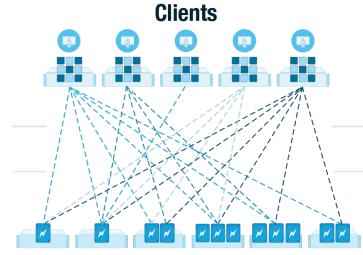


Challenges of Distributed Storage with Data Protection

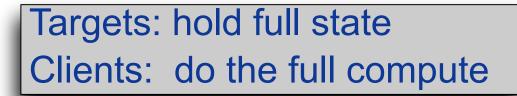
Director of Algorithms, Excelero Daniel Herman Shmulyan

Who is Daniel H. Sh.?


Director of Algorithms at Excelero

- 15 years of software development and architecture experience in various aspects of high performance, multi-platform and distributed systems including machine learning, storage and computer vision.
- Links: Linkedin Stackoverflow
 - www.excelero.com

Distributed Shared Storage HW Setup


- Single rack
- Clients: Hosts/Initiators (CPU, NIC, RAM)
- Targets: Servers (+NVME Drives)
- NVRAM, NV-DIMMs, Cache
- RDMA notation
- RAID6 (say 8+2)

Servers

- Target CPU is idle in data pathStateless client
 - C₁ crashes, C₂ continues

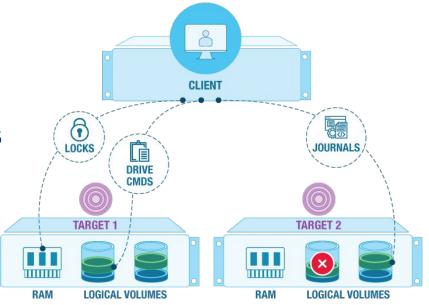
Benefits of dis-aggregation

- Scalability: Storage / IOPs / Recoveries
 - 50K clients <--> 500 Targets
- Mathematical fairness
- Easy migration
- Control path is not a bottleneck to datapath

Data Path Basics

Transactionality of 4K I/O:

- Client managed journaling
- Mutually exclusive clients
- State:
 - Drive Block & Metadata
 - Volatile RAM (Locks, etc)
 - Same redundancy as data on disks


Execution Plans

Basic I/O (good path, degraded mode)Failed I/O fixups (client disconnection fixups)Raid-Rebuilds (boot, recoveries)

Maintenance (scrubbing, wrap-around, migration) Control Path

Components of EC algorithm

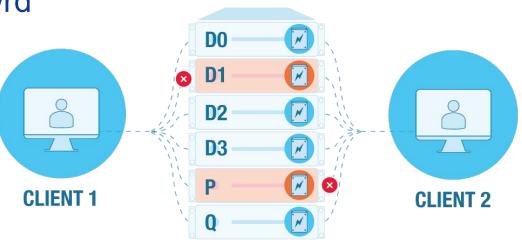
- Virtual Block mapping
 - May differently for 2 cpu cores
- Cmds to drives
- Locks + RAM data structures
 - 1+P backup
- Journals
 - Write atomicity, no write-hole
 - IO atomicity
 - Written to same disks as IO

- Area on each physical drive for IO journalling
- This disk is inaccessible for logical volume. Raid is degraded

Flash Memory Summit

Execution Plan for data-path

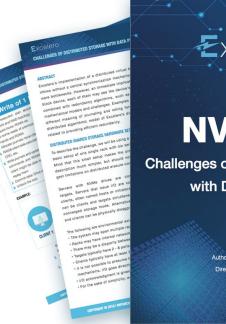
Write of 1[blk] execution	Failed I/O fixup By C ₁
 Build plan {VLBA, topology} Acquire locks Reads old data Locally allocate journals RAID6 GF/CRC calculation Write journals to drives Update RAM data structures Here RollFwd is possible Commit Data to drives Unlock the lock 	1. C_1 (recoverer), C_2 (recoveree) 2. C_1 detects abandoned lock of C_2 3. Acquire locks 4. Get const access to C_2 resources 5. Analyzes RAM, journals, drives 6. Solve write-holes hazards 7. Solve Topology C_1 - C_2 discrepancy 8. Solve natural disasters 9. Solve Topology transitions


Issues: Simplicity, Performance

Raid 4+2 Example

- C₁ 8K Write:{D₀, D₁, P, Q}
- C₂ "roll-fwds" D₀
- C₂ updates dirty markers
- Crash in "roll-fwd/bkwrd"
- Cold Recovery?

 $\{D_0, P\}$ succeeds



Summary of the Challanges

- No $\{C_1, C_2\}$ Talks
- Control path topo barriers, with datapath.
- Scalability: Distributed Data and Control Path
- u64 rdma cmp-xchng fast & atomic
- Datapath does not wipe journals
- Locks Topologies
- Single block IO write amplification

Excelero ROTECTION TECHNICAL WHITE PAPER **NVMesh** Challenges of Distributed Storage with Data Protection White Paper Author: Daniel Herman Shmulyan Director of Algorithms, Excelero

Flash Memory Summit 2019 Santa Clara, CA

www.excelero.com

Raid 8+2 Topologies

- Drive has 3+ topos {Dead, Rebuild, OK}
- Total Raid topologies: 201
- Clients {C₁,C₂} Topologies matrix 201².
 - Contradicting Topologies
 - Control Path: soft barrier on Topologies
- Locks Topologies

4C^P_{D+P}+2(D+P)+1