

TaO_X-based ReRAM for Variability-Aware Approximate Computing

<u>Chihiro Matsui</u>, Shouhei Fukuyama, Atsuna Hayakawa, and Ken Takeuchi Chuo University, Tokyo, Japan

Reliability-Aware Approximate Computing in Storage

K. Takeuchi, IEDM 2017.

Which hierarchy of ReRAM storage has Error Toleration techniques? How to Relax Reliability for Approximate Computing?

- Variability-Aware Approximate Computing (V-AC)
- Application-Induced Variability of TaO_X ReRAM Cell Errors and V-AC Evaluation Platform
- V-AC Strategies of System, Circuit and Device Co-Design (SCDCD)
- Conclusions

Variability-Aware Approximate Computing (V-AC)

Conv. Exact Computing

V-AC for Machine Learning

BER in page

- System, Circuit, and Device in ReRAM-based storage have Variabilities in nature
- By tolerating variability, Performance, Energy, and Cost gain

Typical Cell Target Strategy of V-AC in ReRAM Storage

Flash Memory Summit 2019 Santa Clara, CA

[*] Y. Yamaga et al., VLSI Tech 2018.

System, Circuit and Device Co-Design (SCDCD) Platform [*]

Flash Memory Summit 2019 Santa Clara, CA

[*] C. Matsui et al., VLSI Technology 2019.

Set/Reset in TaO_X-based ReRAM Cell [*]

- In Set (Reset) operation, LRS (HRS) is formed by moving O²⁻ to TaO_X layer (CF)
- Percolation paths connect (disconnect) between V_os in LRS (HRS)

Flash Memory Summit 2019 Santa Clara, CA

[*] Z. Wei et al., IEDM 2008.

TaO_X ReRAM Conductive Filament (CF) Model [*]

- <u>Write-hot data</u> decrease Vo density in CF by horizontal diffusion
- <u>Relaxation effect</u> reconnects percolation paths by interface Vo diffusion to CF
- <u>Read-hot data</u> cause weak reset by vertical Vo diffusion
- Data retention of <u>cold data</u> causes horizontal Vo diffusion

Flash Memory Summit 2019 Santa Clara, CA

[*] S. Fukuyama et al., IRPS 2019.

Storage System Variability

- Write-hot data induce large Set/Reset cycle difference in cells without smoothing by Wear-leveling (Wear/L) [*]
- Set/Reset cycles of Typical Cells reduce by 95% while those of Worst Cells increase by x10³

Flash Memory Summit 2019 Santa Clara, CA

[*] T. Onagi et al., SSDM 2014.

ReRAM Device-induced BER Variability

- Measured LRS show tail error cells at high Set/Reset cycles [*]
- BER increases with Set/Reset cycles

Flash Memory Summit 2019 Santa Clara, CA [*] K. Maeda et al., *IRPS* 2017.

System-induced BER Variability

Flash Memory Summit

Santa Clara, CA

Application-induced Variability

V-AC Error Toleration Strategies [*]

Hierarchy	Operation	Conv. computing	Prop Strategy	osed V-AC Technique	Dat <i>Write-hot</i>	a characteri <i>Read-hot</i>	istic <i>Cold</i>
System	Wear-leveling (Wear/L)	w/ Wear/L	Ι	w/o Wear/L	\checkmark	\checkmark	
	ECC	Worst-error target 35-bit correction)	t II	Typical-error target (5-bit correction)	\checkmark	\checkmark	
Circuit	Read	NA	III	Adaptive Read		\checkmark	
Device	Set/Reset	Verify	IV	w/o Verify	\checkmark		
		NA		Lower V _{SET} /V _{RESET}	\checkmark		\checkmark

[*] C. Matsui et al., VLSI Technology 2019.

Strategy I: Wear-Leveling (Wear/L) Elimination

Wear/L Operation [*]

Endurance Error Reduction by Wear/L

Wear/L reduces BER of ReRAM storage by smoothing Set/Reset cycles. However, Total Set/Reset cycles increase by extra data copy Flash Memory Summit 2019

[*] T. Onagi et al., SSDM 2014.

Strategy I: Wear-Leveling (Wear/L) Elimination

ReRAM Storage Performance

• Strategy I eliminates Wear/L to remove extra data copy and improves storage performance by 33%

Strategy II: Typical-Error Target ECC

• ECC has trade-off between error correction capability, decoding time and code-rate (cell area)

Strategy II: Typical-Error Target ECC

Relaxed Correction Capability

ReRAM Storage Performance

• ECC code-rate increase and performance improves by 85%

Strategy III & IV: Error Toleration in Circuit & Device

- Application-induced Variability-aware Approximate Computing (V-AC) is proposed with System, Circuit and Device Co-Design (SCDCD)
- Performance, Energy, and Cell Area of ReRAM storage improve by x7.0, 90%, and 8.5%

Thank you for your attention

This presentation is based on results obtained from a project commissioned by the New Energy and Industrial Technology Development Organization (NEDO)