

The New Generation of Storage: From PCI Express[®] 4.0 to PCI Express 6.0

Dr. Debendra Das Sharma

PCI-SIG® Board Member
Intel Fellow and Director of I/O Technology and Standards
Intel Corporation

Agenda

- Introduction: Evolution of PCI Express® Technology
- PCI Express and Storage
- Form Factors
- Compliance
- Conclusions

PCI-SIG® Snapshot

Organization that defines the PCI Express® (PCIe®) I/O bus specifications and related form factors.

800+ member companies located worldwide.

Creating specifications and mechanisms to **support compliance** and **interoperability**.

PCI-SIG member companies support the following usages with PCIe:

- Virtual reality
- Automotive
- Artificial intelligence
- Telecommunications
- Storage
- Consumer
- Mobile
- Data Center

PCI Express® 4.0 Specification & Status

Adoption is Well Under Way

- Key Features:
 - Data Rate 16 GT/s
 - Maintains full backwards compatibility with PCle 3.x, 2.x, and 1.x
 - Implements:
 - Extended tags and credits
 - Reduced system latency
 - Lane margining
 - Superior RAS capabilities
 - Scalability for added lanes and bandwidth
 - Improved I/O virtualization and platform integration
 - Maximum channel loss is 28dB

Compliance Status:

- PCI-SIG Launched Official FYI Testing for PCIe 4.0 in December 2018
- Formal Compliance testing targeted for Q3 2019

Adoption:

- Numerous vendors with 16GT/s PHYs and controllers in silicon
- Test equipment from multiple vendors
- Several member companies have publicly announced & exhibited PCIe 4.0 products

PCI Express® 5.0 Specification & Status

Published in May 2019

- Key Features:
 - Data Rate 32 GT/s
 - Maintains full backwards compatibility with PCIe 4.0, 3.x, 2.x, and 1.x
 - Maximum channel loss is 36dB
 - Electrical changes to improve signal integrity and mechanical performance of connectors
 - Advanced test and debug capabilities

Compliance Status:

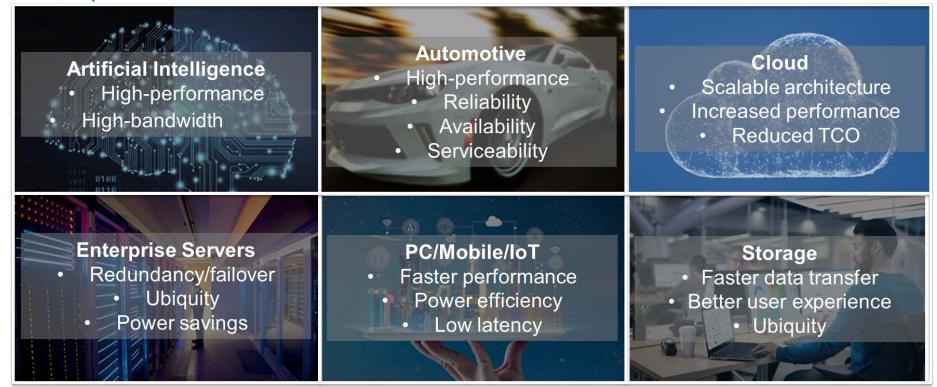
 PCle 5.0 compliance testing is under development

Adoption

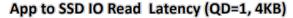
- Several member companies have publicly announced and are showcasing PCIe 5.0 solutions and interoperable silicon
- Adoption expected to grow in the next few months due to demand from high performance applications

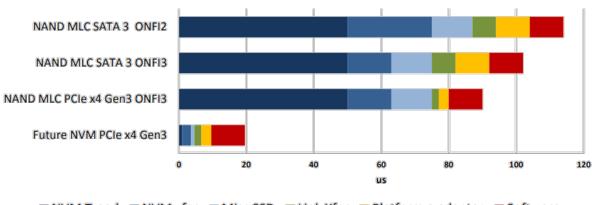
PCI Express 6.0[®] Specification Targets Aiming for completion in 2021

Metrics	Requirements
Data Rate	64 GT/s, PAM4 (Pulse Amplitude Modulation – 4 level signaling)
Latency	Low single-digit ns PHY adder w/ Forward Error Correction (FEC) for (Tx + Rx)
B/W Efficiency	Better than Gen 1-5 due to protocol enhancements even with FEC overhead
Reliability	0 < FIT << 1 (similar to Gen 5) [FIT: Failure In Time (10 ⁹ hours)]
Channel reach	Similar to Gen 5 (max 2 retimers)
Power Efficiency	Better than Gen 5 (ideally power neutral while delivering 2X b/w)
Low Power	L1 with entry/exit latency similar to Gen 5
Plug n Play	Backwards compatible with prior generations (Software, Silicon, and existing Form Factors)
Other for Gen6	High Volume Manufacturing, cost-effective, scales to hundreds of Lanes in a platform, simple to design and validate


