
Samira Khan

PMTEST
Testing Persistent Memory Applications

TWO-LEVEL STORAGE MODEL

CP
U

M
EM

O
RY

ST
O

RA
G

E

VOLATILE
FAST

BYTE ADDR
NONVOLATILE

SLOW
BLOCK ADDR

Ld/St

FILE
I/O

DRAM

2

TWO-LEVEL STORAGE MODEL

CP
U

M
EM

O
RY

ST
O

RA
G

E

VOLATILE
FAST

BYTE ADDR
NONVOLATILE

SLOW
BLOCK ADDR

Ld/St

FILE
I/O

DRAM

3

PCM, STT-RAM
NVM

Non-volatile memories combine characteristics
of memory and storage

VISION: UNIFY MEMORY AND STORAGE

CPU
PERSISTEN

T
M

EM
O

RY
Provides an opportunity to manipulate

persistent data directly in memory

Ld/St

NVM

4

Avoids reading and writing back data
to/from storage

CHALLENGE: NEED ALL STORAGE SYSTEM SUPPORTS

APPLICATION

Overhead in OS/storage layer overshadows
the benefit of nanosecond access latency of NVM

Ld/St
NVM

5

OS/SYSTEM

MEMORY

STORAGE

FILE
I/O

PERSISTENT
MEMORY

APPLICATION

OS/SYSTEM

Ld/St

Crash
Consistency

CHALLENGE: NEED ALL STORAGE SYSTEM SUPPORTS

APPLICATION

Not the operating system,
Application layer is responsible for crash consistency in PM

Ld/St
NVM

6

OS/SYSTEM

MEMORY

STORAGE

FILE
I/O

Crash
Consistency

PERSISTENT
MEMORY

APPLICATION

Ld/St

7

Requirements and Key Ideas

SIGMETRICS’14PMTEST: Interface and Mechanism

CHALLENGE:
PM Programming is Hard!

Results and Conclusion
ASPLOS’19

NON-VOLATILE MEMORY

Programming
Persistent
Memory

Applications

PERSISTENT
MEMORY

PERSISTENT MEMORY PROGRAMMING

• Support for crash consistency have two fundamental guarantees
• Durability: writes become persistent in PM
• Ordering: one write becomes persistent in PM before another

8
PM-DIMM

Core

CacheVolatile

Persistent

Durability Guarantee:
writeback data from cache

Flush A

• Support for crash consistency have two fundamental guarantees
• Durability: writes become persistent in PM
• Ordering: one write becomes persistent in PM before another

9
PM-DIMM

Core

Persistent

Cache

B
A

Volatile

Ordering Guarantee:
Write A before B

Writeback A
Barrier
Writeback B

PERSISTENT MEMORY PROGRAMMING

Expert Normal
• Uses low-level primitives
• Understands the hardware
• Understands the algorithm

• Uses a high-level interface
• Does not need to know details of

hardware or algorithm

Two different ways to program persistent applications
10

PM Programming

PERSISTENT MEMORY PROGRAMMING

• Hardware provides low-level primitives for crash consistency
• Exposes instructions for cache flush and barriers

• sfence, clwb from x86
• dc cvap from ARM
• Academic proposals, e.g., ofence, dfence.

[Kiln’13, ThyNVM’15, DPO’16, JUSTDOLogging’16, ATOM’17, HOPS’17, etc.] 11

clwb
sfence

dc cvap
dsb

x86

PM-DIMM

ARM

PM-DIMM

New Instr

PM-DIMM

PERSISTENT MEMORY PROGRAMMING (LOW-LEVEL)

PROGRAMMING USING LOW-LEVEL PRIMITIVES

Head

1 void listAppend(item_t new_val) {
2 node_t* new_node = new node_t(new_val);
3 new_node->next = head;
4 head = new_node;
5 persist_barrier();
6 }

In cache

new_node is lost after failure

2 node_t* new_node = new node_t(new_val);
3 new_node->next = head;
4 head = new_node;

Create new_node
Update new_node
Update head pointer

Inconsistent linked list 12

Writeback updates5 persist_barrier(); Writes to PM can reorder

1 void listAppend(item_t new_val) {
2 node_t* new_node = new node_t(new_val);
3 new_node->next = head;

In PM

persist_barrier();

In cache

4 head = new_node;

5 persist_barrier();

6 }

Enforce writeback before changing head

Consistent linked list

Head

13Ensuring crash consistency with low-level primitives is HARD!

