
Approaching Surpassing 10M I/Ops on a 
Single CPU Core

Ben Walker
Technical Lead

Intel
Flash Memory Summit 
Santa Clara, CA

2019
1



Storage Performance Development Kit

Flash Memory Summit 
Santa Clara, CA

2019
2

• User-space block storage stack with similar features to 
an OS
• Includes an NVMe driver

• Open Source, BSD 3-Clause License (https://spdk.io)
• Very active community

• 1200 commits from 56 committers in last 3 months

https://spdk.io/


BIG NUMBERS

Flash Memory Summit 
Santa Clara, CA

2019
3

4KiB random reads at queue depth 128 to each device



System Configuration

Flash Memory Summit 
Santa Clara, CA

2019
4

Configuration

CPU Intel® Xeon® Platinum 
8280L CPU @ 2.70GHz

Memory 12x 16GB 26667

Storage 21x Intel® SSD DC P4600 
1.6TB



Outline

Flash Memory Summit 
Santa Clara, CA

2019
5

Talk based on this blog post: 
https://spdk.io/news/2019/05/06/nvme/

Covering only 3 techniques from that post today for time 
reasons.

Not covering any active areas of research, but there are 
several!

https://spdk.io/news/2019/05/06/nvme/


Mechanics of Submitting an I/O

Flash Memory Summit 
Santa Clara, CA

2019
6

NVMe queues consist of two arrays in host memory (submission queue and 
completion queue) plus two doorbells (SQTAIL, CQHEAD) in the BAR



Mechanics of Submitting an I/O

Flash Memory Summit 
Santa Clara, CA

2019
7

To submit: Copy command into next slot. Write SQTAIL.

To complete: Compare phase bit. If flipped, contains valid completion. When done, write 
CQHEAD.
Completions hold updates to SQHEAD.

SQHEAD SQTAIL



SPDK NVMe Design Basics

Flash Memory Summit 
Santa Clara, CA

2019
8

• Assign NVMe queue pairs to threads.
• No locks!

• Disable interrupts
• Completions are handled when the application is 

ready to handle them. No context switch. 
• Code is compiled with –O2, LTO enabled, PGO 

disabled.



General Rules of Thumb

Flash Memory Summit 
Santa Clara, CA

2019
9

• No cross-thread coordination (locks, etc.)
• Poll instead of interrupt
• Minimize MMIO
• Get the right things into the CPU cache at the right time

• Pack structures. Separate hot data from cold.

Don’t let the CPU stall!



Tricks For Minimizing MMIO

Flash Memory Summit 
Santa Clara, CA

2019
10

while (true) {
... work ...

spdk_nvme_ns_cmd_read(..., cb_fn);
spdk_nvme_ns_cmd_read(..., cb_fn2);

... work ...

spdk_nvme_qpair_process_completions(...); /* calls cb_fns if the read is done */
}

Submit several commands. Check for completions. Repeat.

Naïve implementation: For each command, 1 MMIO on submit, 
1 MMIO on complete



Tricks For Minimizing MMIO

Flash Memory Summit 
Santa Clara, CA

2019
11

Trick 1 (well known):

When checking for completions by reading the phase bit, don’t write 
the completion queue doorbell until all currently outstanding 
completions have been discovered.

Everyone knows this trick.



Tricks For Minimizing MMIO

Flash Memory Summit 
Santa Clara, CA

2019
12

Trick 2 (getting smarter):

When a completion is posted, don’t write the completion queue 
doorbell unless the device actually needs more slots free.

Devices often have large queues – say 1024. We can write the 
completion queue doorbell every ~512 commands.

I’ve only seen SPDK do this. (Doesn’t help this benchmark because 
trick 1 is already finding 30 to 50 completions at a time)



Tricks For Minimizing MMIO

Flash Memory Summit 
Santa Clara, CA

2019
13

Trick 3 (really smart):

When a command is submitted, copy the command into the SQE slot 
but don’t ring the submission queue doorbell. Instead, ring the 
doorbell only when the user polls (which is happening very frequently).

This is a tricky way to batch command submissions transparently to 
the user in a polling system.

2.89M I/Ops with this disabled. 10.39M with this enabled.



Completing I/O

Flash Memory Summit 
Santa Clara, CA

2019
14

for each cqe {
if (cqe->phase != phase_flipped) {

break;
}

struct tracker *tr = tracker_array[cqe->cid];

struct request *req = tr->req;

req->cb_fn(req->cb_arg);
}

• Trackers are 1:1 with slots in the NVMe queue pair.
• Requests are N:1 with trackers.

• Trackers are looked up by CID obtained from CQE



Eliminate Data Dependent Loads

Flash Memory Summit 
Santa Clara, CA

2019
15

struct nvme_request {
spdk_nvme_cmd_cb cb_fn; /* Callback function */
void *cb_arg;

};

struct nvme_tracker {
struct nvme_request *req;

spdk_nvme_cmd_cb cb_fn; /* Copied callback function */
void *cb_arg;

/* Other stuff */
};

On submission, copy cb_fn and cb_arg into tracker



Eliminating Data Dependent Loads

Flash Memory Summit 
Santa Clara, CA

2019
16

for each cqe {
if (cqe->phase != phase_flipped) {

break;
}

struct tracker *tr = tracker_array[cqe->cid];

tr->cb_fn(tr->cb_arg);
}

500K I/O per second improvement



Clever Pre-fetching

Flash Memory Summit 
Santa Clara, CA

2019
17

for each cqe {
if (cqe->phase != phase_flipped) {

break;
}

next_cqe = cqe + 1;
if (next_cqe->phase == phase_flipped) {

__builtin_prefetch(tracker_array[next_cqe->cid]);
}

__builtin_prefetch(next_cqe + 1);

struct tracker *tr = tracker_array[cqe->cid];

struct request *req = tr->req;

req->cb_fn(req->cb_arg);
}



Questions?

Flash Memory Summit 
Santa Clara, CA

2019
18

• https://spdk.io
• https://spdk.io/news/2019/05/06/nvme/
• https://spdk.io/doc/nvme_spec.html
• https://spdk.io/doc/ssd_internals.html

https://spdk.io/
https://spdk.io/news/2019/05/06/nvme/
https://spdk.io/doc/nvme_spec.html
https://spdk.io/doc/ssd_internals.html

	Approaching Surpassing 10M I/Ops on a Single CPU Core
	Storage Performance Development Kit
	BIG NUMBERS
	System Configuration
	Outline
	Mechanics of Submitting an I/O
	Mechanics of Submitting an I/O
	SPDK NVMe Design Basics
	General Rules of Thumb
	Tricks For Minimizing MMIO
	Tricks For Minimizing MMIO
	Tricks For Minimizing MMIO
	Tricks For Minimizing MMIO
	Completing I/O
	Eliminate Data Dependent Loads
	Eliminating Data Dependent Loads
	Clever Pre-fetching
	Questions?