Flash Memory Summit 2019 Santa Clara, CA

One Interconnect—Infinite Applications




Agenda

- Introduction: Evolution of PCI Express Technology
- PCle and Storage
- Form Factors
- Compliance
- Conclusions

PCIe® SSDs for Storage

■ NVM Tread ■ NVM xfer ■ Misc SSD ■ Link Xfer ■ Platform + adapter ■ Software

- **PCI** Express is a great interface for SSDs
 - Stunning performance
 - Lane scalability
 - Lower latency

 - Lower power
 - Lower cost
 - CPU-integrated PCIe lanes

- 1 GB/s per lane/ direction (PCle 3.0 x1) [2 (4) GB/s for PCle 4.0 (5.0)]
- 4 GB/s per device (PCle 3.0 x4) [8 (16) GB/s for PCle 4.0 (5.0)]

Platform + Adapter: 10 µsec down to 3 µsec

No external SAS IOC saves 7-10 W

No external SAS IOC saves \$

Up to 128 PCle 3.0

Source: FMS 2013 "NVMe Express Overview & **Ecosystem Update**"

With Next Gen NVM, the NVM is no longer the bottleneck

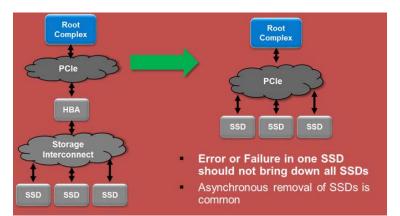
Growth of PCIe® Technology in Storage

- Data explosion is driving SSD adoption
 - SSD market CAGR of 14.8% during 2016-2021 Source: IDC
 - PCIe SSD market to surpass a CAGR of 33% during 2016-2020 Source:
 <u>Technavio</u>
- PCIe technology is outpacing other interconnect technologies in both units and bandwidth/capacity

Source: SSD Insights Q1/18, Forward Insights

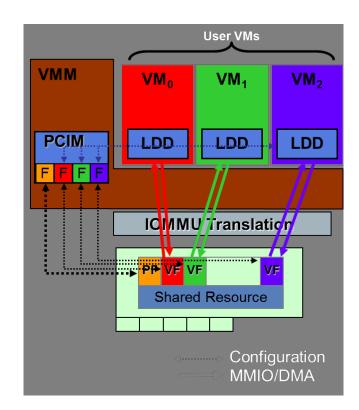
PCIe® Features useful for Storage

- Low-latency, High Bandwidth, Scalability, and predicable cadence of speed increase with backwards compatibility
- In addition, PCIe technology offers the following value-add essential for storage
 - Reliability, Availability and Serviceability (RAS)
 - I/O Virtualization
 - Multitude of form factors including cabling support


RAS Features

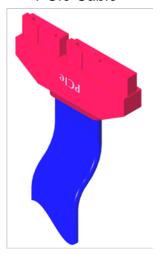
- PCIe® architecture supports a very high-level set of Reliability, Availability, Serviceability (RAS) features
 - All transactions protected by CRC-32 and Link level Retry, covering even dropped packets
 - Transaction level time-out support (hierarchical)
 - Well defined algorithm for different error scenarios
 - Advanced Error Reporting mechanism
 - Support for degraded link width / lower speed
 - Support for hot-plug

DPC/ eDPC Motivation and Mechanism


- (enhanced) Downstream Port Containment (DPC and eDPC) for emerging usages
- Emerging PCIe usage models are creating a need for improved error containment/recovery and support for asynchronous removal (a.k.a. hot-swap)
- Defines an error containment mechanism, automatically disabling a Link when an uncorrectable error is detected, preventing potential spread of corrupted data
- Reporting mechanism with Software capability to bring up the link after clean up
- Transaction details on a timeout recorded (side-effect of asynchronous removal)
- eDPC: Root-port specific programmable response to gracefully handle DPC downstream