PROGRAMMING USING LOW-LEVEL PRIMITIVES

Expert Normal
• Uses low-level primitives
• Understands the hardware
• Understands the algorithm

• Uses a high-level interface
• Does not need to know details of

hardware or algorithm

14

PM Programming

PERSISTENT MEMORY PROGRAMMING

• Libraries provide transactions on top of low-level primitives
• Intel’s PMDK
• Academic proposals

[NV-Heaps’11, Mnemosyne’11, ATLAS’14, REWIND’15, NVL-C’16, NVThreads’17 LSNVMM’17, etc.] 15

PERSISTENT MEMORY PROGRAMMING (HIGH-LEVEL)

AtomicBegin {
Append a new node;

} AtomicEnd;

Uses logging mechanisms to atomically commit the updates

PROGRAMMING USING TRANSACTIONS

1 void ListAppend(item_t new_val) {
2 TX_BEGIN {
3 node_t *new_node = makeNode(new_val);
4 TX_ADD(list.head, sizeof(node_t*));
5 List.head = new_node;
6 List.length++;
7 } TX_END
8 }

Create new_node
backup head
Update head
Update length

3 node_t *new_node = makeNode(new_val);
4 TX_ADD(list.head, sizeof(node_t*));
5 List.head = new_node;
6 List.length++;

length is not backed up before update!

16

1 void ListAppend(item_t new_val) {

2 TX_BEGIN {

3 node_t *new_node = makeNode(new_val);

4 TX_ADD(list.head, sizeof(node_t*));

5 List.head = new_node;

Ensuring crash consistency with transactions is still HARD!

6 List.length++;

7 } TX_END

8 }

TX_ADD(list.length, sizeof(unsigned));

Backup length before update

17

PROGRAMMING USING TRANSACTIONS

Expert Normal
• Uses low-level primitives
• Understands the hardware
• Understands the algorithm

• Uses a high-level interface
• Does not need to know details of

hardware or algorithm

18

PM Programming

PERSISTENCE MEMORY PROGRAMMING IS HARD

Both expert and normal programmers can make mistakes

19

Detect crash consistency bugs

PERSISTENT MEMORY PROGRAMMING IS HARD

We need a tool to detect crash consistency bugs!

20

Requirements and Key Ideas

SIGMETRICS’14PMTEST: Interface and Mechanism

CHALLENGE:
PM Programming is Hard!

Results
ASPLOS’19

NON-VOLATILE MEMORY

Programming
Persistent
Memory

Applications

PERSISTENT
MEMORY

REQUIREMENTS OF THE TOOL

Fast Flexible

[PMFS’14, BPFS’09, NOVA’16, NOVA-Fortis’17, Strata’17, SCMFS’11 etc.]
[PMDK, NV-Heaps’11, Mnemosyne’11, ATLAS’14, REWIND’15, NVL-C’16,
NVThreads’17 LSNVMM’17, etc.]E.g., custom database, key-value store, etc.[DPO’16, HOPS’17, etc.]

Kernel Modules

PM Libraries

Custom Programs

Future HW and Models

[x86, ARM, etc.]

Existing HW

21

22

PMTEST KEY IDEAS: FLEXIBLE

PM Program PM Kernel ModulePM Program

PMDK Library

x86 x86ARM

Mnemosyne Library
Call library Call library

write, sfence, clwb write, dc cvap, dsb write, sfence, clwb

The challenge is to support different
hardware and software models

• Many different programming models and hardware primitives available

23

PMTEST KEY IDEAS: FLEXIBLE

PM Program PM Kernel ModulePM Program

PMDK Library

x86 x86ARM

Mnemosyne Library
Call library Call library

write, sfence, clwb write, dc cvap, dsb write, sfence, clwb

Operations that maintain crash consistency are similar:
ordering and durability guarantees

Our key idea is to test for these two fundamental guarantees
which in turn can cover all hardware-software variations

• Prior work [Yat’14] uses exhaustive testing

24

sfence
write A
write B
write C
...
sfence

Recoverable?

nO(n!)

sfence
write B
write A
write C
...
sfence

sfence
write C
write B
write A
...
sfence

sfence
write B
write C
write A
...
sfence

sfence
write A
write C
write B
...
sfence

sfence
write C
write A
write B
...
sfence

PMTEST KEY IDEAS: FAST

Exhaustive testing is time consuming and not practical

PMTEST KEY IDEAS: FAST
• Reduce test time by using only one dynamic trace

25

sfence
write C
write B
write A
...
sfence

Recoverable?

