

NVMe Software Drivers: What's New and What's Supported?

Sponsored by NVM Express™ organization, the owner of NVMe™, NVMe-oF™ and NVMe-MI™ standards

Speakers

Name

Insert Company Logo Name

Insert Company Logo

Windows Inbox NVMe Driver

Scott Lee

Principle Software Engineer Lead

Microsoft

Agenda

- New Additions for Windows 10 version 1903, May 2019 Update (19H1)
- New Additions for Windows Next
- Futures

Windows 10 version 1903, May 2019 Update

- Endurance Group & NVM Set
- Improved diagnostics of NVMe hardware issues
- Runtime D3 for NVMe
- Device Self-Test
- Host Controlled Thermal Management Feature
- Controller Fatal Status

Windows Next

- Non-Operational Power State Config Feature
- NVMe LED
- ???

Futures*

- Native NVMe Storage Stack
- Zoned Namespace
- Device Firmware Hang
- ???

Questions?

vSphere NVMe Driver Support

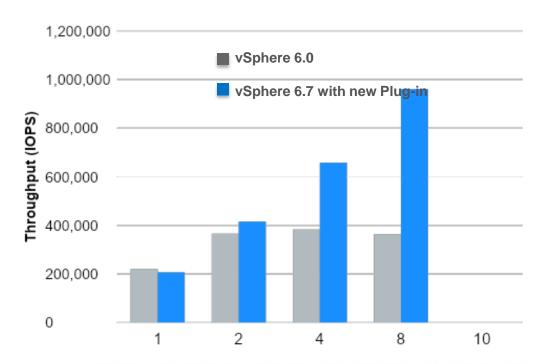
Sponsored by NVM Express™ organization, the owner of NVMe™, NVMe-oF™ and NVMe-MI™ standards

Speakers

Sudhanshu (Suds) Jain

Murali Rajagopal

NVMe Focus @VMWare


vSphere 6.7 vSphere 6.5 **Future Direction** Boot (UEFI) Performance enhancements PCle Native Hot-plug · Firmware Update Extended CLI LED Management · End-to-end protection Driver Name space management NVMe Over Fabric Deallocate/TRIM/Unmap · Async event error handling Multiple fabric option • 4K · Enhance diagnostic logs Sanitize SMART. Planned hot-remove Next Generation Storage Stack Reduced serialization Optimized stack - Highly parallel with ultra-high IOPS · Locality improvements execution for single path local NVMe End-to-end NVMe Stack **Core Stack** devices vNVMe Adaption layer NVMe Multi-pathing, ANA Reach target of 90%+ performance of • Multiple completion worlds support in NVMe device spec · Rev the specification Performance improvements · Parallel execution @backend NVMe 1.0e spec **Virtual Devices** Hot-plug support Async mode support 4K Support

unmap support

VM orchestration

Memory Summit

NVMe Performance Boost

Hardware:

- Intel® Xeon® E5-2687W v3 @3.10GHz (10 cores + HT)
- 64 GB RAM
- NVM Express* 1M IOPS @ 4K Reads

Software:

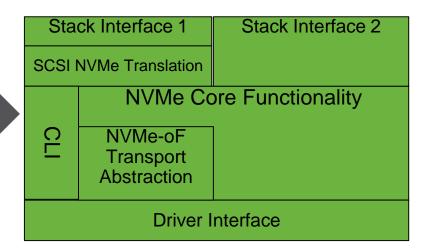
- vSphere* 6.0U2 vs. Future prototype
- 1 VM, 8 VCPU, Windows* 2012, 4 VMDK eagerzeroed
- IOMeter:

4K seq reads, 64 OIOs per worker, even distribution of workers to VMDK

The information in this presentation is intended to outline our general product direction and it should not be relied on in making a purchasing decision. It is for informational purposes only and may not be incorporated into any contract.

(Future) NVMe Driver Architecture

ESXi Storage Stack


ESXi Next Generation Storage Stack

NVMe Transport Device Driver Framework

PCIe Transport Driver RDMA Transport Driver (RoCEv1, RoCEv2, iWarp)

Fibre Channel Transport Driver

vmknvme

VMware's NVMe Driver Ecosystem

- Available as part of base ESXi image from vSphere 6.0 onwards
 - □ Faster innovation with async release of VMware NVMe driver
- VMware Opensource its NVMe Driver to encourage ecosystem to innovate
 - □ https://github.com/vmware/nvme
- Broad VMware NVMe Driver Ecosystem

https://www.vmware.com/resources/compatibility/search.php?deviceCategory=io

- □ Close to 300 third party NVMe devices certified on VMware NVMe driver
- Beyond NVMe PCI Driver (Future)
 - Actively working with broad I/O controller and storage array partners to bring NVMe-oF solutions and storage array partners to bring NVMe-oF solutions.

Questions?

