Western Digital.

FTL Flow Control For CFexpress[™] Camera Hosts Using Large NVMe[™] Reads

Vishwas Saxena Technologist, Firmware Engineering

August 7, 2019

Western Digital.

Flash Memory Summit 2019, Santa Clara, CA © 2019 Western Digital Corporation or its affiliates. All rights reserved.

Large NVMe commands

CFexpress Cards support NVMe MDTS of 32MB

• Maximum Data Transfer size (MDTS)

- MDTS indicates the NVMe maximum data transfer size between the host and the controller.
 - Host manages buffers of up to MDTS size
- Memory Page Size Maximum (MPSMAX) of 128KB
 - Host splits the 32MB NVMe command into 256 PRP entries of size 128KB
 - CFexpress card does prefetch of all 256 PRP entries

Performance Impact of Large NVMe Command Size

 Large NVMe command size results in higher performance due to shorter HTAT (Host Turn Around Time) on full card range

32MB Data Transfer in One Command

Western Digital.

NVMe/PCI Bus Sequence Flow

Western Digital.

NVMe Flash Controller Architecture

FTL and Low Level FW uses IPC Queues for non blocking FW architecture

Western Digital.

Flash Memory Summit 2019, Santa Clara, CA © 2019 Western Digital Corporation or its affiliates. All rights reserved.

Need of FTL Flow Control for Large NVMe Reads

CFexpress Cards supports MDTS of 32MB

• Series of FTL read requests from one 32MB command flood the FTL – Low Level FW IPC Queue

- Typical NVMe device Flash controllers break down the NVMe sequential read command to die size(32KB) at FTL
 - FTL queues them to Low Level Firmware Queue (flash sequencer) with typical queue size of double the number of dies
 - Typically Queue size is 32 in 16 die NAND product
 - One 32MB size read command is broken down to 1024 requests that cannot be held in the above queue
- This results in queue full scenario that causes stall in FW processing
- Same queue is used by Low-Level Firmware (Physical Sequencer) and should always be free
 - To report error status to FTL
 - To get parity information location of failed physical page from FTL

• FW Queue Size Increase

- Device Firmware cannot define FW Queue size (between FTL and Low Level Firmware) for such large commands
- Larger Queue size increases the SRAM budget
- With increase in Queue size we cannot avoid the problem as continuous burst of large reads of size 32MB will eventually exhaust the FW Queue entries

FTL Flow Control

High Level Firmware Architecture with FTL Processor and Low Level Firmware Processor

Western Digital.

Flash Memory Summit 2019, Santa Clara, CA © 2019 Western Digital Corporation or its affiliates. All rights reserved.

FTL Large Reads Flow control

Flow chart

Flow Control Solution

Detailed Steps

Break large commands into smaller chunks from FTL

- Define chunk-size (configurable) based upon optimal Device Queue FULL threshold
- Break the large sequential command into chunks of chunk-size
 - Do not pop the next command from NVMe submission queue till all chunks of current command are processed
 - All subsequent chunks will now come via FTL Processing for one 32MB command
- Blocks FTL processing when FW Queue usage reaches QUEUE_FULL threshold.
 - FTL processing of new command and next chunks is suspended unless queue full condition is cleared by the Queue ISR (low level FW) has consumed the entries

Mixed Read workloads with short random commands

 Allow processing the short random commands that are less than chunk size while processing current large sequential command in FTL processing

Error Handling

 Since same FW Queue is used to process error handling requests and read/write request and the design ensures that the Low Level Queue is not blocked so FW can complete error handling

Western Digital.

- Large Read commands are broken by FTL into chunks of configurable size before getting enqueued at FW Queue
 - FW Queue driver gives interrupt on threshold condition before queue full and queue available
- FTL Blocks processing of NVMe submission queue and internal chunks to ensure Flow control
- FTL optimizes the short random reads processing along with large sequence reads
 - Results into optimal performance in mixed Read (Sequential + Random) workloads
- FTL Flow Control allows error handling between FTL and low level Firmware to remain unaffected
 - As Low Level Firmware Queue is always free

• Western Digital and the Western Digital logo are registered trademarks or trademarks of Western Digital Corporation or its affiliates in the US and/or other countries. The NVMe word mark is a trademark of NVM Express, Inc. All other marks are the property of their respective owners.

Western Digital.

Architecting Data Infrastructure for the Zettabyte Age