Persistent Memory Application

Runtime Trace

A significant improvement over O(n!) testing

• PMTest infers the persistence interval from PM operation trace
The interval in which a write can possibly become persistent

A

B

Timeline

clwb A
sfence
write B
clwb B
sfence

A persists before B

26

write A

Trace

PMTEST KEY IDEAS: FAST

A disjoint interval indicates that no re-ordering in the hardware
will lead to a case where A does not persist before B

27

A

B

Timeline

clwb A
sfence

write B

clwb B
sfence

write A

Trace

A may NOT persist before B

Interleaving

• PMTest infers the persistence interval from PM operation trace
The interval in which a write can possibly become persistent

PMTEST KEY IDEAS: FAST

An overlapping interval indicates that there is a case where
A does not persist before B

28

A

B

Timeline

clwb A
sfence

write B

clwb B
sfence

write A

Trace

• PMTest infers the persistence interval from PM operation trace
The interval in which a write can possibly become persistent

PMTEST KEY IDEAS: FAST

Querying the trace can detect any violation
in ordering and durability guarantee at runtime

A persists before B?
No

29

Requirements and Key Ideas

SIGMETRICS’14PMTEST: Interface and Mechanism

CHALLENGE:
PM Programming is Hard!

Results and Conclusion
ASPLOS’19

NON-VOLATILE MEMORY

Programming
Persistent
Memory

Applications

PERSISTENT
MEMORY

PMTEST OVERVIEW

Testing Annotation

Testing
Results

Checking Rules

OnlineOffline

30

Persistent Memory Application PMTest

PMTEST OVERVIEW

Testing Annotation

Testing
Results

Checking Rules

OnlineOffline

31

Persistent Memory Application PMTest

PMTEST INTERFACE

Expert Normal

PMTest

• Assertion-like low-level interface
• Check behavior vs. specification

• High-level interface
• Minimize programmer’s effort
• Automatically inject low-level checkers

PMTest provides two different interfaces
32

PMTEST LOW-LEVEL INTERFACE

• Two low-level checkers
• isOrderedBefore(A, sizeA, B, sizeB)

Checks whether A is persisted before B (Ordering guarantee)
• IsPersisted(A, sizeA)

Checks whether A has been written back to PM (Durability guarantee)

33

PMTEST LOW-LEVEL INTERFACE

• Two low-level checkers
• isOrderedBefore(A, sizeA, B, sizeB)

Checks whether A is persisted before B (Ordering guarantee)
• IsPersisted(A, sizeA)

Checks whether A has been written back to PM (Durability guarantee)

• Help check if implementation meets specification for
• Programs/kernel modules based on low-level primitives
• PM libraries

34

EXAMPLE
void hashMapRemove() {

...

remove(buckets->bucket[hash]);

count--;

persist_barrier();

...

hashmap_rebuild();

isOrderedBefore(&count, sizeof(unsigned), &hashmap, sizeof(hashmap));

isPersisted(&hashmap, size);

}

35*This example is inspired by hashmap_atomic from PMDK

Check if all updates have been persisted in rebuilding

Check if count has been persisted before rebuilding

PMTest helps the programmers to reason about the code

PMTEST LOW-LEVEL INTERFACE

• Two low-level checkers
• isOrderedBefore(A, sizeA, B, sizeB)

Check whether A is persisted before B (Ordering guarantee)
• IsPersisted(A, sizeA)

Check whether A has been written back to PM (Durability guarantee)

• Help check if implementation meets specification for
• Programs/kernel modules based on low-level primitives
• PM libraries

• Further enables high-level checkers to automate testing

36

PMTEST HIGH-LEVEL INTERFACE
• Currently provides high-level checkers for PMDK transactions
• Automatically detects crash consistency bugs

37

void ListAppend(item_t new_val) {
TX_CHECKER_START; //Start of TX checker
TX_BEGIN {
node_t *new_node = makeNode(new_val);
TX_ADD(list.head, sizeof(node_t*));
List.head = new_node;
List.length++;

} TX_END
TX_CHECKER_END; //End of TX checker

}

Automatically check if all
updates have been persisted

Automatically check if there
is a backup before update

* This example does not include initialization and communication with PMTest

PMTEST HIGH-LEVEL INTERFACE
• Currently provides high-level checkers for PMDK transactions
• Automatically detects crash consistency bugs

• If all updates have been persisted at the end of the transaction
• If there is a backup before update during the transaction

• Automatically detects performance bugs
• Redundant log/backup
• Duplicated writeback/flush operations (for all programs)

38

High-level checkers minimize programmer’s effort

PMTEST OVERVIEW

Testing Annotation

Testing
Results

Checking Rules

OnlineOffline

39

Persistent Memory Application PMTest

PMTEST CHECKING MECHANISM

for (...) {
TX_CHECKER_START;
TX_BEGIN;
...
TX_END;
TX_CHECKER_END;
PMTest_SEND_TRACE;
}

...
write A
write B
clwb B
sfence
TX_END

At Runtime PM Trace

Auto inject low-level checkers
for high-level checkers

Checking
Engine

Result:
A is not persistent!

Checking
Engine

40
The checking engine tests the trace

CHECKING ENGINE ALGORITHM
• Infer the persistence interval in which a write can become persistent
• Check the interval against the low-level checkers

A

sfence

Time

B

sfence

sfence

A and B can be
persisted any time

B may not persist

PM Trace Persistence Interval

write A
clwb A
write B
sfence
isOrderedBefore A B
isPersist B

41

Our interval-based check enables faster testing

42

Requirements and Key Ideas

SIGMETRICS’14PMTEST: Interface and Mechanism

CHALLENGE:
PM Programming is Hard!

