

SAP HANA Solutions on Flash based on Cascade Lake Processors

Saroj Mohapatra SAP SME August 2019

Business Architecture SAP Business Application Revolution

* All SAP customers needs to move to HANA by 2025

cisco

SAP Customer Concerns Before Optane DC

Ń

Do I have to go to a bigger server to accommodate my HANA memory foot print? * HANA Memory to socket ratio rule with DDR4 memory

Can I use 2 socket or 4 socket server and reduce my TCO.

* Avoiding 8 socket and bigger servers

I can move some of my data to warm tier but that project is going to take some time and I don't have fund for it.

* Using solution as Dynamic Tiering (Warm tier) to reduce in memory database size

uluilu cisco

Intel Processors with Optane DC

Cisco M1/M2 Servers (EOLed)			Cisco M3 Ser	vers (EOLed)	Cisco M4	Servers	Cisco M5			
Thurley Platform			Romley	Platform	Grantley	Platform	Purley P			
Neh	alem	Westmere Sandy Bridge		Ivy Bridge	Haswell	Broadwell	Skylake	Cascade Lake		
45	ōnm	32nm	32nm	22nm	22nm	14nm	14nm	14nm		
N Microa L	lew architect ure	New Processor Technology	New Microarchitect ure	New Processor Technology	New Microarchitect ure	New Processor Technology	New Microarchitect ure	New Processor Technology		
DDR3 Memory Up to			DDR3 Memoi Mł	ry Up to 1866 Hz	DDR4 Memo 2400 MHz, 3 1866	ry 1, 2 DPC= DPC = up to MHz	DDR4 Memo 2DI 3D Xpoir			
PCIe 3.0: 36 lanes per CPU			PCIe 3.0: 4 CF	0 lanes per V	PCIe 3.0: 40 la	anes per CPU	PCIe: 48 lan	es per CPU		

Raw Component Performance Comparison

REIMAGINING THE DATA CENTER MEMORY AND STORAGE HIERARCHY

Two Functional Modes – App Direct and Memory

App Direct Mode:Both DCPMM and DRAM capacity counts towards to CPU TieringMemory Mode:DRAM as cache. Only DCPMM capacity counts towards to CPU TieringMix Mode:DRAM as cache. Only DCPMM capacity counts towards to CPU Tiering

Skylake and Cascade Lake Balanced DDR4 Memory Configurations

Skylake Memory Configuration																		
Con	Controller #		1		٥	r.				1		6		Canacity	Capacity (GB) with #CPUs			
Ch	Channel #	. °	1.		1	-	2	-		. 1	10		1 40	(GB) per CPU	,			
IDPC 16GB DIMM	in sict #	16	1.1	16		16		16		16	10	16	16	96	192	384	576	768
20PC 16GB DIMM		16	16	16	16	16	16	16	16	16	16	16	16	192	384	768	1152	1536
20PC 16/32G mix		32	16	32	16	32	16	32	16	32	16	32	16	288	576	1152	1728	2304
1DPC 32GB DIMM		32		32		32		32		32		32		192	384	768	1152	1536
20PC 32GB DIMM		32	32	32	32	32	32	32	32	32	32	32	32	384	768	1536	2304	3072
1DPC 64GB DIMM		64		64		64		64		64		64		384	768	1536	2304	3072
20PC 32/64G mtx		64	32	64	32	64	32	64	32	64	32	64	32	576	1152	2304	3456	4608
20PC 64GB DIMM		64	64	64	64	64	64	64	64	64	64	64	64	768	1536	3072	4608	6144
1DPC 128GB DIMM		128		128		128		128		128		128		768	1536	3072	4608	6144
20PC 64/128G mlx		128	64	128	64	128	64	128	64	128	64	128	64	1152	2304	4608	6912	9216
20PC 128GB DIMM		128	128	128	128	128	128	128	128	128	128	128	128	1536	3072	6144	9216	12288

Notes:

