
Improved Flash Performance Using the
New Linux Kernel I/O Interface
Vishal Verma: Performance Engineer, Intel

Acknowledgements: John Kariuki, Jens Axboe

Santa Clara, CA
August 2019 1

Agenda

Santa Clara, CA
August 2019 2

 Existing Linux IO interfaces & their challenges
 IO_uring- the new efficient IO interface
 Introduction to Liburing library
 Performance of IO_uring on Non-volatile

media
 Summary

Existing Linux Kernel IO Interfaces
• Synchronous I/O interfaces:

o Thread starts an I/O operation and immediately enters a wait state until the
I/O request has completed

o read(2), write(2), pread(2), pwrite(2), preadv(2), pwritev(2), preadv2(2),
pwritev2(2)

• Asynchronous I/O interfaces:
o Thread sends an I/O request to the kernel and continues processing

another job until the kernel signals to the thread that the I/O request has
completed

o aio_read, aio_write, async io (aio)

Santa Clara, CA
August 2019 3

Existing Linux User-space IO
Interfaces

• SPDK: Provides a set of tools and libraries for writing
high performance, scalable, user-mode storage
applications

• Asynchronous, polled-mode, lockless design
• https://github.com/spdk/spdk.git

This talk will cover Linux Kernel IO Interfaces

Santa Clara, CA
August 2019 4

https://github.com/spdk/spdk.git

The Software Overhead Problem

Santa Clara, CA
August 2019 5

Over 30% SW overhead with most of I/O interfaces
vs. pvsync2 when running single I/O to an Intel® Optane™

SSD

Single thread IOPS Scale with increasing iodepth using libaio
but other I/O interfaces doesn’t scale with iodepth> 1

1.32

1.32

1.33

1.32

1

1.38

0 0.5 1 1.5

sync

psync

vsync

pvsync

pvsync2

libaio

Relative Latency
(Lower is better)

Intel® Optane™ SSD
4K Random Read Avg. Latency (us), Queue Depth=1

12481632 64 128 25612
4
8

16

32

64
128 256

0

100,000

200,000

300,000

400,000

500,000

600,000

0 50 100 150 200 250 300

IO
PS

(H
ig

he
r i

s
be

tte
r)

Queue Depth

Intel® SSD DC P4610
4K Random Read IOPS, numjobs=1

psync

sync

vsync

pvsync

pvsync2

libaio

For test configuration details please see slide # 16
1Results have been estimated or simulated using internal Intel analysis or architecture simulation or modeling, and provided to you for informational purposes. Any differences in your system hardware, software or configuration may affect
your actual performance. Performance results are based on testing or projections as of July 17, 2019 and may not reflect all publicly available security updates. See configuration disclosure for details. No product or component can be
absolutely secure.
For more complete information about performance and benchmark results, visit www.intel.com/benchmarks.

http://www.intel.com/benchmarks

IO_uring: The new IO interface

Santa Clara, CA
August 2019 6

 Designed with low latency devices in mind
 Efficient in terms of per I/O overhead
 High I/O performance & scalable:
 Zero-copy: Submission Queue (SQ) and

Completion Queue (CQ) place in shared memory
 No locking: Uses single-producer-single-

consumer ring buffers
 Easy to use
 Supports both block and file I/O

Introduction to Liburing library

Santa Clara, CA
August 2019 7

 Provides a simplified API and easier way to establish
IO_uring instance

 Initialization / De-initialization:
 io_uring_queue_init(): Sets up io_uring instance and creates

a communication channel between application and kernel
 io_uring_queue_exit(): Removes the existing io_uring instance

 Submission:
 io_uring_get_sqe(): Gets a submission queue entry (SQE)
 io_uring_prep_readv(): Prepare a SQE with readv operation

io_uring_prep_writev(): Prepare a SQE with writev operation
 io_uring_submit(): Tell the kernel that submission queue is ready

for consumption

Introduction to Liburing library

Santa Clara, CA
August 2019 8

 Completion:
 io_uring_wait_cqe(): Wait for completion queue entry (CQE) to

complete
 io_uring_peek_cqe(): Take a peek at the completion, but do not

wait for the event to complete
 io_uring_cqe_seen(): Called once completion event is finished.