Results and Conclusion
ASPLOS’19

NON-VOLATILE MEMORY

Programming
Persistent
Memory

Applications

PERSISTENT
MEMORY

METHODOLOGY

CPU: 8-core Skylake 2.1GHz, OS: Ubuntu 14.04, Linux kernel 4.4
Memory: 64GB DDR4
NVM: 64GB Battery-backed NVDIMM

Platform

43

Micro-benchmarks
(from PMDK)
• C-Tree
• B-Tree
• RB-Tree
• HashMap

Real-world workloads
• PM-optimized file system

• Intel’s PMFS (kernel module)
• PM-optimized database

• Redis (PMDK Library)
• Memcached (Mnemosyne Library)

Workloads

Baselines
• No testing tool
• With Intel’s Pmemcheck (only for PMDK-based programs)

MICRO-BENCHMARK

0
2
4
6
8

C-Tree B-Tree RB-Tree HashMap HashMap
(Low-level)

Sp
ee

du
p

vs
.

Pm
em

ch
ec

k

PMTest is 7.1X faster than Pmemcheck
44

(Transaction)

REAL-WORLD WORKLOADS

1.0

1.5

2.0

Memcached Memcached Redis PMFS PMFS AveragePM
Te

st
 O

ve
rh

ea
d

+Memslap +YCSB +LRU +OLTP +Filebench

PMTest has < 2X overhead in real-world workloads
45

22X slowdown with Pmemcheck

BUG DETECTION
• Validated with

• 42 synthetic bugs injected to micro-
benchmarks

• 3 existing bugs from commit history

46

• New bugs found
• 1 crash consistency bug in PMDK applications
• 1 performance bug in PMFS
• 1 performance bug in PMDK applications

CONCLUSION
• It is hard to guarantee crash consistency in persistent memory applications

• Our tool PMTest is fast and flexible
• Flexible: Supports kernel modules, custom PM programs, transaction-based programs
• Fast: Incurs < 2X overhead in real-workload applications

• PMTest has detected 3 new bugs in PMFS and PMDK applications

47

PMTest
pmtest.persistentmemory.org

Samira Khan

PMTEST
Testing Persistent Memory Applications

	Slide Number 1
	TWO-LEVEL STORAGE MODEL
	TWO-LEVEL STORAGE MODEL
	VISION: UNIFY MEMORY AND STORAGE
	CHALLENGE: NEED ALL STORAGE SYSTEM SUPPORTS
	CHALLENGE: NEED ALL STORAGE SYSTEM SUPPORTS
	Slide Number 7
	PERSISTENT MEMORY PROGRAMMING
	PERSISTENT MEMORY PROGRAMMING
	PERSISTENT MEMORY PROGRAMMING
	PERSISTENT MEMORY PROGRAMMING (LOW-LEVEL)
	PROGRAMMING USING LOW-LEVEL PRIMITIVES
	PROGRAMMING USING LOW-LEVEL PRIMITIVES
	PERSISTENT MEMORY PROGRAMMING
	PERSISTENT MEMORY PROGRAMMING (HIGH-LEVEL)
	PROGRAMMING USING TRANSACTIONS
	PROGRAMMING USING TRANSACTIONS
	PERSISTENCE MEMORY PROGRAMMING IS HARD
	PERSISTENT MEMORY PROGRAMMING IS HARD
	Slide Number 20
	REQUIREMENTS OF THE TOOL
	PMTEST KEY IDEAS: FLEXIBLE
	PMTEST KEY IDEAS: FLEXIBLE
	PMTEST KEY IDEAS: FAST
	PMTEST KEY IDEAS: FAST
	PMTEST KEY IDEAS: FAST
	PMTEST KEY IDEAS: FAST
	PMTEST KEY IDEAS: FAST
	Slide Number 29
	PMTEST OVERVIEW
	PMTEST OVERVIEW
	PMTEST INTERFACE
	PMTEST LOW-LEVEL INTERFACE
	PMTEST LOW-LEVEL INTERFACE
	EXAMPLE
	PMTEST LOW-LEVEL INTERFACE
	PMTEST HIGH-LEVEL INTERFACE
	PMTEST HIGH-LEVEL INTERFACE
	PMTEST OVERVIEW
	PMTEST CHECKING MECHANISM
	CHECKING ENGINE ALGORITHM
	Slide Number 42
	METHODOLOGY
	MICRO-BENCHMARK
	REAL-WORLD WORKLOADS
	BUG DETECTION
	CONCLUSION
	Slide Number 48