I/O Virtualization

- Reduces System Cost and power
- Single Root I/O Virtualization Specification
 - Released September 2007
 - Allows for multiple Virtual Machines (VM) in a single Root Complex to share a PCI Express* (PCIe*) adapter
- An SR-IOV endpoint presents multiple Virtual Functions (VF) to a Virtual Machine Monitor (VMM)
 - VF allocated to VM => direct assignment
- Address Translation Services (ATS) supports:
 - Performance optimization for direct assignment of a Function to a Guest OS running on a Virtual Intermediary (Hypervisor)
- Page Request Interface (PRI) supports:
 - Functions that can raise a Page Fault
- Process Address Space ID enhancement to support Direct assignment of I/O to user space



Inexpensive Cabling = Independent Clock + Spread Spectrum (SSC) (SRIS)

- Challenge: PCle® specification did not support independent clock with SSC initially
 - SATA* cable ~ \$0.50
 - PCIe cables include reference clock > \$1 for equivalent cable
 - Routing reference clock across the chassis to front of the rack for storage access is a challenge
- PCle base specification has included support since PCle 3.1
 - 1) Requires use of larger elasticity buffer
 - 2) Requires more frequent insertion of SKIP ordered set
 - 3) Requires receiver changes (CDR)
 - 4) Model CDRs
- SRIS enables a number of form factors for PCle technology
 - OCuLink
 - Lower cost external/internal cabled PCIe technology

Separate Refclk Modes of Operation: 5600ppm (SRIS) for 2.5, 5.0, 8.0, and 16.0 GT/s Data Rates and 3600 ppm for 32.0 GT/s; 600ppm (SRNS)

Example of Possible PCIe Cable

Agenda

- Introduction: Evolution of PCI Express Technology
- PCIe and Storage
- Form Factors
- Compliance
- Conclusions

PCIe® Form Factors

BGA

11.5x13 &16x20mm small and thin platforms

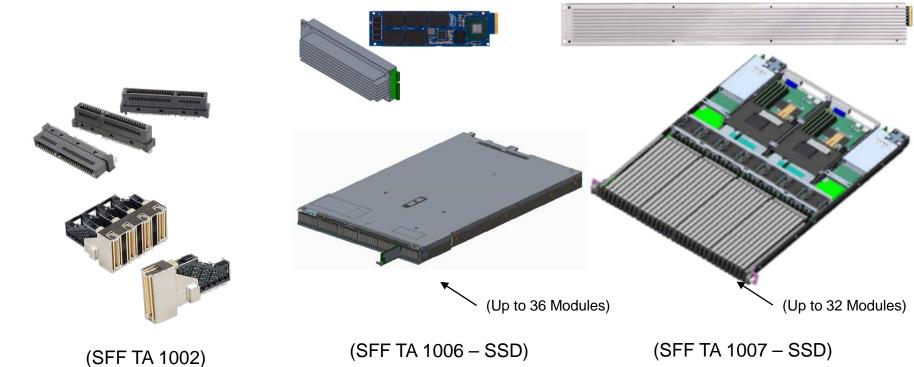

Source: Intel Corporation

M.2

30, 42, 80, and 110mm Smallest footprint of PCle connector form factors, use for boot or for max storage density

U.2 2.5in

Majority of SSDs sold Ease of deployment, hotplug, serviceability Single-Port x4 or Dual-Port x2 **CEM Add-in-card**

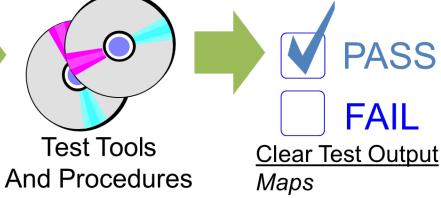

Add-in-card (AIC) has maximum system compatibility with existing servers and most reliable compliance program. Higher power envelope, and options for height and length

High B/W with PCIe 3.0 Prevalent in hand-held, IoT, automotive

SFF Form Factors

Flash Memory Summit 2019 Santa Clara, CA

Agenda


- Introduction: Evolution of PCI Express Technology
- PCIe and Storage
- Form Factors
- Compliance
- Conclusions

PCIe® Compliance Process

PCI-SIG® Specs

Describes

Device requirements

 3.0 Base and CEM specs

C&I Test Specs

Define

Test criteria based on spec requirements

- Test Definitions
- Pass/Fail Criteria

Test H/W & S/W

Validates

Test criteria

- Compliance
- Interoperability

Directly to Test Spec

Predictable path to design compliance

Conclusions

Data Center / HPC Mobile Embedded

- Single standard covering systems from handheld to data center
- Predominant direct I/O interconnect from CPU with high bandwidth
- Low-power
- High-performance
- Predictive performance growth spanning six generations
- A robust and mature compliance and interoperability program