Increments the CQ ring head, which enables the kernel
to fill in a new event at that same slot.

 More advanced features not yet available through
liburing

 For further information about liburing
 http://git.kernel.dk/cgit/liburing

I/O Interfaces comparisons
SW Overhead Synchronous I/O Libaio IO_uring
System Calls At least 1 per I/O At least 2 per I/O At least 1 per batch, zero when

using SQ submission thread.
Batching reduces per I/O overhead

Memory Copy Yes Yes – SQE/CQE Zero-copy. Shared SQ & CQ

Context Switches Yes Yes Minimal context switching

Interrupts Interrupt driven Interrupt driven Supports both Interrupts and
polling I/O

Blocking I/O Synchronous Asynchronous Asynchronous

Buffered I/O Yes No Yes

Santa Clara, CA
August 2019 9

IO_uring: Single Core Max IOPS

Santa Clara, CA
August 2019 10

- 4x Intel® Optane™ SSDs used to
avoid I/O bottleneck

- IO Submission and completion
batch sizes were increased from 1
to 32

- IOPS increases with increased
submission and completion batch
size from 1 to 8

- Max single core IOPS at 1.6M per
core using IO_uring

- Libaio maxes out at ~600K per core

1
2

4
8 16 32

1 2 4
8 16 32

0
200,000
400,000
600,000
800,000

1,000,000
1,200,000
1,400,000
1,600,000
1,800,000

0 5 10 15 20 25 30 35

IO
PS

IO Submission/Completion Batch Size

4K Rand Read IOPS at QD=128
4x Intel® Optane™ SSD

(1 CPU Core, FIO)

uring fio t libaio

For test configuration details please see slide # 16
1Results have been estimated or simulated using internal Intel analysis or architecture simulation or modeling, and provided to you for informational purposes. Any differences in your system hardware, software or configuration may affect
your actual performance. Performance results are based on testing or projections as of July 17, 2019 and may not reflect all publicly available security updates. See configuration disclosure for details. No product or component can be
absolutely secure.
For more complete information about performance and benchmark results, visit www.intel.com/benchmarks.

http://www.intel.com/benchmarks

Measuring per I/O Latencies:
Libaio vs. IO_uring

Santa Clara, CA
August 2019 11

- Using overhead test app within SPDK.
Measures software overhead of I/O
submission and completion

- Runs a random read, queue depth = 1
I/O to a single device

- Submission Latency: Captures TSC
before and after the I/O submission

- Completion Latency: Captures TSC
before and after the I/O completion
check

Fixedbufs skips the entire mapping of
pages, which improves submission latency

150

647

704

1526

160

154

155

489

0 500 1000 1500 2000 2500

SPDK

IO_uring (with fixedbufs)

IO_uring (without fixedbufs)

Libaio

Avg.Latency (ns)

Overhead Tool: Measuring Submission/Completion Latencies

Intel® Optane™ SSD

Submission Completion

IO_uring (without fixedbufs) submission
overhead reduces by 50% and completion
overhead by 70% compared to libaio

For test configuration details please see slide # 16
1Results have been estimated or simulated using internal Intel analysis or architecture simulation or modeling, and provided to you for informational purposes. Any differences in your system hardware, software or configuration may affect
your actual performance. Performance results are based on testing or projections as of July 17, 2019 and may not reflect all publicly available security updates. See configuration disclosure for details. No product or component can be
absolutely secure.
For more complete information about performance and benchmark results, visit www.intel.com/benchmarks.

http://www.intel.com/benchmarks

Relative IOPS Performance:
Single Core: IO_Uring vs. Libaio

Santa Clara, CA
August 2019 12

1.83

1.45 1.34 1.38 1.36 1.38 1.38 1.36 1.36

0.00

0.50

1.00

1.50

2.00

1 2 4 8 16 32 64 128 256

H
ig

he
r i

s
be

tte
r

Queue Depth

FIO: 4K 100% Random Reads
2x Intel® Optane™ SSDs

Libaio IO_uring

- Up to 10-15% improvement with IO_uring on
Intel® SSD DC P4610 at lower queue depths

- IO_uring performs up to 1.8x better at lower
queue depths on Intel® Optane™ SSDs