1. Only use Cisco UCS validated DIMMs

2. All DIMMs must be same technology, i.e. LRDIMM, RDIMM, SD3, etc

3. Only adjacent sized DIMMs can be used, e.g. 32G/64G, 64G/128G. Cannot use 16G/64G DIMMs

4. Must have either 6 or 12 DIMMs per CPU, with every DIMM channel filled is alliates. All represented. Class Confident

5. Observe Intel requirements, including DIMM ranking, etc.

cisco

Cascade Lake memory config

CLX Memory Configuration																			
Controller #	0								1	1			CDU	Capacity	Capacity (GB) with #CPUs				
Channel #	0 1		2		0		1		2		Type	(GB) per					DDR/AFP		
DIMM slot #	1	2	3	4	5	6	7	8	9	10	11	12	Type	CPU	2	4	6	8	ratio 1:x
2DPC 128GB AEP + 32GB DRAM	128	32	128	32	128	32	128	32	128	32	128	32	base	960	1920	3840	5760	7680	4
2DPC 128GB AEP + 64GB DRAM	128	64	128	64	128	64	128	64	128	64	128	64	Μ	1152	2304	4608	6912	9216	2
2DPC 128GB AEP + 128GB DRAM	128	128	128	128	128	128	128	128	128	128	128	128	Μ	1536	3072	6144	9216	12288	1
2DPC 256GB AEP + 64GB DRAM	256	64	256	64	256	64	256	64	256	64	256	64	м	1920	3840	7680	11520	15360	4
2DPC 128GB AEP + 256GB DRAM	128	256	128	256	128	256	128	256	128	256	128	256	L	2304	4608	9216	13824	18432	0,5
2DPC 256GB AEP + 128GB DRAM	256	128	256	128	256	128	256	128	256	128	256	128	L	2304	4608	9216	13824	18432	2
2DPC 256GB AEP + 256GB DRAM	256	256	256	256	256	256	256	256	256	256	256	256	L	3072	6144	12288	18432	24576	1
2DPC 512GB AEP + 128GB DRAM	512	128	512	128	512	128	512	128	512	128	512	128	L	3840	7680	15360	23040	30720	4
2DPC 512GB AEP + 256GB DRAM	512	256	512	256	512	256	512	256	512	256	512	256	L	4608	9216	18432	27648	36864	2

'= Supported configurations

'= not supported

What's New in SAP HANA 2.0 SPS03: Persistence

- Non-volatile Memory
 - HANA 2.0 SPS 03 supports persistent memory, e.g., based on Intels Optane DC memory technology.
 - DIMM form-factor, replacing DRAM.
 - Column Store Main is placed on persistent memory
- Affects more than 95% of persisted data in most SAP HANA systems. About 95percent of data in main and it is 10–20x compressed
 - Significantly **lower restart times**. Column store does not have to be loaded at startup.
 - Lower TCO than DRAM.

uluilu cisco

• No changes to the persistence layer.

Memory Configuration Example: 2 sockets, largest DRAM and largest PMEM configurations

What's New in SAP HANA 2.0 SPS03: Persistence

Non-Volatile Memory

- · Column Store Main is placed on persistent memory
- Affects more than 95% of persisted data in most SAP HANA systems
- About 95percent of data in main and it is 10–20x compressed
- Significantly lower restart times. Column store does not have to be loaded at startup.

Faster starts help ensure business continuity and service-level agreements

Use of Intel[®] Optane[™] DC with Extension Node

Extension node now uses Intel[®] Optane[™] DC instead of disk.

Benefit

- No disk loading/unloading to RAM.
- Expected significant speed benefit when accessing tiered/cold data.
- Backup and restore is exactly the same.
 Failover node can support the extension node.

Intel Optane DC PMEM Configuration Rules

- A sizing exercise is required to properly configure the server(s).
- All system board memory slots must be fully populated (no half loads)
- Must be equal number of DDR & PMEM per CPU socket
- SAP HANA only supports DDR/PMEM capacity ratios of 2:1,1:1, 1:2, and 1:4.
- App Direct is only mode supported
- No half load CPU systems It has to be fully populated

How can SAP HANA benefit from OptaneDC

Lower Platform TCO Restarts up to 12.5x faster

Increased memory capacity