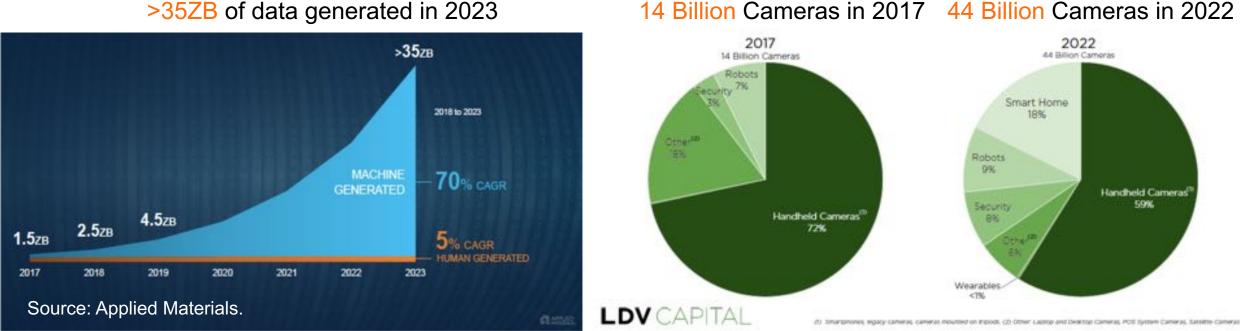
Search acceleration and Learning at the Edge with Crossbar ReRAM

