

Computational Storage Workloads -Implications for Datacenter Architectures

Jamon Bowen Storage Segment Marketing Director Xilinx

Santa Clara, CA August 2019

- What workloads map well to storage acceleration?
- How is computational storage delivered?
- Future architectures?
- Call to Action

Computational Storage Motivation and Vision

- Data is
 - Big
 - Growing
 - Valuable
- Moving Data to Compute is
 - Expensive
 - Power Hungry
 - Best Minimized

- Let's move compute to storage where data resides instead!
 - Bulk of data crunching happens in storage
 - Results passed up to the CPU/network

What workloads map well to computational storage?

Functions every byte of data goes through on every access.

Format Conversion

- Problem: CPU based format conversion requires both significant cpu cycles, data movement and latency.
- Example Jpeg: Image processing
 - Image Transcoding (JPEG2JPEG, JPEG2WebP, etc.)
 - Pixel Processing (Resize, Crop, etc)
 - Thumbnail Generation
 - Intelligent Analysis (Classifications)
- Solution: Push down conversion to the storage.
- Why?
 - Higher Throughput
 - Lower Latency
 - CPU offload / Space savings
 - Lower TCO

Database acceleration

Problem: Need to parse through large amount of data to find the records of interest.

Example:

 Analytics – Need the records for a time range for just one of many products included in the database.

Solution: Push down Scan, Filter, Aggregate to storage.

Why?

- Higher Throughput
- Lower Latency
- CPU offload
- Lower TCO

Other domains - Finance

Just how much latency does a network connection have to add?

STAC-T0[™] Benchmarks

STAC Benchmark[™] specifications for assessing tick-to-trade network I/O

www.STACresearch.com/STAC-T0_overview

The Ultimate Trading Machine

World Record 98ns Tick-to-Trade Latency Based on STAC T0 Benchmark

Intel Xeon Gold processors offer monumental leaps in I/O, memory, storage, and network technologies.

LDA Technologies LightSpeed TCP[™] Cores

Xilinx Kintex® UltraScale[™] FPGAs

applications.

Kintex UltraScale FPGAs are optimized for best-in-class performance per watt fabric in 10G to 100G networking

An ultra-light, ultra-high-speed, and ultra-low-latency FPGA-based distributed TCP offload with processing latencies under 20ns and thousands of TCP connections.

STAC

The new STAC TO benchmark simulates the time for the Chicago Mercantile Exchange to emit a UDP trade data packet and for the CME to receive a TCP market order packet. That ½ round trip represents the minimum amount of time possible to execute a trade.

Solarflare XtremeScale[™] Software Defined NIC

Leverages the Delegated Send[™] capability of the Onload[™] kernel bypass-enabled NIC--and Solarflare Application Nanosecond TCP Send (ANTS) technology--to maintain TCP connections that delivery blazingly fast network performance.

Penguin Computing Relion® Server

Optimal performance through carefully selected and vetted processors, memory, bus, storage, and other options, architected into a 1U 19" EIA traditional form-factor.

Source: Penguin Computing https://www.penguincomputing.com/record-setting-high-frequency-trading-solution-unveiled-stac-summit/

Benchmark lidentifiier https://www.stacresearch.com/SFC170831

Computational Storage – Why not Fabric Attached?

- Fabric connected accelerator fronts SSDs brings the compute to the data.
- > NVMeoF target offloaded to U50 supporting 2.5 Million IOPS.
- > Storage accelerators Inline with NVMeoF hardware datapath.

1 SSD SSD SSD 150 E ALVEO Ethernet SSD Inline Accelerator Examples: Storage services: (De)Compression (De)Encryption Data protection Database Acceleration:

Computational Storage Array

- Scan
- Filter
- Aggregate

Computational storage improves performance by offloading bandwidth and reducing latency.

Visit our Computational Storage microsite: <u>www.xilinx.com/computational-storage</u> Join SNIA working group for Computational Storage! <u>www.snia.org/computational</u>