

Tunable (and Flexible) Flash Translation Layer Improves Storage System Performance Behavior Chris Bergman - Burlywood

- Intended Audience:
 - Data center and cloud storage system designers and architects
- Current Configuration Options
 - Capacity, OP%, and Endurance
- Why not have more options?
 - GC and Wear Leveling Schemes => Where and how data is placed on the media.
 - Performance Optimizations
 - Data Integrity
- How you evaluate your options is important!
 - Benchmarks, standard tests, and data sheets can be misleading
- There is opportunity!
 - Lower Total Cost of Ownership, Improved drive life
 - Better and more consistent performance

Why do we need an FTL?

- Media Granularities (Erase >> Write >= Read), Sequential Programming
- Endurance, read disturb, retention, power loss handling, defect handling
- It's not just flash => Shingled Magnetic Recording HDD, Storage Class Memory

It's the Storage Media Properties!

What does an FTL do about these issues?

Feature	Side Effect
Translation Tables	Memory Cost (1:1000), Performance
Garbage Collection	Performance, Drive Life [Write Amp]
Wear Leveling	Performance, Drive Life [Write Amp]
Data Integrity (ECC/RAID)	Capacity, Performance, Drive Life
Background Scanning	Data Integrity, Performance
Read/write priority (QoS)	Performance
Overprovisioning	Media Cost, Performance

Necessary evils!

How is it all related?

Lower cost (OP) = <u>lower</u> performance and <u>shorter</u> drive life.

Drive Life vs. Write Amp Based on 3 yrs, 7% OP

What do we mean by tunable?

- Imagine the flexibility to optimize based on the application and use model
- Requires knowledge of the workload at the drive
- Traditional FTL's are statically configured, one size fits all
 - Pick a point on the graphs and that's what you get
 - Designed for least common denominator (4K random write)
 - One Firmware update away from trouble

If you're not the least common denominator you're sacrificing something!

- Workload complexity
- Read, Write Mixed Workloads, Consistency and QoS
- Good intentions = Not so good results
- Data integrity, ECC optimization

Workloads Are Complex

Jun 6, 2019

Time

Periodic, heavy write activity followed by very little write activity. Always mixed read/write.

Flash Memory Summit 2019 Santa Clara, CA

Burlywood

Scenario: Optimize garbage collection selection and timing

Drives under test, equally pre-conditioned, SATA Data Center quality drives.

Tuning improved overall performance and consistency.

Highly sequential workload may not lead to better behavior.

Drive Snapshots

Tuning Results

- Scenario: 16 TB drive, 7% nominal OP, 3 year drive life
- Tuned: Weight OP to small random area + table optimization

Feature	Std FTL	Tuned FTL	
Effective WA	4-7	~1	
Performance	14%-25% of FOB*	~100% of FOB	
Drive Life [†]	up to 3.3-5.7 years	up to 20+ years	
DRAM	16 GB	< 1 GB (or used for other purposes)	

* Fresh Out of Box, †Relative to 100% Random Write Workload

Flash Memory Summit 2019 Santa Clara, CA Tuned = significant benefit. Standard configuration is highly susceptible to design choices.

- One size fits all is likely costing you something
- Knowledge is KEY and using that knowledge can lead to
 - Lower Total Cost of Ownership
 - Better and more consistent performance
 - Improved drive life
 - Proper evaluation of your storage solution
- Benchmarks and "standard" workloads don't tell the whole story
- This is even more important in data center applications where inefficiencies can be amplified by 100x, 1000x, 1000x, ...

- 1) Write Amplification Calculation
 - http://www.ece.neu.edu/groups/nucar/NUCARTALKS/WriteAmplification.pdf
- 2) Jetstress Workload Emulation
 - https://www.microsoft.com/en-us/download/details.aspx?id=36849

Thanks to those who contributed time and effort to this presentation: Nate Koch, Ed Daelli, John Slattery, Mike Tomky, Tod Earhart, John Murphy, & the entire Burlywood team!

Backup/Reference Slides

Understand the system requirements

Redundancy at many levels

- Scenario: 4 TB drive, 7% nominal OP
- Eliminate or reduce protection on drive, redirect to OP

Config	Metric	LUN Protection	Single Plane Protection	None
128 planes/stripe [quad plane]	Perf	13% of FOB*	20% of FOB	21% of FOB
	Life [†]	3 years	4.0 years	4.2 years
128 planes/stripe [dual plane]	Perf	13% of FOB	16% of FOB	17% of FOB
	Life	3 years	3.4 years	3.6 years

* Fresh Out of Box, †Relative to 100% Random Write Workload

Jetstress IO Breakdown

<=32K WRs: 75% of the traffic, but only ~12% of capacity

Flash Memory Summit 2019 Santa Clara, CA

IO Sizes/Bytes

Jetstress IO Breakdown

Heatmap view of the same data

512K · 2.5T 256K -128K · 2T Size buckets 1.5T 1T 16K · 8K · 0.5T

6

Writes Heatmap

Writes Heatmap

Flash Memory Summit 2019 Santa Clara, CA

4K -

ò

2

4

HBA Location buckets

0