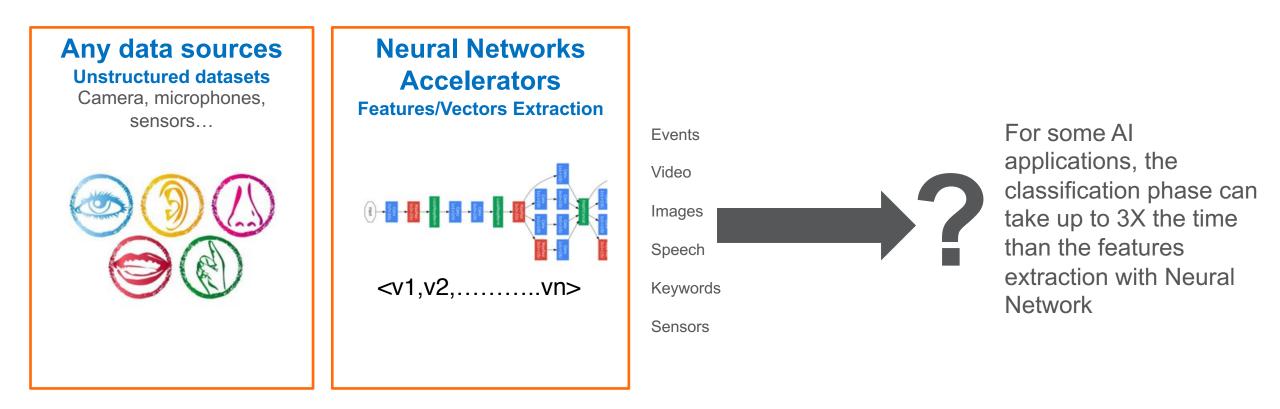
Sylvain Dubois

Vice President Business Development & Marketing sylvain.dubois@crossbar-inc.com

Aug 8th, 2019


Search can be similar to finding a needle in a haystack

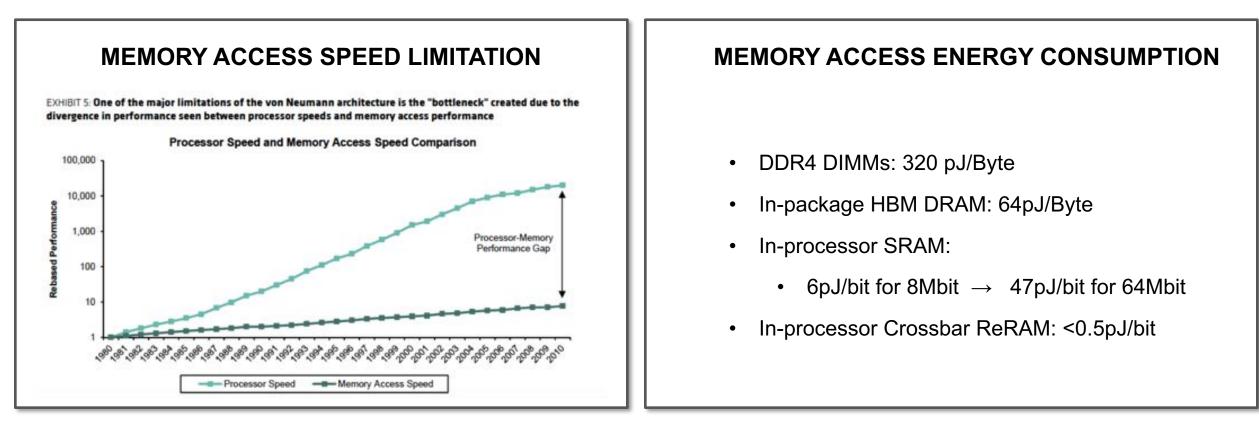
It's getting even more difficult with machine-generated data growth


>35ZB of data generated in 2023

Find the needle in a greater and greater haystack

Problem: Objects (vectors) Classification in Al

There is a computing-intensive task required after every Neural Network



The memory bottleneck

"Memory is the key to enable true intelligence"

BERNSTEIN ARTIFICIAL INTELLIGENCE

Solution: XPU is a near-memory computing accelerator

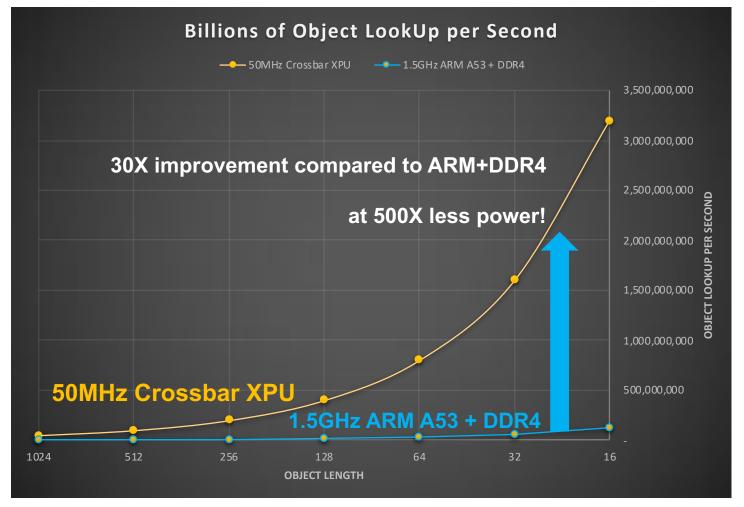
Host interface @ 66MHz xSPI/FIFO interface Targeted for massive search/lookups, kNN, RBF, CBIR, Softmax KNN, RBF, CBIR, Softmax

Deterministic perf & persistent memory

- o 8-bit signed integer to binary objects
- Object length of 16 to1K
- 1024 to 64K objects per macro
- o Manhattan or Cosine distance
- o Simultaneous processing
- o 3 Billion OLUPS and 53 Billion OLU/Watt

Configurable

- 8-bit signed integer to binary objects
- Object length of 16 to1K
- 1024 to 64K objects per macro
- o Manhattan or Cosine distance

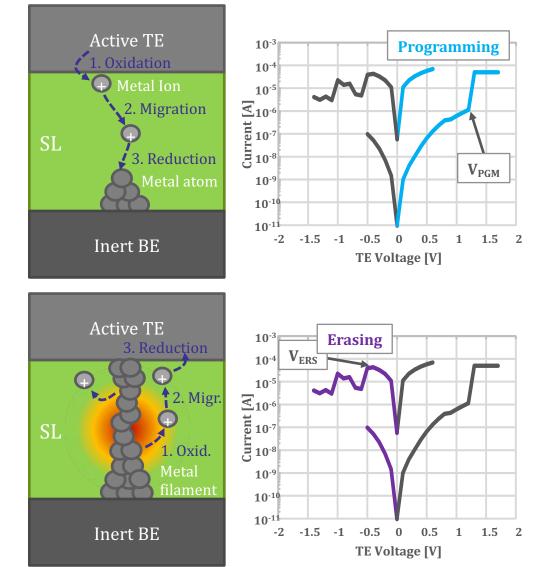

≻Scalable

 Multiple Instances of Macros/Chips can be cascaded to increase # of Instances

Enabling Learning at the Edge

3+ Billion Objects LookUp Per Second (OLUPS)