1.12 1.11 1.11 1.11 1.15 1.09
1.28

1.59
1.79

0.00

0.50

1.00

1.50

2.00

1 2 4 8 16 32 64 128 256

H
ig

he
r i

s
be

tte
r

Queue Depth

FIO: 4K 100% Random Reads
2x Intel® SSD DC P4610

Libaio IO_uring

For test configuration details please see slide # 16
1Results have been estimated or simulated using internal Intel analysis or architecture simulation or modeling, and provided to you for informational purposes. Any differences in your system hardware, software or configuration may affect
your actual performance. Performance results are based on testing or projections as of July 17, 2019 and may not reflect all publicly available security updates. See configuration disclosure for details. No product or component can be
absolutely secure.
For more complete information about performance and benchmark results, visit www.intel.com/benchmarks.

http://www.intel.com/benchmarks

Summary

Santa Clara, CA
August 2019 13

 IO_uring is the latest high performance I/O interface
in the Linux Kernel (available since 5.1 release)

 Helps improve performance for low-latency media
 Eliminates limitations of current Linux kernel async

I/O interfaces
 Up to 1.8x better in IOPS per core and 70% better in

latency than libaio for a single thread

14

Legal Disclaimers
 Intel technologies may require enabled hardware, specific software, or services activation. Performance varies depending on system configuration. Check with your

system manufacturer or retailer.
 Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.

Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to
any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated
purchases, including the performance of that product when combined with other products. For more complete information visit http://www.intel.com/performance.

 Cost reduction scenarios described are intended as examples of how a given Intel- based product, in the specified circumstances and configurations, may affect future
costs and provide cost savings. Circumstances will vary. Intel does not guarantee any costs or cost reduction.

 All information provided here is subject to change without notice. Contact your Intel representative to obtain the latest Intel product specifications and roadmaps.
 No computer system can be absolutely secure.
 Intel, the Intel logo, Xeon, Intel vPro, Intel Xeon Phi, Look Inside., are trademarks of Intel Corporation in the U.S. and/or other countries.
 *Other names and brands may be claimed as the property of others.
 © 2019 Intel Corporation.

http://www.intel.com/performance

Backup

Santa Clara, CA
August 2019 15

Santa Clara, CA
August 2019 16

Performance configuration for slide 5 data:
Relative Latency: SuperMicro SYS-2029U-TN24R4T, Intel(R) Xeon(R) Platinum 8270 CPU @ 2.70GHz, 384GB DDR4,
Ubuntu 18.04 LTS, Linux Kernel 5.2.0, 1x Intel® Optane™ 375GB SSD, fio-3.14-6-g97134, 4K 100% Random Reads,
Iodepth=1, ramp time = 30s, direct=1 , runtime=300s, Data collected at Intel Storage Lab 07/17/2019

Throughput: SuperMicro SYS-2029U-TN24R4T, Intel(R) Xeon(R) Platinum 8270 CPU @ 2.70GHz, 384GB DDR4, Ubuntu
18.04 LTS, Linux Kernel 5.2.0, 1x Intel® SSD DC P4610 1.6TB, fio-3.14-6-g97134, 4K 100% Random Reads, Iodepth=1 to
256 varied (exponential 2), ramp time= 30s, direct=1, runtime=300s, Data collected at Intel Storage Lab 07/17/2019

Performance configuration for slide 10 data: SuperMicro SYS-2029U-TN24R4T, Intel(R) Xeon(R) Platinum 8270 CPU @
2.70GHz, 384GB DDR4, Ubuntu 18.04 LTS, Linux Kernel 5.2.0, 4x Intel® Optane™ 375GB SSD, fio-3.14-6-g97134, t/fio
app used with varied batching sizes, Data collected at Intel Storage Lab 07/17/2019

Performance configuration for slide 11 data: SuperMicro SYS-2029U-TN24R4T, Intel(R) Xeon(R) Platinum 8270 CPU @
2.70GHz, 384GB DDR4, Ubuntu 18.04 LTS, Linux Kernel 5.2.0, 1x Intel® Optane™ 375GB SSD, SPDK overhead tool
used, runtime = 300s, Data collected at Intel Storage Lab 07/17/2019

