higher IOPs compare to iSER for size 8K and higher.

Flash Memory Summit 2019 Santa Clara, CA

2020 Predictions (not too farsighted)

مہم اللہ	NVMe Market Size	The NVMe market will be over \$57 Billion by 2020		7%. Dia
nvm	NMVe SSD U.2 & M.2 in Servers	Over 50% of servers will ship with NVMe drives by 2020	40% of All-Flash Arrays will ship NVMe by 2020	30% of NVMe Array Vendors will Q custom flash modules
	SDS Storage Servers	Over 60% of storage servers drives are NVMe by 2020		
J.	NVMe-oF Networking	NVMe-oF adapter shipments exceed 740K units by 2020	NVMe Arrays will leverage SDS to provide file system capacities	M.2 Form Factor SSDs will also be used in NVMe based arrays
4	AFA Moves to NVMe	Over 40% of AFAs arrays will NVMe based by 2020		19. H 19. B
\$	NVMe will Dominate	NVMe technology will contribute more than 50% revenue to the primary storage market.	NVMe Flash Arrays will set the new standard for high	NVMe Arrays may or may not use NVMe-oF adapters if they export files
Copyright:	G2M Incorporated.	- All Rights Reserved	performance and low latency	systems via RNICs

Thank You!

Arindam Sarkar

Storage Solutions Architect Arindam@msystechnologies.com