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Reliability-Aware 

Approximate Computing in Storage

Which hierarchy of ReRAM storage has Error Toleration techniques?

How to Relax Reliability for Approximate Computing?
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Outline

• Variability-Aware Approximate Computing (V-AC)

• Application-Induced Variability of TaOX ReRAM Cell Errors                 

and V-AC Evaluation Platform

• V-AC Strategies of System, Circuit and Device Co-Design 

(SCDCD)

• Conclusions
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Variability-Aware 

Approximate Computing (V-AC)

• System, Circuit, and Device in ReRAM-based storage have 

Variabilities in nature

• By tolerating variability, Performance, Energy, and Cost gain
Flash Memory Summit 2019

Santa Clara, CA 4

P
a
g

e
s
 (

W
L

) 

in
 R

e
R

A
M

 s
to

ra
g

e

C
o
n

tr
o
lle

d
 B

E
R

 

Conv. Exact Computing
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Typical Cell Target Strategy of 

V-AC in ReRAM Storage
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System, Circuit and Device 

Co-Design (SCDCD) Platform [*]
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Set/Reset in TaOX-based ReRAM 

Cell [*]

• In Set (Reset) operation, LRS (HRS) is formed by moving O2- to 

TaOX layer (CF)

• Percolation paths connect (disconnect) between VOs in LRS (HRS)
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TaOX ReRAM Conductive Filament 

(CF) Model [*]

• Write-hot data decrease Vo density in 

CF by horizontal diffusion

• Relaxation effect reconnects percolation 

paths by interface Vo diffusion to CF
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• Read-hot data cause weak reset by 

vertical Vo diffusion

• Data retention of cold data causes 

horizontal Vo diffusion

Set/Reset error 

by Write-hot data
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[*] S. Fukuyama et al., IRPS 2019.
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• Write-hot data induce large Set/Reset cycle difference in cells 

without smoothing by Wear-leveling (Wear/L) [*]

• Set/Reset cycles of Typical Cells reduce by 95% while those of 

Worst Cells increase by x103
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ReRAM Device-induced BER 

Variability

• Measured LRS show tail error cells at high Set/Reset cycles [*]

• BER increases with Set/Reset cycles
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System-induced BER Variability
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V-AC Error Toleration Strategies [*]
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Strategy I: Wear-Leveling (Wear/L) 

Elimination

• Wear/L reduces BER of ReRAM storage by smoothing 

Set/Reset cycles. However, Total Set/Reset cycles increase by 

extra data copy
Flash Memory Summit 2019
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Strategy I: Wear-Leveling (Wear/L) 

Elimination

• Strategy I eliminates Wear/L to remove extra data copy and 

improves storage performance by 33%
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Strategy II: Typical-Error Target ECC

• ECC has trade-off between error correction capability, decoding 

time and code-rate (cell area)
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Strategy II: Typical-Error Target ECC

• ECC code-rate increase and performance improves by 85%
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Strategy III & IV: Error Toleration in 

Circuit & Device 
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Conclusions

• Application-induced Variability-aware Approximate Computing (V-AC) 

is proposed with System, Circuit and Device Co-Design (SCDCD)

• Performance, Energy, and Cell Area of ReRAM storage improve by 

x7.0, 90%, and 8.5%
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Conclusions

Thank you for your attention
This presentation is based on results obtained from a project 

commissioned by the New Energy and Industrial Technology 

Development Organization (NEDO)
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