Accelerating NVMe with SPDK

Sponsored by NVM Express™ organization, the owner of NVMe™, NVMe-oF™ and NVMe-MI™ standards

James Harris

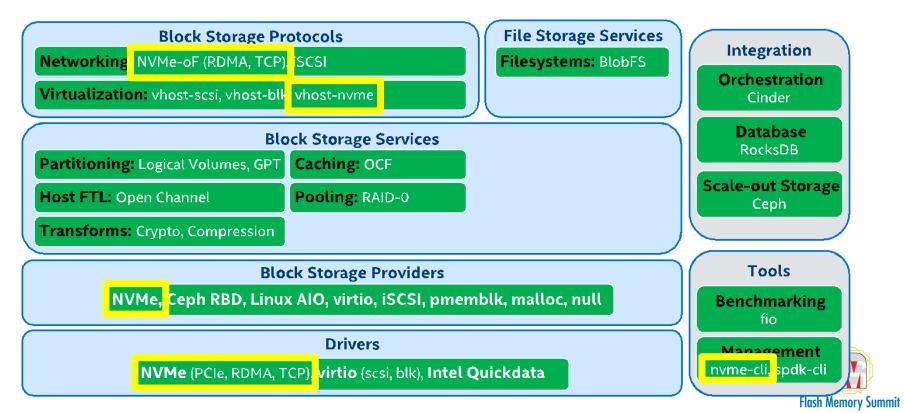
Storage Performance Development Kit

User Space Storage Software Stack

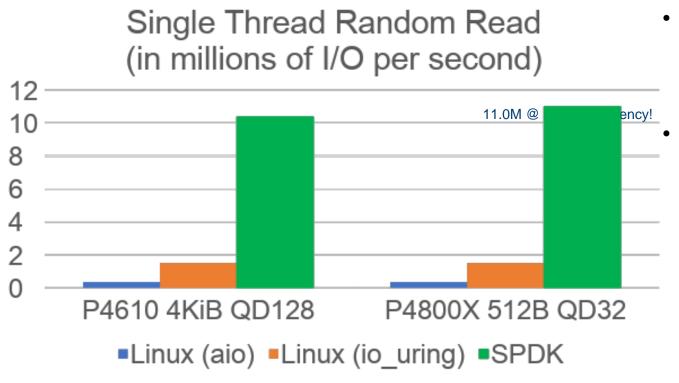
- Extreme performance (10M+ IO/s on one thread)
- Block device abstraction and device drivers
- Network and virtualization protocols
- Resets, timeouts, I/O splitting, volume management

Widely Adopted

Powering major storage systems in production today


C Libraries and Applications

- Open Source (GitHub, BSD License)
- Active Community (~50 contributors each quarter)



SPDK Architecture

PCIe NVMe Performance

- Intel® Xeon®
 Platinum 8280L
 CPU
 - Turbo 4.0GHz
- 21 SSDs Attached
 - Intel® P4610
 - Intel® P4800X

SPDK and Kernel

SPDK has better performance and efficiency compared to interrupt-driven kernel mode approaches

BUT...

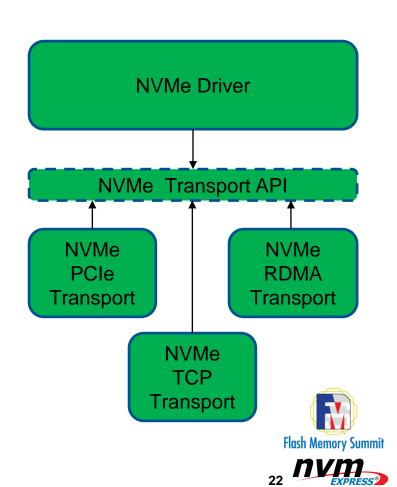
SPDK is not a general-purpose solution

covers some use cases very well – others not at all (or at least not well)

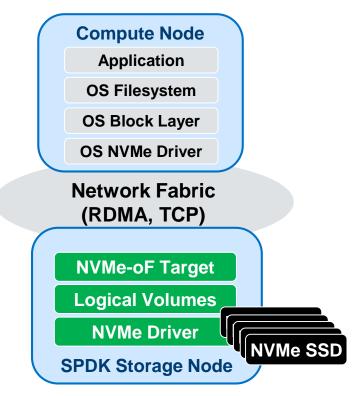
Polled mode design and userspace implementation drove much of the SPDK design

NVMe Performance: Avoid MMIO

Past: Simple completion queue doorbell batching



- Ring doorbell after processing first 3 completions
- Recent: Leverage polling
 - Delay ringing submission queue doorbell until end of poll call
- Future: Advanced completion queue batching
 - Track number of free cq slots
 - Only ring doorbell when slots are needed


NVMe Transport Abstraction

Enables different implementations for different transports

- construct/destruct controller
- set/get register value
- create/delete I/O queue pair
- submit request
- process completions

NVMe-oF Target

Spec-compliant, fully functional NVMe-oF target

 No modifications on client/compute node

Supports broad range of storage services – including:

- Sharing SSD across multiple clients (Logical Volumes)
- At-rest data encryption with crypto offload
- SSD pooling/striping

NVMe/TCP

NVMe TP ratified November 2018

SPDK added TCP transport for

- NVMe driver
- NVMe-oF target

Supports alternative TCP stack implementations

Host Block FTL

Host FTL enabling smart data placement

Based on OC2.0 specification

Block FTL support added to bdev nvme module

Long term goal: Zoned Namespace API

With ZNS/OC adapters

Supported Features

Explicit Queue Pair Allocation

Metadata and Data Protection

Controller Memory Buffer

Timeout Handling

SGL

Asynchronous Attach

AER

Error Injection

Queue Pair Creation

Queues are *not* preallocated

- admin commands issued when qpair allocated

struct spdk_nvme_io_qpair_opts

- Priority (for WRR)
- I/O queue size, # I/O requests

Metadata Support

Contiguous metadata

- Uses "standard" I/O functions
 - i.e. spdk_nvme_ns_cmd_read

Separate metadata buffer

- spdk_nvme_ns_cmd_read_with_md()
 - and variants

End-to-end Data Protection

All I/O commands take io_flags parameter

Questions?