Object length	OLUPS	OLU/Watt
1024	50,000,000	833,333,333
512	100,000,000	1,666,666,667
256	200,000,000	3,333,333,333
128	400,000,000	6,666,666,667
64	800,000,000	13,333,333,333
32	1,600,000,000	26,666,666,667
16	3,200,000,000	53,333,333,333


Scalable to 16 Billion OLUPS per stick

Probably more than you need !

Enabled by Crossbar ReRAM technology

Programming: Positive Voltage on TE

- 1. Creation of Metal ions from TE oxidation
- 2. Electro-migration of the ions through the switching layer
- 3. Reduction of the ions and formation of the filament
- → ON state is reached when a complete filament is created between both electrodes

Erasing: Positive Voltage on BE

- 1. Oxidation of the filament atoms through electric field and temperature (Joule Heating)
- 2. Electro-migration of the ions through the switching layer
- 3. Reduction of the ions and reformation of the TE
- \rightarrow OFF state is reached when the conductive path is broken

Status: from lab to fab

"In a lab, you can certainly create architectures that work with certain characteristics, but then when you go from the lab to high-volume manufacturing and you want to make billions of those devices at high yield, that's a whole different kettle of fish."

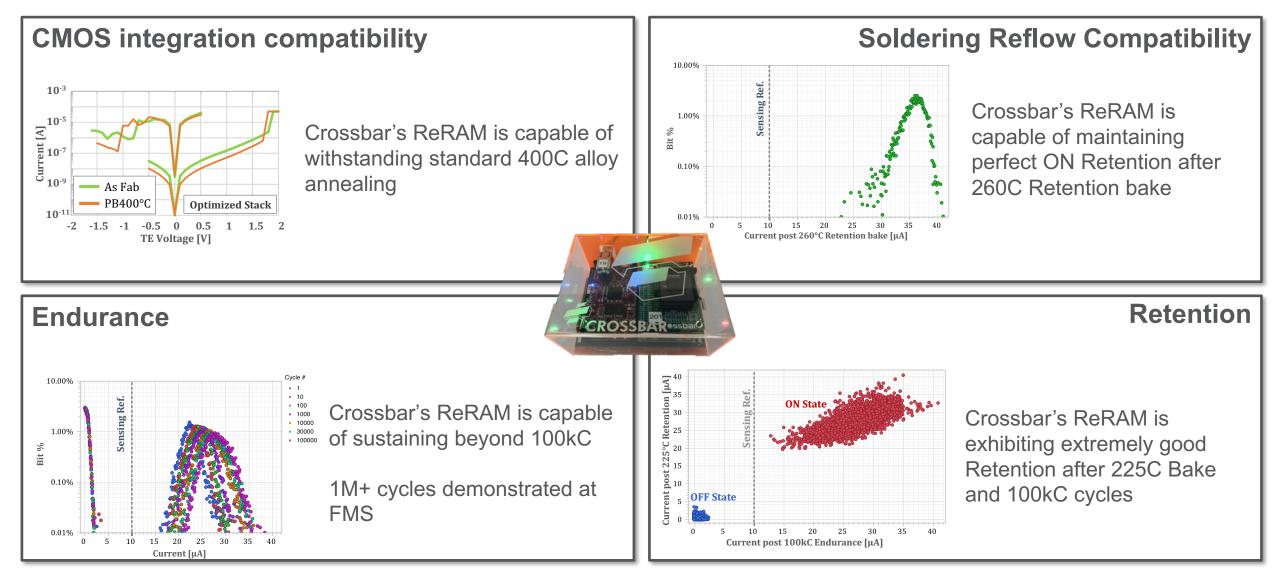
Gary Dickerson, president and CEO Applied Materials

