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• User-space block storage stack with similar features to 
an OS
• Includes an NVMe driver

• Open Source, BSD 3-Clause License (https://spdk.io)
• Very active community

• 1200 commits from 56 committers in last 3 months

https://spdk.io/
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4KiB random reads at queue depth 128 to each device
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Configuration

CPU Intel® Xeon® Platinum 
8280L CPU @ 2.70GHz

Memory 12x 16GB 26667

Storage 21x Intel® SSD DC P4600 
1.6TB
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Talk based on this blog post: 
https://spdk.io/news/2019/05/06/nvme/

Covering only 3 techniques from that post today for time 
reasons.

Not covering any active areas of research, but there are 
several!

https://spdk.io/news/2019/05/06/nvme/
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NVMe queues consist of two arrays in host memory (submission queue and 
completion queue) plus two doorbells (SQTAIL, CQHEAD) in the BAR
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To submit: Copy command into next slot. Write SQTAIL.

To complete: Compare phase bit. If flipped, contains valid completion. When done, write 
CQHEAD.
Completions hold updates to SQHEAD.

SQHEAD SQTAIL
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• Assign NVMe queue pairs to threads.
• No locks!

• Disable interrupts
• Completions are handled when the application is 

ready to handle them. No context switch. 
• Code is compiled with –O2, LTO enabled, PGO 

disabled.
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• No cross-thread coordination (locks, etc.)
• Poll instead of interrupt
• Minimize MMIO
• Get the right things into the CPU cache at the right time

• Pack structures. Separate hot data from cold.

Don’t let the CPU stall!
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while (true) {
... work ...

spdk_nvme_ns_cmd_read(..., cb_fn);
spdk_nvme_ns_cmd_read(..., cb_fn2);

... work ...

spdk_nvme_qpair_process_completions(...); /* calls cb_fns if the read is done */
}

Submit several commands. Check for completions. Repeat.

Naïve implementation: For each command, 1 MMIO on submit, 
1 MMIO on complete
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Trick 1 (well known):

When checking for completions by reading the phase bit, don’t write 
the completion queue doorbell until all currently outstanding 
completions have been discovered.

Everyone knows this trick.
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Trick 2 (getting smarter):

When a completion is posted, don’t write the completion queue 
doorbell unless the device actually needs more slots free.

Devices often have large queues – say 1024. We can write the 
completion queue doorbell every ~512 commands.

I’ve only seen SPDK do this. (Doesn’t help this benchmark because 
trick 1 is already finding 30 to 50 completions at a time)
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Trick 3 (really smart):

When a command is submitted, copy the command into the SQE slot 
but don’t ring the submission queue doorbell. Instead, ring the 
doorbell only when the user polls (which is happening very frequently).

This is a tricky way to batch command submissions transparently to 
the user in a polling system.

2.89M I/Ops with this disabled. 10.39M with this enabled.
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for each cqe {
if (cqe->phase != phase_flipped) {

break;
}

struct tracker *tr = tracker_array[cqe->cid];

struct request *req = tr->req;

req->cb_fn(req->cb_arg);
}

• Trackers are 1:1 with slots in the NVMe queue pair.
• Requests are N:1 with trackers.

• Trackers are looked up by CID obtained from CQE



Eliminate Data Dependent Loads
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struct nvme_request {
spdk_nvme_cmd_cb cb_fn; /* Callback function */
void *cb_arg;

};

struct nvme_tracker {
struct nvme_request *req;

spdk_nvme_cmd_cb cb_fn; /* Copied callback function */
void *cb_arg;

/* Other stuff */
};

On submission, copy cb_fn and cb_arg into tracker
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for each cqe {
if (cqe->phase != phase_flipped) {

break;
}

struct tracker *tr = tracker_array[cqe->cid];

tr->cb_fn(tr->cb_arg);
}

500K I/O per second improvement
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for each cqe {
if (cqe->phase != phase_flipped) {

break;
}

next_cqe = cqe + 1;
if (next_cqe->phase == phase_flipped) {

__builtin_prefetch(tracker_array[next_cqe->cid]);
}

__builtin_prefetch(next_cqe + 1);

struct tracker *tr = tracker_array[cqe->cid];

struct request *req = tr->req;

req->cb_fn(req->cb_arg);
}
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• https://spdk.io
• https://spdk.io/news/2019/05/06/nvme/
• https://spdk.io/doc/nvme_spec.html
• https://spdk.io/doc/ssd_internals.html

https://spdk.io/
https://spdk.io/news/2019/05/06/nvme/
https://spdk.io/doc/nvme_spec.html
https://spdk.io/doc/ssd_internals.html
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