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AI Pipeline is Data Intensive
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AI Pipeline has Varying Characteristics and Performance Requirements
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AI Pipeline has Varying Infrastructure Requirements
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Aggregated vs. Disaggregated Architecture for AI
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High Performance Rack-scale Flash Storage

Option 1: Disaggregated Architecture of an AI Data Pipeline
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High Performance Rack-scale Flash Storage

Option 2: Disaggregated Architecture of an AI Data Pipeline
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Image Training Performance: Disaggregated Flash and GPUs
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• On a disaggregated architecture comprising 
an NVMe all-flash array, and

➢ a single 8-GPU server, the training 
performance with most AI models 
scales almost linearly up to 8 GPUs, 
except for AlexNet and LeNet, where 
training performance scales linearly up 
to 2 GPUs. 

➢ multiple GPU servers, the training 
performance scales linearly with the 
number of servers, irrespective of the 
choice of AI models.
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I/O Throughput: Image Training on Disaggregated Flash and GPUs
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• On a disaggregated architecture comprising a 
single 8-GPU server and an NVMe all-flash 
array –

➢ the average I/O throughput during 
training using the ResNet-50 model 
(compute intensive)  is ~800 MB/s, the 
GPU utilization being 97-100% (size of 
image data is 164 GB, each image being 
~100 KB)

➢ the average I/O throughput during 
training using the LeNet model (I/O 
intensive) is ~2.5 GB/s, the GPU 
utilization being 17-20%. So the LeNet
model yields ~3x the I/O throughput, 
compared to ResNet-50.
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Image Inference Performance on Disaggregated Flash and GPUs
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• The inference throughput is measured as the 
aggregated images/sec inference results using 
ImageNet datasets across multiple GPU 
containers.

• On a disaggregated architecture comprising an 
NVMe all-flash array, and 

➢ a single 8-GPU server, results show that the 
inference image processing rates are 
between ~3x to ~3.5x the training rates of 
the corresponding TensorFlow models.

➢ multiple GPU servers,  users have the 
flexibility to run mixed AI workloads for 
training and inference, by dedicating one or 
two GPUs to inference for every 8 GPUs, 
rest being allocated to training.
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Example Configurations: GPU servers and an IntelliFlash N5800 Array
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• An example allocation strategy of IntelliFlash N-series arrays is considered for executing AI workloads –
• 30% of the I/O bandwidth for model training, and the remaining 70% for various phases like data preparation, 

inference, and other activities

• Considering the above allocation strategy, example configurations are derived using the I/O throughput achieved on 
a disaggregated architecture comprising a single IntelliFlash N5800 array and a 8-GPU server, while using ResNet-50 
and LeNet models for training -

➢ A single IntelliFlash N5800 array can scale up to nine 8-GPU servers running ResNet-50 model for the training phase, with 
100% utilization of GPUs.  

➢ With LeNet model, a single IntelliFlash N5800 array can optimally scale up to three 8-GPU servers for the training phase. 

IntelliFlash N5800

Number of Arrays 1

Mixed I/O Throughput GB/s (80% reads, 20% writes) 23.5 

Number of 8-GPU servers (using compute-intensive ResNet-50 model for training) 9

Number of 8-GPU servers (using I/O-intensive LeNet model for training) 3
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Data Ingestion Performance with Kafka to an NVMe All-Flash Array
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• Each connector (known as sink connector) is assigned to a partition 
of the respective Kafka topic, i.e., the number of connectors is 
equal to the number of partitions/files.

• Write throughput increases linearly with the number of 
connectors. 

• With a single IntelliFlash N5800 array, 128 sink connectors and 128 
Kafka partitions, a 4-node Kafka Connect cluster provides a write 
throughput of 3.82 GB/s, for an ingestion rate of 4 GB/s.

• A maximum of 7.9 GB/s write throughput with a single IntelliFlash 
N5800 array can be achieved with 8 (projected) Kafka Connect 
worker nodes, for ingestion rates higher than 4 GB/s.

• This test helps to determine the number of connectors to 
configure in the Kafka Connect cluster, based on the number of 
N5800 arrays, the input ingestion rates, and the available I/O 
throughput from the flash arrays.

• The CPU usage is 80% per worker node (having 32 connectors) in 
the 4-node Kafka Connect cluster to achieve a max throughput with 
128 connectors.

• 4 JVMs are used for each worker node in the Kafka Connect cluster, 
with a JVM heap size of 64 GB.
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Summary and Best Practices
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• Implementing a disaggregated architecture of GPU compute, a shared pool of IntelliFlash N-series arrays and 
ActiveScale system(s) has multiple benefits while executing AI workloads –

➢ Subsequent data transfers in and out of local SSDs of GPU servers can be avoided, as the data grows over capacity.

➢ Inference is faster due to immediate access to trained models on the shared flash storage.

➢ Businesses have the ability to scale GPU servers and shared flash arrays independently to meet the changing needs of 
their AI workloads.

➢ Users have the flexibility to run mixed AI workloads for training and inference. 

➢ With a preferred allocation strategy of the I/O bandwidth, various teams can share and scale the IntelliFlash N-series 
arrays to serve multiple GPU servers in a cost-effective manner.

➢ A high capacity object storage system like ActiveScale, as a component of the disaggregated architecture, may be 
used as a landing zone for the ingested data as well as an archival solution. 

• As a best practice to attain an optimal ingestion performance with Kafka to IntelliFlash N-series arrays, tuning 
the following parameters is recommended -

➢ Number of connectors and worker nodes in the Kafka Connect cluster, based on the number of N-series arrays, the 
input ingestion rates, and the available I/O throughput from the arrays;

➢ Based on the I/O throughput requirement, high-speed network interfaces and topology need to be configured for 
the Kafka cluster, the worker nodes of the Kafka Connect cluster, and the IntelliFlash N-series array(s) to eliminate 
network bottlenecks.
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