APPLIED MATERIALS

make possible

APPLIED MATERIALS ENABLES EMERGING MEMORIES FOR THE INTERNET OF THINGS AND CLOUD COMPUTING

SANTA CLARA, Calif., July 09, 2019 (GLOBE NEWSWIRE) -- Applied Materials, Inc. today unveiled innovative, high-volume manufacturing solutions aimed at accelerating industry adoption of new memory technologies targeting the Internet of Things (IoT) and cloud computing.


ReRAM and PCRAM both promise significantly lower cost than DRAM along with substantially faster read performance than NAND and hard disk drives. ReRAM is also a leading candidate for future in-memory computing architectures whereby computing elements are integrated into the memory arrays to help overcome the data movement bottleneck associated with AI computing.

Applied's Endura[®] Impulse[®] PVD platform for PCRAM and ReRAM includes up to nine process chambers integrated under vacuum along with on-board metrology to allow the precise deposition and control of the multi-component materials used in these emerging memories.

"Uniform deposition of the new materials used in ReRAM memories is critical to achieving the highest possible device performance, reliability and endurance," said George Minassian, CEO and co-founder of Crossbar, Inc. "We specify the Applied Materials Endura Impulse PVD system with on-board metrology in our ReRAM technology engagements with memory and logic customers because it enables a breakthrough in these critical metrics."

Latest silicon results

Crossbar ReRAM Advantages

	Target Commercial Crossbar ReRAM 40/22nm	Commercial Embedded Flash 40nm	Anticipated Oxygen ions based RRAM 40nm	Anticipated Embedded MRAM 22nm	Crossbar ReRAM	
Physical Mechanism & on/off ratio	Metal atoms storage 80~120X on/off ratio	Electron storage 3~6X on/off ratio	Oxygen ions storage	Spin-polarized current 1.3~1.7X on/off ratio	Scales below 2xnm	
Stack complexity	Simple	Complex dedicated CMOS lines	Simple	Super complex 10+ layers stack	10X Simpler than MRAM	
Materials involved	3 films Existing materials	Existing materials	3 films Existing materials	>25 materials	2X Fewer Masks 10X Fewer materials	
Mask layer adder	2 masks	6+ masks	2 masks	5 masks	.vs MRAM	
Speed Read	15ns	25ns	25ns	20ns	- Faster read	
Speed Write	10us	12us	30us	300ns		
Read energy	Low 0.2 uA/MHz/bit	Low 0.77 uA/MHz/bit	Medium 1.2 uA/MHz/bit	High 2 uA/MHz/bit		
Write current	Low ~60uA/bit	Complex access block erase only	High > 250uA/bit	High 300uA/bit	_ 3X-10X Lower energy	
Standby current	Low 2 uA	Super high > 150uA	Medium > 4uA	Super high 200 uA		
Data retention	> 10Yr	> 10Yr	> 10Yr	> 10Yr	7	
Endurance	> 1M	10K / 100K	10K	1M	High reliability Magnetic	
Operating temp	125C	150C	125C	150C	immunity	
Magnetic Immunity	YES	YES	YES	NO		

Crossbar: Make an impact on Edge and Cloud computing

Intelligence & Learning at the Edge

Multi-modal event detection People re-identification **Reduce TCO and power for hyperscale players**

3X lower cost than DRAM & 8X lower energy \$1K reduction per server

Summary

- AI = Finding the needle in a haystack
- Need for more efficient memory access to absorb data explosion
- Solution is to bring data closer to computing
- Crossbar XPU delivering Billions OLUPS
- Enabled by ReRAM
 - Forming Free with DC voltage below 2V
 - Compatible with CMOS integration
 - Compatible with pre soldering reflow programing
 - Extremely good Endurance and Retention beyond 100kC
- In high-volume manufacturing

Crossbar moving the needle in Edge and Cloud Computing

© Crossbar, Inc. All rights reserved.