

Making SiOx ReRAM, a Cost-effective Embedded Memory

Amir Regev CTO

Weebit overview

- Market opportunities
- Challenges and solutions in ReRAM development
- Conclusions

Weebit LEADERSHIP TEAM Flash Memory Summit

the semiconductor industry

CEO of PacketLight

IEEE Fellow

Brought to Market: Centrino[™] mobile technology

semiconductors

Co-founder of Saifun Semiconductor

Technology Development at Micron

> Was part of Intel's Automotive division

NextGen Inc

President, COO of AMD

ReRAM Market Opportunities

Replacing EEPROMS

Key Applications: All types of sensors, PMIC, LED drivers, Audio

Uses: Trimming Data storage Code Storage

Capacities: 64bits – 1/2Mb

Replacing NOR Flash

Key Applications: Wearables, security, smart cities

Uses: Data storage Code Storage

Capacities: 16Kb –1Mb

රේහි Artificial ශීලී Intelligence

Replacing DRAM usage

Key Applications: Facial & object recognition

Uses: Inference Learning tasks

Capacities: Mb-Gb

ReRAM usage

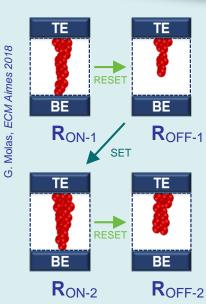
For Memory

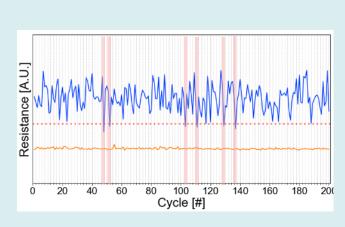
For AI

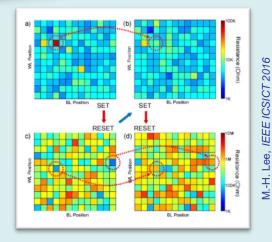
- Integrated in the back-end metal layers
- Power efficient
- Extremely scalable
- Byte alterable

- Combines storage and computation
- Promising for analog computing
- Robust and even utilize noise
- Power efficient, dense, non-volatile

Potential game-changer in a wide range of applications







Intrinsic variability

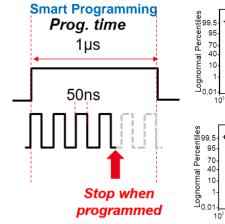
Cycle to Cycle the filament formation is a little different Gap length and defects distribution in the gap varies Leads to variability in the resistive states

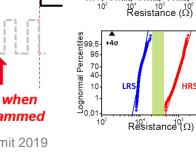
How to solve variability issues

((Technology)) Technology)) Materials, Structures, architectures

Smart Programming Schemes

Algorithms and efficient designs

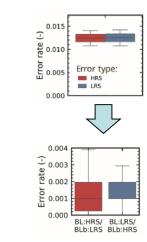




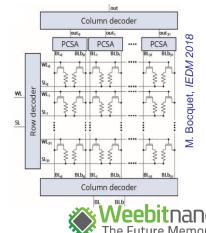
Variability optimization

Optimized programming schemes and smart architectures development are key ways to overcome the inherent variability problems:

Smart operation – adaptive forming and programming algorithms:


+4σ

LRS


HRS

HRS

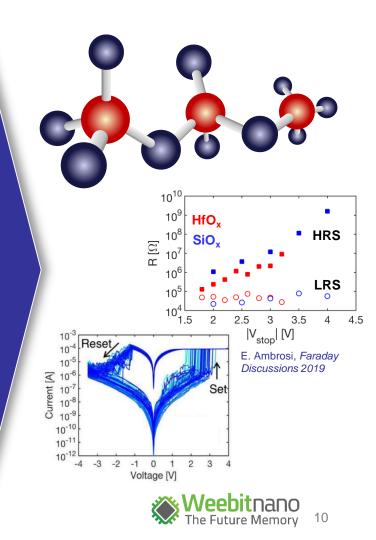
-4σ

Smart architecture

Flash Memory Summit 2019 Santa Clara, CA

Sassine, IRPS 2018

<u>ن</u>

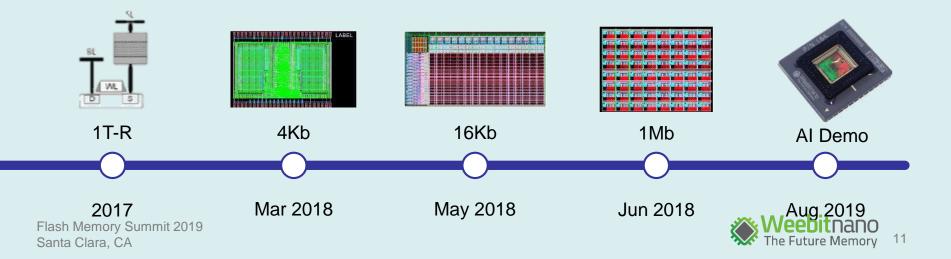

Why Silicon Oxide

Physical Characteristics

- High bandgap material large resistive window
- Low leakage
- Low HRS variability
- High temperature stability

Manufacturability characteristics

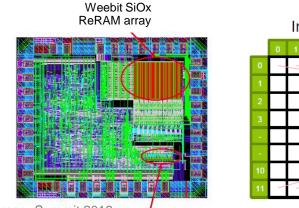
- Full CMOS compatibility
- High manufacturability
 - Any Fab
 - Any process
 - Any deposition technique
- Easily tunable
 - Thickness
 - Stoichiometry
- Cost effective

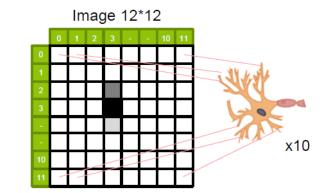


Weebit-Leti Development Partnership

The Weebit-Leti development collaboration is yielding promising results:

- SiOx ReRAM development kicked of in 2016
- Mbit arrays demonstrated at 40nm memory size
- Continuous improvement of technical parameters




Weebit-Leti Neuromorphic Demo

- Fully connected Spiking Neural Network combining analog neurons and SiOx ReRAM synapses
- Demonstrating MNIST digits recognition

First fully-integrated SNN using resistive memories as synaptic elements and analog neurons

Flash Memory Summit 2019 / Santa Clara, CA Neurones

Hear my talk on neuromorphic computing

Thursday AI/ML session-301-1

See our live demo on CEA/Leti booth #852