Performance configuration for slide 12 data: SuperMicro SYS-2029U-TN24R4T, Intel(R) Xeon(R) Platinum 8270 CPU @
2.70GHz, 384GB DDR4, Ubuntu 18.04 LTS, Linux Kernel 5.2.0, 2x Intel® Optane® 375GB SSD, 2x Intel® SSD DC P4610
fio-3.14-6-g97134, runtime = 300s, Data collected at Intel Storage Lab 07/17/2019

Performance Configuration

Santa Clara, CA
August 2019 17

DEVS="nvme0n1 "

for dev in $DEVS; do
echo "Prep /dev/$dev"
SYSFS=/sys/block/$dev/queue

echo 0 > $SYSFS/iostats
echo 0 > $SYSFS/rq_affinity
echo 2 > $SYSFS/nomerges
echo 0 > $SYSFS/io_poll_delay

done

Kernel Block layer Tuning Script

	Improved Flash Performance Using the New Linux Kernel I/O Interface
	Agenda
	Existing Linux Kernel IO Interfaces
	Existing Linux User-space IO Interfaces
	The Software Overhead Problem
	IO_uring: The new IO interface
	Introduction to Liburing library
	Introduction to Liburing library
	I/O Interfaces comparisons
	IO_uring: Single Core Max IOPS
	Measuring per I/O Latencies:�Libaio vs. IO_uring
	Relative IOPS Performance:�Single Core: IO_Uring vs. Libaio�
	Summary
	Legal Disclaimers
	Backup
	����Performance configuration for slide 5 data: �Relative Latency: SuperMicro SYS-2029U-TN24R4T, Intel(R) Xeon(R) Platinum 8270 CPU @ 2.70GHz, 384GB DDR4, Ubuntu 18.04 LTS, Linux Kernel 5.2.0, 1x Intel® Optane™ 375GB SSD, fio-3.14-6-g97134, 4K 100% Random Reads, Iodepth=1, ramp time = 30s, direct=1 , runtime=300s, Data collected at Intel Storage Lab 07/17/2019��Throughput: SuperMicro SYS-2029U-TN24R4T, Intel(R) Xeon(R) Platinum 8270 CPU @ 2.70GHz, 384GB DDR4, Ubuntu 18.04 LTS, Linux Kernel 5.2.0, 1x Intel® SSD DC P4610 1.6TB, fio-3.14-6-g97134, 4K 100% Random Reads, Iodepth=1 to 256 varied (exponential 2), ramp time= 30s, direct=1, runtime=300s, Data collected at Intel Storage Lab 07/17/2019��Performance configuration for slide 10 data: SuperMicro SYS-2029U-TN24R4T, Intel(R) Xeon(R) Platinum 8270 CPU @ 2.70GHz, 384GB DDR4, Ubuntu 18.04 LTS, Linux Kernel 5.2.0, 4x Intel® Optane™ 375GB SSD, fio-3.14-6-g97134, t/fio app used with varied batching sizes, Data collected at Intel Storage Lab 07/17/2019��Performance configuration for slide 11 data: SuperMicro SYS-2029U-TN24R4T, Intel(R) Xeon(R) Platinum 8270 CPU @ 2.70GHz, 384GB DDR4, Ubuntu 18.04 LTS, Linux Kernel 5.2.0, 1x Intel® Optane™ 375GB SSD, SPDK overhead tool used, runtime = 300s, Data collected at Intel Storage Lab 07/17/2019��Performance configuration for slide 12 data: SuperMicro SYS-2029U-TN24R4T, Intel(R) Xeon(R) Platinum 8270 CPU @ 2.70GHz, 384GB DDR4, Ubuntu 18.04 LTS, Linux Kernel 5.2.0, 2x Intel® Optane® 375GB SSD, 2x Intel® SSD DC P4610 fio-3.14-6-g97134, runtime = 300s, Data collected at Intel Storage Lab 07/17/2019��
	���� �DEVS="nvme0n1 "��for dev in $DEVS; do� echo "Prep /dev/$dev"� SYSFS=/sys/block/$dev/queue�� echo 0 > $SYSFS/iostats� echo 0 > $SYSFS/rq_affinity� echo 2 > $SYSFS/nomerges� echo 0 > $SYSFS/io_poll_delay�done�

